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Abstract: This paper proposes a methodology for dealing with an issue of crucial practical importance
in real engineering systems such as fault detection and recovery of a sensor. The main goal is to
define a strategy to identify a malfunctioning sensor and to establish the correct measurement value
in those cases. As study case, we use the data collected from a geothermal heat exchanger installed
as part of the heat pump installation in a bioclimatic house. The sensor behaviour is modeled
by using six different machine learning techniques: Random decision forests, gradient boosting,
extremely randomized trees, adaptive boosting, k-nearest neighbors, and shallow neural networks.
The achieved results suggest that this methodology is a very satisfactory solution for this kind
of systems.

Keywords: fault detection; geothermal heat exchanger; random decision forests; gradient boosting;
extremely randomized trees; adaptive boosting; k-nearest neighbors; shallow neural networks

1. Introduction

In recent years, most countries faced an important challenge in terms of global warming, economic
instability and fossil fuels price dependency. In this context, the use of alternative energies has been
promoted by the administrations. The most common alternative energy sources are the wind and solar
energies, whose technologies have been subjected to significant advances. However, in addition to
these two energies, the promotion of other renewable energies, such as oceanic or geothermal energy,
have presented important developments in terms of efficiency [1].

Geothermal energy is defined as the heat energy stored under the ground. Dickson and Fanelli,
in [2], presented an estimation of the amount of heat inside the earth rounds the 42× 1012 W. In spite
of this high amount of energy, geothermal installations must be placed in specific areas with suitable
geological conditions [3]. Around the world, its use represents 15 MW of non electrical applications,
such as industrial processes, bathing or heat pumps, and 9 MW of the electrical ones.

The heat exchanger is a crucial component of a geothermal facility, and its main function is to
absorb heat from the ground or transfer it. A geothermal heat exchanger can be placed under the
ground in vertical or horizontal configurations [4,5]. On the one hand, vertical configurations are
more efficient because at high depths, the ground temperature remains almost constant along the year.
This means that, compared to the ambient temperature, the ground temperature would be higher in
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winter and lower in summer. On the other hand, horizontal configurations are less expensive, since the
setup is simpler.

In this kind of facility, where the energy efficiency plays a significant role, the appearance of any
kind of anomaly may lead to inefficient performance. Hence, in renewable energy systems, or any
industrial plant in general terms, the anomaly detection is a crucial task [6–11]. These anomalies can be
produced by wrong sensor readings, actuator malfunctions or changes in plant parameters, in general
terms [12–18]. Focusing on the sensors performance, the occasional reading errors can be removed
and recovered, making the systems more fault tolerant and robust [19–25].

This work deals with a geothermal heat pump facility used to provide thermal energy from
the ground [26]. To achieve a geothermal system optimization, the good behaviour of the system
equipment must be ensured. Then, the prediction of the correct sensor values is a key step to perform
a proper fault identification and recovery. An anomaly would lead to a high deviation from the real
and predicted value. In this case, the real measurement would be discarded and the value considered
by the control system would be the predicted one.

With the aim of improving system performance, machine learning techniques are commonly
considered. These techniques rely on actual observations registered from the system that are used to
train the model. In this work, the sensor reading prediction is performed using intelligent models,
trained with data from a geothermal heat pump installation. Four different intelligent techniques,
commonly used for these kind of applications, were applied to the dataset: Shallow neural networks,
extremely randomized trees, random decision forest and gradient boosting. Two possible approaches
can be considered to obtain the best model. The first approach uses the whole dataset to train a global
model. The second approach is based on the division of the dataset to apply the intelligent regression
techniques over each group. In all cases, the models were tested using artificially generated outliers,
obtaining successful results.

The document is organized following this structure: The next section describes the case of study.
Then, Section 3 details the proposed fault detection and recovery system. The experiments performed
and the obtained results are presented in Section 4. The results are discussed in Section 5 and, finally,
the conclusions are explained in Section 6.

2. Case of Study

This section describes the geothermal heat exchanger facility under study located in a bioclimatic house.

2.1. Sotavento Bioclimatic House

The Sotavento bioclimatic house is a building dedicated to promote the use of alternative energies
and the energy savings. These facilities, founded by the Sotavento Galicia Foundation, are located
between the councils of Xermade and Monfero (Lugo), in the autonomous community of Galicia
(Spain). Its geographical coordinates are 43◦21′ North, 7◦52′ West, with an elevation of 640 m above
the sea and at a distance of 30 km from the sea.

Two different energy needs must be satisfied in the Sotavento bioclimatic house: The thermal and
the electric energy. The thermal system has three different renewable energy sources: Geothermal,
solar and biomass. These three sources ensure the thermal demand coverage. The thermal installation
can be divided into three parts [27]:

• Generation group: Three different renewable sources are exploited:

– Geothermal system: A horizontal collector consisting of 5 loops of 100 m is placed under the
ground at a depth of 2 m. The heat pump is a MAMY Genius—10.3 kW, and it has a nominal
electrical power consumption of 1.9 kW and a nominal thermal power of 8.4 kW. The energy
is absorbed from the ground and it is used to heat a mixture of water and glycol.

– Solar thermal: Eight solar panels absorb the solar radiation to heat the ethyleneglycol flowing
inside them.
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– Biomass boiler system: A biomass boiler type Ökofen, model Pallematic 20, with a configurable
power of 20 kW, with a yield of pellets of 90%.

• Energy accumulation group: The thermal energy storage is ensured using different accumulators.
A solar accumulator of 1000 L receives the thermal energy from the solar system. In series,
an inertial accumulator of 800 L stores the heat from the boiler and geothermal systems.

• Consumption group: The thermal system must cover the demand of underfloor heating systems
and Domestic Hot Water (DHW). The underfloor heating system is designed to keep the house
temperature between 18 ◦C and 22 ◦C. The fluid temperature should remain between 35 ◦C and
40 ◦C. According to the Spanish Technical Building Code, the DHW demands 240 L/day.

In addition to the thermal systems, the Sotavento bioclimatic house has also an electrical
installation with two renewable sources: Wind and photovoltaic. The electricity supplies the power
systems and the lighting. To avoid power cuts, the house is connected to the power grid when it
is demanded.

2.2. The Geothermal System

A more detailed explanation about the geothermal energy system is presented in this subsection.
It is divided into two main parts described below: The heat pump and the heat exchanger (Figure 1).

Figure 1. Heat pump and horizontal exchanger layout.

Heat Pump. The Heat Pump has two different circuits; the primary one provides the heat from the
ground (the geothermal exchanger) to the heat pump unit, and the other one is connected between the
unit and the inertial accumulator. The energy absorbed from the ground is measured by two sensors.

Geothermal exchanger. The horizontal exchanger consists of five different circuits. The ground
temperature along the exchanger is monitored using sensors distributed in four different loops.
A scheme of the sensors located along the exchanger can be seen in Figure 2. Sensors S28 and S29
measure the energy absorbed from the ground and S401 measures the ground temperature. The rest of
the sensors monitor the exchanger temperature in different points.
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Figure 2. Geothermal exchanger sensors layout.

2.3. The Dataset

The initial dataset corresponds to the temperatures measured by the sensors during one year,
registered with a sample time of 10 min.

Sensors S28 and S29 (the input and the output of the heat exchanger) are located inside the house.
Hence, when the heat pump is off, these sensors measure the temperature inside the house. For this
reason, the temperature is filtered to take into account only the data when the heat pump is on.

As this work proposes a model capable of predicting the sensor measurements to detect anomalies,
only data from correct operation is considered. Then, to avoid wrong samples (bad sample time,
bad range, open wires, etc.), the dataset was filtered to discard the erroneous data. After this
conditioning step, the samples were reduced from 52,705 to 52,699.

However, as the appearance of any kind of anomaly in a sensor must be detected in a short time,
the models were implemented with an amount of data corresponding to two days. These measurements
are randomly selected from the 52,699 samples.

3. Fault Detection and Recovery (FDR) Approach—Used Techniques

The scheme defined for fault detection and recovery approach is shown in Figure 3. It is possible
to divide the figure into two parts: The model and the fault detection and recovery block. The first
one gives the prediction of each sensor based on the measurements made by the rest of the sensors.
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The second one compares the prediction with the real measurement, and analyzes the deviation based
on a defined range. If there is a significant deviation, the valid signal is the prediction. Otherwise,
the real measurement is set at the output.

Figure 3. Fault detection and recovery approach.

3.1. FDR Steps

In this subsection, the necessary steps to accomplish the FDR developed approach are explained.
Sensor fault detection. Initially, a simple methodology for accomplishing sensor fault detection

technique is used. The method allows a specific configuration of the range deviation. If the measured
sample is out of this range, then a fault is labeled. The deviation percentage is referred to the operating
temperature range.

Recovery. If a fault is detected, then it is necessary to recover the wrong sample with a value
prediction. This prediction could be based on the other sensors readings, their previous values, and so on.
To accomplish the recovery, a model must be implemented with the aim to predict an accurate value.

3.2. Used Techniques

The present subsection shows the different techniques used for accomplishing the objectives of
the present research.

3.2.1. Analysis and Preprocessing

From the considered initial data, two different subclasses were created:

1. Day data cases.
2. Night data cases.

Knowing each date of the data recollection and the precise location of the installation under study,
the sunrise and sunset times can be obtained. This is the criteria used to split the data in the two subclasses.

To obtain a representative model, some variables of the raw dataset have been selected. In addition,
the previous state of some signals is included as an artificial input, for developing each experiment
shown in Section 4.

The use of this extra information can be more beneficial than obtaining the model with original
data features only. The election of these artificial features is always based on expert knowledge about
the system behavior [28].

Based on a data description of the new dataset generated from the raw data, a common
pre-processing procedure has been developed, including those experiments with previous values of
different sensor like artificial variables.

The criterion for data normalizing is shown in Equation (1):

Xi −mean(x)
stdev(x)

(1)
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The Standard Scaler data input pre-processing has been implemented with Python sklearn.preprocessing.
StandardScaler [29] library. The main goal of the normalization step is to avoid the very soon convergence in
the first iterations, when the training process of a particular regression method begins [30].

3.2.2. Regression Techniques

The recovery methodology purpose is to mimic the actual behaviour of the sensor. Thus, a
predictive model trained with data acquired from the sensor is a sensible approach for achieving a
computational representation of the sensor. Six different types of predictive models have been tested:
Shallow neural networks, extremely randomized trees (ExtraTrees), random decision forests, adaptive
boosting, k-nearest neighbors, and gradient boosting.

This choice of regressors pursues to represent the complexity of the sensor’s behaviour by two
subtly different approaches: The shallow neural network solution features a single model capable of
increasing its complexity by means of enlarging the number of neurons in its hidden layer; on the
other hand, the extremely randomized trees, adaptive boosting, random decision forests, and gradient
boosting regressors, belong to the ensemble methods family. Ensemble models provide their results by
combining those obtained from multiple elementary models. In this case, complexity is approached by
enlarging the number of simple models comprised in the ensemble.

The Multilayer Perceptron (MLP) is one of the most frequently used shallow neural network
architectures. The good performance of this kind of artificial neural network has been proven in similar
works such as [31–33]. Previous research [34] proved how this technique is capable of providing
satisfactory results in the context of much larger amounts of data than those used in the case of study.

Ensemble methods, on the other hand, are among the most frequently used techniques for the
excellent results they usually display. Examples of successful stories can be discovered following Kaggle’s
machine learning competitions (https://www.kaggle.com/), where, along with Deep Neural Networks,
ensemble methods such as those reported in this research are most frequently the winning techniques.

Each technique and the set of their associated parameters used in this work are explained bellow:

• Shallow Neural Networks. Artificial Neural Networks can be used as universal approximators [35].
For this paper, a three layer Multi Layer Perceptron architecture was chosen: An input layer for
capturing the sensor information, a hidden layer with non linear activation functions, and an
output layer with one single neuron and a linear activation function to provide the prediction.
The most important hyperparameters governing the regressor performance are the hidden layer
size, the maximum number of iterations, the early stopping, the activation function, the nesterov
momentum and the solver.

• K-Nearest Neighbors. This is a representative of instance based techniques or non generalizing
learning. Instead of representing the data via a model, this technique stores instance and uses a
voting scheme on the nearest neighbors for obtaining the prediction on new data. This technique is
a popular choice for setting a baseline for the prediction error. The most important hyperparameter
is the number of neighbors.

• Adaptive Boosting. This technique belongs to the stagewise additive models family. The prediction
is based on a weighted sum of the simpler weak estimators it comprises. Each weak estimator is
designed to concentrate on those samples that previous estimators found still to be difficult to fit.
In this technique, the number of estimators is the most important hyperparameter to tune.

• Random Decision Forests. Being one of the most popular ensemble methods, Random decision
forests (RF) comprise a collection of simple decision trees whose results are considered to emit a
final collective result. RF basic components can be built by considering a random limited number
of features and/or a random limited number of observations. Thus, each component only has
access to a fraction of the information and pays attention to specific details in the portion of
information assigned to them. The combination of a number of these simple basic trees most
frequently outperforms the results from a larger and more complex single tree. The number of
estimators is the most important hyperparameter to tune.

https://www.kaggle.com/
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• Extremely Randomized Trees. They are similar to Random Forests, as they combine an ensemble
of decision trees. Nevertheless, a few important differences are worth noting: Firstly, Extra
Trees can provide piece-wise multilinear approximations to the training dataset instead of the
piece-wise constants one provides by random forests. Secondly, Extra Trees are based on using
random values for the optimal cut point choice, instead of bootstrapping to find the optimal cut
point [36]. Similarly to RF, one of the most important hyperparameters to tune is the number of
basic estimators.

• Gradient Boosting. This technique builds the model following a stage-wise approach, by adding
subsequent basic estimators in order to capture the unexplained information present in the
residuals of former weak estimators [37]. The estimators frequently are decision trees and,
similarly, the number of basic estimators is among the most important hyperparameters.

4. Experiments and Results

This section describes the different experiments carried out and the results obtained.

4.1. Experiment Definition

Depending on the predictors used in the predictive model, four different experiments are defined:

• Experiment A: Prediction of sensor S-315 based on S-309 to S-316 signals
• Experiment B: Prediction of sensor S-315 based on S-309 to S-316 signals and their previous states
• Experiment C: Prediction of sensor S-315 based on S-309 to S-316 signals and S-315 previous state
• Experiment D: Prediction of sensor S-315 based on S-309 to S-316 signals, their previous states,

and S-315 previous state

In each experiment, the four regression techniques mentioned above —shallow neural networks,
extremely randomized trees, random decision forests, and gradient boosting— are used to build two
types of models, according to the data used for each one:

• Global models: In this case the whole data set is used for training a single regressor.
• Hybrid models: In this case, the data set is split into two groups in accordance to day and night

criteria. Two different models are fit, one for day usage and another one for the night hours.

4.2. Error Metrics

In order to compare the different regression models obtained, the following error metrics have
been implemented:

• MAE: Mean Absolute Error. The goal of this metric is to measure the difference between predicted
and real values. This metric has some advantages compared to other error measures [38].

MAE =
1
m

m

∑
k=1
|Yk − Ŷk| (2)

where Yk is the observed value and Ŷk is the foretold value.
• LMLS: Least Mean Log Squares. This metric is used as regression loss function in the training

process as well as in the validation error measure [39], Equation (3).

L.M.L.S =
1
m

m

∑
k=1

log
(

1 +
1
2
(
Yk − Ŷk

)2
)

(3)

where Yk is the observed value and Ŷk is the foretold value.
• SMAPE: Symmetric Mean Absolute Percentage Error. The main goal of this metric is to explain

relative errors thanks to the use of percentages [40], Equation (4).
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S.M.A.P.E =
2
m

m

∑
k=1

|Yk − Ŷk|
Yk + Ŷk

(4)

where Yk is the observed value and Ŷk is the foretold value.
• MSE: Mean Squared Error. This metric can include the variance of error, it can be applied in

several forecasting problems [41] Equation (5).

M.S.E. =
1
m

m

∑
k=1

(Yk − Ŷk)
2 (5)

where Yk is the observed value and Ŷk is the foretold value.
• MAPE: Mean Absolute Percentage Error. This error metric is one of the most common measures

of the accuracy in regression problems [42], Equation (6).

M.A.P.E =
100%

m

m

∑
k=1

|Yk − Ŷk|
Yk

(6)

where Yk is the observed value and Ŷk is the foretold value.
• NMSE: Normalised Mean Square Error. This a measure oriented to estimate the overall deviations

between observed and predicted values [43], Equation (7).

N.M.S.E =
1
m

m

∑
k=1

(Ŷk −Yk)
2

mean(Ŷk) ∗mean(Yk)
(7)

where Yk is the observed value and Ŷk is the foretold value.

4.3. Experiments Setup

For each experiment the dataset was split into two subsets—training and test sets—as customary in
data science projects in order to provide the error value on a held out dataset. Such an error represents
the capability of the method to generalize the observed behavior to new unseen data. Thus, a fraction
comprising 70% of the samples is used for training purposes to adjust the parameters of the models,
while a fraction with 30% of the samples is used for final testing. In order to find the best combination
of hyperparameters for each model, a grid search with ten fold cross validation has been carried out.
The chosen scoring criteria was the negative mean square error. As a preprocessing step, the data
is normalized before entering the regression model. In order to avoid leaking information from the
validation test during cross validation, both the scaler and the regressor are embedded in a pipeline.

The four families of regressors, the scaler, the pipeline tool, and the grid search with cross
validation, are implemented in Scikit-Learn’s machine learning library [44] which provides easy access
to these techniques using Python as programming language for computational purposes.

The search space for the best values of the hyperparameters is reported below. Those hyperparameters
not mentioned adopt Scikit-Learn default values.



Sensors 2019, 19, 2740 9 of 16

4.3.1. Shallow Neural Network

• hidden_layer_sizes=[(n,) for n in ( 5, 6, 7, 8)]
• max_iter=[ 500_000]
• learning_rate_init=[1e-1, 1e-2, 1e-3]
• early_stopping=[True]
• activation=[’relu’]
• nesterovs_momentum=[True]
• warm_start=[False]
• solver=[’lbfgs’]

4.3.2. Extremely Randomized Tree

• n_estimators=range(10, 100, 5)

4.3.3. Random Decision Forests

• n_estimators=range(10, 100, 5)

4.3.4. Gradient Boosting

• n_estimators=range(10, 100, 5)
• learning_rate=np.linspace(1e-3, 1e-1, 5)
• n_iter_no_change=[2]

4.3.5. AdaBoost

• n_estimators=range(10, 100, 5)

4.3.6. K-Neareat Neighbors

• n_neighbors=range(5, 20, 5)

Tables 1–3 show the results obtained in the experiments by the global and hybrid approaches (best
ones in bold). According to most error metrics, the ExtraTrees regressor achieves the best results in both
global and hybrid approaches. Among these two, the hybrid approach displays better results, particularly
according to the mean absolute error criteria, the easiest to interpret by human beings. Figures 4 and 5
display the results obtained by the six types of regressors considered, in this case using the data from
experiment A. It is clear that the Extra Trees regressor achieves great resemblance with the actual data
recorded from the sensor in what are considered very satisfactory results.
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Table 1. Global model errors (multiplied by 105) for extremely randomized trees (ET), gradient boosting (GB),
multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest neighbors (K-NN).

Error Experiment ET GB MLP RF AB K-NN

LMLS A 2.4 24.4 6.0 3.7 2.66 4.76
B 2.4 21.2 6.7 3.5 3.16 4.76
C 2.6 21.2 4.5 3.0 2.87 4.76
D 2.3 16.6 18.7 3.2 3.26 4.76

MAE A 243.1 880.6 495.3 280.3 263.76 353.77
B 240.1 868.9 620.1 300.8 317.70 353.77
C 249.5 821.5 414.9 280.7 277.65 353.77
D 243.5 768.2 855.9 283.5 336.57 353.77

MAPE A 29.2 106.0 59.9 33.7 31.72 42.62
B 28.9 104.6 74.9 36.2 38.24 42.62
C 30.0 98.9 50.1 33.8 33.40 42.62
D 29.3 92.5 103.2 34.1 40.52 42.62

MSE A 4.8 48.8 12.0 7.4 5.32 9.53
B 4.9 42.5 13.4 7.0 6.33 9.53
C 5.2 42.5 9.0 6.1 5.75 9.53
D 4.6 33.2 37.5 6.3 6.51 9.53

NMSE A 508.4 535.7 979.6 370.6 572.03 108.90
B 527.9 570.0 250.6 320.7 540.69 108.90
C 561.2 569.8 867.9 407.3 537.47 108.90
D 658.0 257.4 1883.6 428.9 502.79 108.90

SMAPE A 29.3 106.3 59.9 33.7 31.75 42.67
B 28.9 104.9 75.0 36.2 38.28 42.67
C 30.0 99.1 50.1 33.8 33.44 42.67
D 29.3 92.7 103.4 34.1 40.56 42.67

Table 2. Day model errors (multiplied by 105) for extremely randomized trees(ET), gradient boosting
(GB), multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest
neighbors (K-NN).

Error Experiment ET GB MLP RF AB K-NN

LMLS A 2.9 15.7 1153.2 3.3 3.56 5.81
B 3.2 19.5 77.7 3.9 3.96 5.81
C 3.2 29.5 16.3 3.9 4.15 5.81
D 3.1 34.1 304.7 4.0 3.73 5.81

MAE A 232.0 689.1 3079.4 269.9 355.44 363.79
B 255.1 832.2 1515.3 318.7 332.95 363.79
C 280.8 1102.7 727.6 321.4 483.44 363.79
D 278.4 1136.0 1675.1 320.7 407.91 363.79

MAPE A 27.8 82.8 372.6 32.4 42.75 43.75
B 30.6 100.2 183.2 38.3 40.00 43.75
C 33.8 132.8 87.8 38.6 58.27 43.75
D 33.5 136.8 202.6 38.5 49.10 43.75

MSE A 5.9 31.5 3457.9 6.7 7.12 11.62
B 6.3 39.0 157.5 7.8 7.93 11.62
C 6.4 59.1 32.6 7.9 8.30 11.62
D 6.2 68.3 672.6 8.0 7.45 11.62

NMSE A 799.6 783.7 18418.0 544.7 724.68 98.50
B 425.2 347.0 7103.5 366.3 731.76 98.50
C 459.0 193.2 1652.2 361.8 111.51 98.50
D 434.8 147.3 13330.6 408. 733.02 98.50

SMAPE A 27.9 83.0 349.5 32.4 42.80 43.82
B 30.7 100.4 184.3 38.3 40.05 43.82
C 33.8 133.1 88.0 38.7 58.32 43.82
D 33.5 137.1 198.0 38.6 49.15 43.82
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Table 3. Night model errors (multiplied by 105) for extremely randomized trees (ET), gradient boosting
(GB), multi-layer perceptron (MLP), random forest (RF), adaptive boosting (AB), and k-nearest
neighbors (K-NN).

Error Experiment ET GB MLP RF AB K-NN

LMLS A 0.05 0.10 0.3 0.10 0.09 0.07
B 0.04 0.10 3254.6 0.08 0.10 0.06
C 0.05 0.10 0.10 0.07 0.09 0.06
D 0.04 0.10 633.3 0.06 0.10 0.06

MAE A 38.6 67.8 141.3 55.6 42.00 39.90
B 33.6 57.6 14477.5 49.5 52.50 35.70
C 35.3 65.1 110.6 48.1 42.00 37.80
D 33.3 67.5 5595.9 45.9 52.50 37.80

MAPE A 4.7 8.2 17.1 6.7 5.09 4.83
B 4.1 7.0 1754.5 6.0 6.36 4.32
C 4.3 7.9 13.4 5.8 5.09 4.58
D 4.0 8.2 678.2 5.6 6.36 4.58

MSE A 0.11 0.21 0.55 0.20 0.18 0.13
B 0.08 0.21 6996.17 0.16 0.20 0.11
C 0.11 0.20 0.20 0.14 0.18 0.12
D 0.08 0.23 1291.10 0.13 0.20 0.12

NMSE A 4735.4 8055.6 18847.7 7114.2 6805.56 822.22
B 2407.6 1427.0 16796.8 5333.3 6388.89 1355.56
C 5349.2 6283.4 22194.2 5732.9 6805.56 2355.56
D 3829.9 7114.8 64166.1 3324.2 8055.56 2356.56

SMAPE A 4.7 8.2 17.1 6.7 5.09 4.83
B 4.1 7.0 1711.6 6.0 6.36 4.83
C 4.3 7.9 13.4 5.8 5.09 4.83
D 4.0 8.2 687.5 5.6 6.36 4.83
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Figure 4. Actual data vs. predictions for Experiment A. ExtraTrees, random forest, gradient boosting,
and MLP are considered for each model (day, night, and global model).
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Figure 5. Actual data vs. predictions for Experiment A. AdaBoost and k-nearest neighbors are
considered for each model (day, night, and global model).
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5. Discussion

The number of experiments, regressors and error metrics reported in this paper builds a complex
scenario when attempting to establish a single winner solution. As it usually happens in real engineering
problems, the solution to a problem is not unique and the context determines the preferred one.

From a strictly numerical point of view, it could be argued that Experiment A frequently displays
best error values. In those cases where it fails to outperform other experiments, the results are not
significantly different from the minimum.

Considering the experiments from the point of view of their complexity, Experiment A also
represents the simplest configuration as it requires the lowest number of input variables; a fact
that, in absence of significant differences in performance with respect to the rest of the experiments,
also advocates for its designation as the preferred configuration.

In economic terms, the context around this study case does not justify a more complex
configuration. In some scenarios, e.g., optimizing a quality feature in manufacturing processes,
a marginal improvement in the prediction model leads to significant economic benefits; but that
is hardly the case of the study case reported in this paper: A predictive model that is used as a backup
for the real sensor and whose reads are only considered during malfunctioning.

According to these former criteria, Experiment A could be considered the best choice,
but considering the following practicalities, the final decision might differ. Firstly, an important
issue to consider is the intrinsic precision of the actual sensor being modeled. If the performance
difference between alternatives is orders of magnitude lower than the sensor precision, then those
alternatives are in fact equally optimal. Secondly, the results must be considered from the point of
view of the subsequent data consumption. If the sensor data is to be further processed by an algorithm
sensitive to a specific precision, it makes little sense considering differences in considerable smaller
differences, e.g., comparing two temperature readings with values 82.15 F and 82.17 F when the on–off
controller driving a pump already made a decision at a 60 F threshold. This paper deliberately does
not specify the particular subsequent model that the sensor signal feeds, as many such systems can be
considered. Essentially, it is the engineer’s call to weigh the context factors and choose the optimal
solution for the problem at hand, the numerical error scored by each alternative being an important
but not unique criterion in the decision making process. For the study case reported in this paper,
Experiment A using Extra Trees was adopted as the preferred solution. Nevertheless, the approach
proposed relies on training data from a short period of time, two days, which makes it possible to
periodically retrain the models and perform the comparison to select the new best choice and adapt
for future changes.

6. Conclusions and Future Works

A methodology for recovering data missing in malfunctioning state sensor and the sensor fault
detection have been addressed in this research successfully. Sensor fault detection procedure is
relaying on tagging data as fault, when a measured sample is out of the range derivation. Moreover,
the procedure for recovering data missing is based on the implementation of several experiments with
the aim to get the best way to define a model when it is trying to get measurements of a sensor with
problems. Input data features election is relevant when a robust regression model wants to be created
to predict missing data in a process where the temperature is involved—more concretely, the election
of new features and how these are estimated or calculated. In this research, new artificial features
based on the sensor values on the previous state are added to achieve and compare a global model and
hybrid model for recovering missing data of a sensor. Results prove that a hybrid model implemented
with an Extremely Ramdomized Trees regressor, composed by day and night submodels not including
previous state values as artificial features, is the best way for recovering data missing. Future works
will explore the improvement of the sensor fault detection procedure via anomaly detection techniques
such as Isolation Forest, One Class SVM (Support Vector Machines), Local Outlier Factor, and Elliptic
Envelope. From the point of view of recovering missing data, new experiments based on time series
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oriented to prevent the use of previous state information will be implemented. Some new, complex
and data fusion models will be used also in the next research phase.
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