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Abstract: Alarm and event logs are an immense but latent source of knowledge commonly
undervalued in industry. Though, the current massive data-exchange, high efficiency and strong
competitiveness landscape, boosted by Industry 4.0 and IloT (Industrial Internet of Things) paradigms,
does not accommodate such a data misuse and demands more incisive approaches when analyzing
industrial data. Advances in Data Science and Big Data (or more precisely, Industrial Big Data) have
been enabling novel approaches in data analysis which can be great allies in extracting hitherto
hidden information from plant operation data. Coping with that, this work proposes the use of
Exploratory Data Analysis (EDA) as a promising data-driven approach to pave industrial alarm and
event analysis. This approach proved to be fully able to increase industrial perception by extracting
insights and valuable information from real-world industrial data without making prior assumptions.

Keywords: alarm and event management; data science; exploratory data analysis; industry 4.0;
monitoring

1. Introduction

Industry carries the stigma of being a data rich and knowledge poor environment, partly because
the sector is inherently conservative about its processes and methods. Studies state that while
manufacturing industry generates more data than any other sector of the economy, yet much of
it is not harnessed by companies [1,2]. One of them reports an example of one oil-and-gas company
which discards 99% of its data before decision makers have a chance to use it. This was substantially
underscored by the advent of Smart Manufacturing and its integrated and performance-oriented
enterprise with intensive and pervasive application of networked information-based technologies
throughout the manufacturing and supply chain [3]. However, smart factories focus mostly on
control-centric optimization and intelligence, when a greater intelligence can be achieved by interacting
with different surrounding systems that have a direct impact to machinery performance [4].

Current competitive business environment has been forcing industries to process data into timely
and valuable information. Recent advances in Data Science and Big Data domains have assisted
enterprises in this endeavor of transforming manufacturing value chain by enabling the acquisition of
valuable information from raw and massive data originated in industrial plants, supporting operators,
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analysts and managers in decision making, action planning and continuous improvement of plant
operations.

Nowadays, two dominant and interoperable trends drives factory automation: Industry 4.0 and
IIoT (Industrial Internet of Things). The former, also known as the 4th industrial revolution, portrays
that business objectives, intelligent algorithms, analytics, predictive technologies and cyber-physical
systems are teaming together to realize a new thinking of production management and factory
transformation [4]. It ultimately represents a convergence of information technology and operational
technology in which supply and production chains will dynamically adjust themselves to provide
on-demand customization of manufacturing [5]. The latter refers to the adoption of the IT (Information
Technology) domain IoT (Internet of Things) paradigm in manufacturing by joining sensors and
actuators, control systems, communication facilities, machine-to-machine, data analytics and security
mechanisms together through embedded technology [6]. By promoting the holistic integration of
intelligent equipment, intelligent systems and intelligent decision-making, a network of machines,
materials, workers, and systems is settled to ultimately achieve smart manufacturing in the context of
Industry 4.0 [7].

Much related with those above-mentioned trends, also emerges the broader and abstract concept
of Internet of Everything (IoE), in which people, process and data rather than only things are brought
together to make networked connections more relevant and valuable in order to reach more sustainable
ecosystems [8,9]. In that respect, technologies and applications related to Data Science and Big Data
domains have been playing a crucial role [6,10].

The complexity of IT domain technologies, infrastructures and programming models related
to those above mentioned trends may hinder the adoption of them in the industrial domain [11].
Much remains to be achieved in fitting the already well-established IT domain Big Data paradigm
to industrial reality and needs. This consists basically in elucidating what to do with industrial data
and how to do it, once the industry domain differs in several aspects from the other fields where
the IT domain Big Data approach has typically and solidly been employed, such as social media,
socioeconomics, marketing, e-government and e-commerce, health, economy and politics, to name
a few. In this perspective, recent literature have come on the subject of Industrial Big Data with a
particular regard to problems and challenges to be overcome in face of the indefeasible absorption of
this new paradigm in automation. Proposals of suitable Big Data approaches and architectures to meet
industrial needs [4,12-15] suggests Industrial Big Data is still a developing field of study.

A fact is that the constant growth, technological advances and paradigm shifts, innate to industry,
has pushing the sector towards the undeniable reality of data orientation. Coping with that, this
work proposes a data-driven approach in line with those above-mentioned trends, to be applied to
a specific class of industrial data: event and alarm logs from alarm management systems. Although
this kind of data comes in great magnitude and relates to important industrial plant entities, it is
normally overlooked in operational processes. In the case of this study, data is composed mainly of
categorical and textual entries generated in a crude oil processing plant. The proposed approach is
mainly founded on Exploratory Data Analysis (EDA), an elementary technique founded on making
data speak for itself, and makes use of the powerful and versatile data analysis ecosystem currently
provided by Python and R languages (endowed with a thriving portfolio of libraries) to enrich EDA
with adequate and convenient graphical ways of reviewing its results.

The remainder of the paper is structured as follows. Section 2 provides a brief approach to the
concepts that support the understanding of this work. Section 3 proposes the use of EDA as a primer
tool in alarm and event analysis and brings together some potential EDA approaches applied to a real
world data set. Section 4 raises some discussion about the results and finally Section 5 concludes the
paper and indicates future works.
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2. Paper Background

The scientific area, the source domain of target data and the chosen approach are basic topics to
be clarified in context of this research.

2.1. Data Science and Big Data in Industry

In the wide sense, Data Science refers to the interdisciplinary set of techniques, technologies,
processes employed to extract insights and knowledge from data, assisting the decision-making
process [16]. Supporting the development of Data Science practices emerges the concept of Big Data,
which refers basally, to the scientific domain of computation applied to large, complex and diverse
data sets [17]. Although both concepts are commonly fused or synonymized in literature, they are in
fact related and complementary to each other. As Big Data is meant to scale Data Science capabilities,
they can be seen as cores of current data-driven analysis approaches. While Data Science gather the
broad areas of algebra, statistics, engineering and computer science as basal tools in data analysis
processes, Big Data stands on the means of making this data analysis computationally viable in the
current multiple-sourced data deluge scenario.

As traditional “small data” computational approaches are proven to be ineffective in dealing
with a high magnitude data volume [18], new coping approaches and a differentiated computational
infrastructures are demanded. This refers basically to the ability of properly handling capture, storage,
management, querying, share and visualization of this huge amount of data. This aptitude is made
possible through the advent of new computing paradigms such as cloud computing, jungle computing
and fog computing, which are elementally based on distributed, parallel and high performance
computing [19].

At this point, it is important to enlighten that data-driven approaches have been supporting
decision-making processes over the last years in a myriad of sectors and this was enabled by
technologies pioneered in the IT realm [12]. Not unlike, data-driveness has also made its path
through industry. It happened in a natural way, once manufacturing generates and stores more data
than any other sector [12] and given the not so new industry convergence to IT-bond technologies.
Recently, with the emergence of Industry 4.0 and IIoT as paradigm shifts in manufacturing, together
with the resulting increase in data magnitude and importance, Data Science and Big Data have gained
leading roles.

In that regard, Reis and Gins [20] present a comprehensive retrospective work on the trends
and paradigms that have headed industrial process monitoring over the last century culminating
in the emergence Industry 4.0 and Big Data as enablers for a performance boost in operational,
economic, market-related, safety and environmental aspects. Colombo et al. [21] state that the Big
Data empowering of cyber-physical systems allow massive amounts of data to be acquired and
analyzed for the finest details of processes as well as Data Science approaches on the available Big Data
are expected to have a wide impact on the way cyber-physical systems are designed and operated.
These approaches can be teamed to provide new insights for the industrial processes, leading to
improvements in enterprise operations and identification of optimization opportunities.

As discussed in [12], current industrial computing infrastructure, in terms of management and
processing of plant data, is mainly focused on collecting, selecting and storing data at appropriate rates,
preserving historical series in on-demand access repositories. Mostly due to a design restriction, any
additional processing such as deeper queries or analysis are beyond the capacity of typically installed
computing infrastructure. Thus, a current trend in industrial systems refers to the use of different Big
Data precepts as a mean to process this huge amount of data already generated in industrial plants
which cannot be processed with a conventional infrastructure. This paradigm shift is necessary to put
industry on track of the crescent data inundation scenario.

Industrial Big Data is an already well known concept which refers essentially to the absorption of
Big Data in Industry. As surveyed in [13], it inherits the defining characteristics of general purpose Big
Data concept such as volume, variety, velocity, variability and veracity (5 Vs), as well as extends this
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concept by adding new Vs: visibility, which regards to the discovery of unexpected insights of existing
processed data; and value, which puts emphasis on creating new value from massive data. In that
work is also stated that industrial data is more structured, correlated and ready to analysis since it is
generated by automated equipment in more controlled environments and processes.

Among several masses of plant-generated data which share these Big Data aspects in modern
industry environment are alarm and event logs, a potential a source of knowledge whose exploitation
is the main objective of this work.

2.2. Industrial Event and Alarm Data

Although being a sector that traditionally produces more data than any other, manufacturing has
been experiencing an exponential growth of plant-related data and information production, mainly
due to the technological evolution of automation systems [22]. Jargons from IloT and Industry 4.0

VZZL7] 7

domains such as “data is everywhere”", “instrumentation everywhere” and “connecting everything’
are premises which corroborate the fact that modern industries have to deal with a massive (and
crescent) amount of data.

When it comes to the mass of data generated in automation, the image of a large and diverse
repository of process variables data from field devices (sensors and actuators) comes to mind.
Nevertheless, another kind of plant generated data also comes in a considerable amount: alarm
and event logs. As these logs reflect time-lined streams of all relevant plant episodes regarding a
myriad of plant elements, they may carry important information that should not be took aside.

In industry, an event, without loss of generality, consists of any relevant occurrence within the
operational scope of a monitored system. Events evince general plant operation circumstances and
normally do not require explicit acknowledge or intervening actions. Alarms, in turn, are audible or
visible means of indicating equipment malfunction, deviations in the process or abnormal conditions,
requiring a response from operators [23]. Thus, alarms stress out problems and consequently demand
series of preventive or corrective actions from operators while events represent any detectable
occurrences or changes in the system which may or not be bound or associated to alarms. From
process safety formalism, alarms are fundamental barriers in risk control systems designed to detect
process parameter deviations [24]. Figure 1 helps to clarify the above mentioned conceptual differences
between alarms and events in the context of a fictitious monitored process variable.
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Figure 1. Alarms and events in the context of a monitored process variable.

Despite being a well established matter in automation, alarm management is a mostly
undervalued and misused aspect whose philosophy industry has been very conservative about [25].
In a modernizing contribution to the area, ANSI/ISA-18.2 standard [23] proposes regulations on
series of alarm management aspects and addresses old problems regarding definitions, classifications,
requirements, life cycles, activities and work processes as well as settles divergences from existent
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but not so specific regulations in the broad area. In particular, ANSI/ISA-18.2 advises a change in
alarm management philosophy by tethering the area to the evolution of work processes instead of
focusing only on hardware or software issues. One of the proposals refers to the adoption of advanced
analysis methods in monitoring, evaluation, audit and benchmark stages of the life cycle of alarm
management systems.

Asboth events and alarms are meant to verbalize all relevant plant episodes, their related registries
constitute a gigantic mass of data which is usually not properly processed. Although these records
are closely related to plant operation monitoring, only few of them (mostly alarms) are brought to
the attention of operators and analysts through Human-Machine Interfaces (HMIs) of Supervisory
Control and Data Acquisition (SCADA) systems and Distributed Control Systems (DCS). Even so,
in some incident scenarios, operators may experience an unmanageable data avalanche from alarm
management systems which can therefore lead to inadequate operational actions or decisions [26]. The
ineffectiveness of alarm management systems in revealing problems is also pointed as possible causes
of various accidents in industry [22,27].

It is clear, therefore, that analysis should go beyond the aggregation and presentation of bare alarm
and event data in HMIs from traditional alarm management systems, since important information
may be hidden from the HMIs scope. In the same way, visual or query-based inspection of raw data is
normally error prone due to registry large amount and the tabular format which is poorly suited to
human cognition. Furthermore, much attention has been devoted to optimal parameterization and
configuration of alarm systems in order to make process operations more efficient and safe [28] while
plant events, although often more numerous, do not receive the same attention. Although dealing
with industrial events is a common matter in alarm management specialized literature, event data
is commonly fated to be stored in loggers or historians and taken into account only when further
analysis is needed to elucidate a plant incident or deviation pointed out by an alarm [25,26,28]. Being
an important source of information, event data could be more proactively exploited to improve
operational performance and governance of an organization. Corroborating with that, specialized
literature on process safety and asset integrity advocates that alarm and event data can be used to
implement some lagging and leading Key Performance Indicators (KPIs), which are performance
metrics that provide evidences of a company’s performance in managing its key risks [24,29].

Thus, a more purposive use of alarm and event related data, under the aegis of current practices
in Data Science, may yield an invaluable value from a commonly overlooked data mass. Among
this practices, Exploratory Data Analysis (EDA) stands out as an essential methodology for relevant
information disclosure, especially in early analysis stages.

2.3. Exploratory Data Analysis (EDA)

EDA plays an important role in the process of data analysis. It is a key initial step in both
explanatory and predictive modeling as it consists on summarizing data numerically and graphically
and consequently preparing data for the more formal modeling steps [30]. By summarizing and
accounting data, EDA can promptly deliver useful information, find patterns and uncover general
relationships which may guide further analysis and potentialize its results. Figure 2 illustrates the role
of EDA in a typical Data Science workflow.

After data formatting and preparation basic steps, the classic and strictly data-driven EDA
approach makes use of data investigation techniques in the search for interesting information and
relationships, from an actively incisive approach, with a real emphasis on the discovery of the
unexpected [31]. EDA isolates data patterns and characteristics and reveals them vigorously to the
analyst [31], without needing prior knowledge or pre-specified hypotheses, in other words, without
requiring anticipated and well defined questions to be directed to the data [32]. That is, EDA cannot
lead to definitive conclusions but is an essential first step in understanding data [33].
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Figure 2. Typical Data Science workflow.

Basic EDA methods try to make the data more easily and effectively manageable by the user,
whether statistician or non-statistician [34]. Hence, a key component in EDA is the employment
of various graphical methods to conveniently present data analysis results, combining the sharp
human graphic perception with available computational power and versatility. In practice, in order to
accomplish its objectives, EDA associates quantitative and qualitative methods from classical statistic
approach with graphical analysis [35]. EDA can be compared to a detective work: it is the process
of gathering evidence as a hypothesis generation step that precedes the step of Confirmatory Data
Analysis (CDA), which is comparable to a court trial and focus in evidence evaluation using traditional
statistical tools such as significance, inference, and confidence (hypothesis testing) [31].

EDA is a broad area with a large variety of approaches, methodologies and techniques which can
be straightforwardly implemented nowadays due to the great availability of open-source tools and
libraries for data analysis. An work on systematizing a few of these approaches is made explicit in the
next Section to attest potential of EDA as an ally in obtaining an insightful panoramic view of study
data, with focus on their visual demonstrations.

3. Alarm and Event Data Analysis

Bearing in mind EDA principles, data was submitted to a groping process in which low-level
data, typically too voluminous and confusing to be perceived by humans, is mapped into other
more compact and understandable formats in order to ensure a better understanding of data. Data
exploration was carried out to pursue the comprehension of the underlying structure of data mainly
by assessing quantitative and qualitative aspects as well as depicting variables relationships. Analysis
is hence structured in very basic pipeline composed of three stages: data selection, data preparation
and visual analysis of data.

3.1. Data Selection

In this study, target data is a representative database of event and alarm logs coming from of a
petrochemical plant supplied by field specialists. The data set under analysis consists of 1,020,765
records (rows) of 16 variables (columns) concerning events and alarms in a proportion of approximately
40% and 60%, respectively, in the context of a scheduling horizon for an important operational scenario
occurred within a interval of approximately 3 days. These entries refer to time-stamped observations of
categorical variables for relevant plant entities such as sensors, actuators and controllers. The variables
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refer to attributes of the automation assets, mainly related to categorizations, hierarchies, states and
descriptions. Table 1 shows some sample entries of the data set in tabular format. In this table, some
columns were omitted for the sake of limited horizontal space and data is sanitized to hide sensitive

information.
Table 1. Sample entries of data set under analysis.

Date_Time Type? Category? Module State? Level? Desc1? ... registry_id®
18-02-21 14:16:04 EVENT  PROCESS MDL-015783HIC INACT/ACK NaN RATE 18794
18-02-23 08:45:36  EVENT  PROCESS MDL-414572PID ACTIVE INFO ERROR CLEARED 12946
18-02-22 02:57:48 EVENT  PROCESS  MDL-155745DI ACTIVE INFO MDL-155745DI/ALM1 ... 11846
18-02-23 01:36:37 ALARM SYSTEM MDL-689-BVEP INACT/UNACK ADVISORY GENERAL FAILURE 13186
18-02-22 12:21:32  ALARM NaN MDL-45420VEC ACT/UNACK ADVISORY COMM FAILURE 5948
18-02-20 22:18:41 ALARM SYSTEM MDL-688-AVEP  INACT/UNACK  CRITICAL GENERAL FAILURE 13361
18-02-23 15:38:42 ALARM PROCESS MDL-1557452DI ACT/UNACK CRITICAL HIHI 6397
18-02-21 01:55:46 EVENT  PROCESS MDL-048666T1 ACTIVE INFO TI-4283333/ All 23824
18-02-22 16:56:03 ALARM SYSTEM MDL-681-BVEP ACT/UNACK ADVISORY GENERAL FAILURE 13185
18-02-2216:41:19 EVENT  INSTRUM MDL-1029ASMB  INACT/ACK NaN MODBAD 24883

egistry attributes; ° Registry description; € Registry unique identification.
a Registry attributes; ? Registry description; ¢ Registry unique identificati

3.2. Data Preparation

Real-world data is collected, structured and stored with convenience to the domain rules and
restrictions in which it is generated. However, data-gathering methods are often loosely controlled,
yielding raw and messy data from a practical data analysis perspective. Typically, a series of
pre-processing steps are needed to prepare data for further analysis stages. Not unlike, despite
being well structured, target data has some quality issues that were addressed in this stage.

3.2.1. Pre-Processing and Transformation

The pre-processing step included basic operations of data cleaning and data editing. With
the superficial data knowledge acquired in initial steps of data appreciation and manipulation, it
was possible to formulate a set of edit rules for a computer-assisted regularization of corrupted,
inadmissible and wrongly encoded records. Accounting and properly formatting of time information
was also performed in this stage to favour upcoming time-based analysis. A final step in this stage
comprised the set up of new aggregation and generalization helper attributes derived from original
data to improve data set quality and ease analysis. For instance, a new categorical helper higher level
attribute related to the part of the day was created from time stamps and a new numeric supplementary
attribute was calculated to register the uniqueness of a record.

3.2.2. Missing Data Analysis

Data analysis is as good as the data it depends on. So, an important and primal stage in EDA is
data quality analysis whose key component is missing data investigation. Missing data can be defined
as data values which are not present for a variable in an observation. Missing data can come from
a variety of reasons such as equipment failures, configuration errors, communication problems and
even human error. By accounting and considering these data absences in analysis, one can create
a situational awareness of overall data quality, which can be informative and help to improve data
analysis. Knowing the missing data landscape and patterns of a data set can also guide missing data
handling strategy in next analysis steps.

Python package missingno [36] is meant for understand missing data through a variety of tools
committed to data set completeness visualization. In order to obtain an overview of the missing data
on target data set, the nullity matrix shown in Figure 3 was built. It yields a macro view of missing data
patterns and dispersion (white lines) over data and shows that data absences are not highly row-wise
or column-wise concentrated.
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Figure 3. Nullity matrix showing missing data dispersion over variables.

Missing data accounting and proportions for each variable can be demonstrated by the enhanced
bar chart show in Figure 4. It is possible to notice, for instance, that columns Attribute and Level have a
considerable absent data percentage of about 40% and 20%, respectively.
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Figure 4. Bar plot showing missing data account and proportions.

Going deeper into missing data analysis, nullity correlations can be disclosed by a correlogram as
depicted in Figure 5. Also built with missingno package, this correlogram aims to graphically evidence
how strongly the presence or absence of one variable affects the presence or absence of another.
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Figure 5. Nullity correlation heatmap.

In that map, nullity correlation (using Pearson’s method) ranges from —1 to 1, where values
closest to —1 represent a negative correlation (if for one variable data appears, for the other data is more
likely to be missing) and values closest to 1 represent a positive correlation (if for one variable data
appears, for the other data is more likely to also appear), whereas 0 represents no nullity correlation
(not printed in the map). Variables with no missing data or always empty are omitted in the graph.
From Figure 5 it is possible to notice, for example, that columns Module and Module_Desc have a strong
positive nullity correlation while Level and Attribute have a moderate negative correlation.

Missing data occurrences can be also evaluated by taking the time stamp into account to verify
potential relationships among missing data, variables and time. It is possible to see in Figure 6 an
overall greater frequency of missing data in event-related records as well as a higher incidence of
missing data happening in the morning. This may signalize that configuration or communication
issues originating data absences are more prone to industrial events than alarms. Also, that may
indicate that processes originating entries with missing data are more likely to occur in the morning,
probably due to a higher volume of operations in this period.

il

evening night late night morning afternoon
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mmm EVENT
250000
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E- Entries w/ Missing Data

Figure 6. Nullity accounting regarding registry type and time.

When facing a missing data problem, analyzing present data alone as if no data is missing can
result in biased results [37]. Still, handling categorical data missingness with imputation requires
a cautious strategy as little is known about the missing data mechanism and common imputing
approaches in fact yield worse results than simply making a listwise deletion (an entire row is excluded
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if any single value is missing in that row) [38]. As methods for categorical missing data imputing are
rather complex and beyond the scope of an EDA, and since this analysis showed that target data has
overall good quality, the exploratory study can go further without strongly requiring a strict missing
data handling strategy. However, missing data patterns captured in this step can draw attention of
operators and analysts to configuration and communication weaknesses in systems devoted to events
and alarm management, which could be addressed to improve data completeness and significance.

3.3. Visual Analysis of Categorical Data

The data set under study, as seen in Table 1, has entries basically composed of categorical data
which requires a less conventional approach. Qualitative or categorical variables, in distinction from
numerical-valued or quantitative variables, assume only a limited number of discrete values and have
a category-based measurement scale which can be ordered (ordinal variables) or unordered (nominal
variables) [39,40]. Since there is no explicit hierarchy or order among categories of data set variables,
all columns are treated in this study as nominal variables. For instance, the variable Type differentiates
the types of entries in target data and assumes only two categories: ALARM and EVENT. Clearly, these
categories defines if a entry refers to an alarm or an event.

An EDA approach over categorical data may focus on visualization techniques and graphical
methods to highlight counts, proportion relationships and patterns between variables and their
categories. However, while methods for visualizing quantitative data have a long history, graphical
methods for categorical data have only recently developed and, consequently, are not as widely
used [41].

3.3.1. Quantitative Assessment

A quantitative assessment of categorical occurrences can be easily achieved using a myriad
of bar chart types. As example of the various accounts that can be carried out, Figure 7 shows a
stacked bar chart evidencing the quantitative relations between columns Type and Category where
it is possible to identify, for example, a high prevalence of a category (in Category column) in event
entries. Similarly, Figure 8 shows a grouped bar chart accounting column Level in relation to the
part_of_the_day (supplementary categorical variable built from time stamps) where it is possible to
visualize the proportions among the several levels (Level column) during all times of day. Both bar
plots were built using pandas [42] and matplotlib [43] Python language libraries.

o I_‘
o -..

0 100000 200000 300000 400000 500000 600000
Number of Entries

Type

Category
DEVICE
HARDWARE
INSTRUMENT
PROCESS
SYSTEM
USER

Figure 7. Stacked bar plot associating columns Type and Category.
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Figure 8. Grouped bar plot accounting Level over day-shifts.

3.3.2. Variables Proportions

Although bar charts are a very straight-forward visualization approach in data analysis, they
have limitations when dealing with categorical data. There are some modern visualization methods
more suited or specifically designed for categorical data that can provide a better picture of the
interrelation among variables proportions and interactions. Among these, mosaic plots [44] and
alluvial diagrams [45] are stand outs. These methods are built upon a tabulation of data values that
displays the frequencies of each value or group of values in the data set (contingency tables).

In a mosaic plot, frequencies of data values occurrences in a contingency table are graphically
displayed in a collection of rectangular “tiles” whose size (area) is proportional to the cell frequency [41].
Mosaic plots partition plot axes to graphically represent proportions among categorical variables.
Although the method can be readily generalized to display n-way tables, due to resolution and
overlapping limitations in a graph, using at most 4-way tables (4 variables) is a commonplace. Figure 9
shows a mosaic plot built with R language package vcd [46] from a 4-way contingency table regarding
variables Type, Category, State and Level. In that case, for better visualization, category levels for Level
variable were grouped in just two levels: CRITICAL (C) and NON-CRITICAL (NC). This diagram
illustrates the big picture for proportional relationships within the categories of those four variables.
For instance, it is possible to notice that alarm and events are mostly not critical and the vast majority
of ACTIVE state entries have PROCESS or SYSTEM as Category.

A more convenient and versatile way of displaying results of categorical variables analysis is
the Alluvial diagram. Also built from a contingency table of data set variables values, it allows the
visualization of proportional relations among multiple categorical variables at the same time. That can
emphasize flow and qualitative dispersion throughout the categories. The R language package
ggalluvial [47] implements Alluvial diagrams and was used for the most representative columns of the
original data set conjoined with the part_of_the_day supplementary column as represented in Figure 10.
This diagram makes easy to remark the proportional relationship among all variables in the plot.
For instance, by seeking the stripes flows, it is possible to attest that ALARM entries are very likely to
have INSTRUMENT as Category, CRITICAL as Level and ACT/UNACK as State. Still, the majority of
EVENT entries have PROCESS as Category, INFO as Level, ACTIVE as State and happen between late
night and the morning.



Sensors 2019, 19, 2772

Category
HARDWARE INSTRUMENT OTHER PROCESS SYSTEM
N
Q.
5 ‘- HE s
2 &
=
N4
g
P4
2
5
< &
&
w
@ =i g\ )
8 5 [— | E———< 2
8 G XS
n < =
<
5
A\
5
<
P
2
5
2 I £
‘o
NC
Level
Figure 9. Mosaic plot for columns Type, Category, State and Level.
Type [] ALarm [T Event
1000000
z
8
g
£
E <
S
< >
750000f 8 >
>
1]
=
2 &
3 L &
E 1 E
500000f ' g 3
123
B
2 Wi
: M\\
E ' / \ )
o z
@ é ' \ F
250000f 5 4,,/,1 ( )
’l' ‘\\\
x / “"
2l , v\
§ \ :
0

Ty'pe Catégory Level State IsArchived part_of_'the_da)

Figure 10. Alluvial diagram for some important columns of the data set.

12 of 21

This kind of diagram can also enable a proper visualization of categories frequencies evolution
over time. By taking the time component (in days), a target variable (Level column) and fixing an
individual node (an individual cell in Node column), a time series alluvial diagram was built using



Sensors 2019, 19, 2772 13 of 21

R language package alluvial [48]. Hence, Figure 11 shows Level categories frequencies for the node
(Node) ND_CTRL_202 over a time period of three days. It is possible to notice interesting occurrences in
this time interval. By seeking the flows of the three stripes, it is possible to see a considerable increase
in CRITICAL entries on day 2, which was preceded by a large increase of WARNING and INFO entries
observed on the previous day. Thence, it is plausible that a series of informational messages and
warnings were given on day 1 until critical conditions were reached on day 2 and something close to a
normal situation was probably achieved on day 3.

Node: ND_CTRL_202

A 5
WARNING WARNING

Level

CRITICAL

INFO

INFO

CRITICAL

[ I |
1 2 3
Days

Figure 11. Time series alluvial diagram for a Node.
3.3.3. Hierarchy Reasoning

Alarm and event logs refer fundamentally to what is happening to important elements in
automation. These elements are arranged in the plant according to a hierarchy that may be reflected
in those logs. Visualizing this hierarchy favors a better reconnaissance of the entities that make up
the industrial plant. In the case of data under study, a 3-level hierarchy is made explicit by columns
Area, Node and Module. This hierarchy can be more easily understood in a quantitative and qualitative
manner with the SunBurst diagram, a space-filling visualization technique in which items in a hierarchy
are laid out radially, with the top of the hierarchy at the center and deeper levels farther away from the
center [49]. To evidence hierarchical relationships and proportional dispositions for the entities covered
in the logs, a Sunburst diagram built from that Area, Node and Module columns and implemented with R
language package sunburstR [50] is shown in Figure 12. This figure makes trivial the understanding of
plant hierarchy: each Area has several Nodes, which in turn can have multiple Modules. The breadcrumb
trail in top of the figure represents the hierarchy for a selected Module.
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Figure 12. Sunburst diagram highlighting hierarchy for columns Area, Node and Module.
3.3.4. Mining Descriptions

Some columns in the target data set are descriptive and have high uniqueness for their values.
This can make graphical visualizations difficult and hamper analysis. Nevertheless, an overall
quantitative and qualitative conjecture is still convenient and some kind of graphical visualization
is desirable. This way, an overview of sentence occurrence in a descriptive column can be obtained
through word clouds, a popular data mining technique meant to provide a visual emphasis of most
frequent words in a text by tidily fitting words in a plane, using font size and color as word frequency
differentiators. Word clouds are useful for quickly perceiving the most prominent terms and their
relative prominence.

Using Python language package wordcloud [51], a word cloud was built from a frequency table
accounting frequencies of sentences in column Desc2. This word cloud aims at highlighting the more
frequent descriptive sentences, for entries of Type ALARM with Level set as CRITICAL. As this column
represents a fine-grained description of entries, by inspecting Figure 13, it is possible to point out
the descriptive sentences related to the most common critical alarms in the plant. The word cloud
of Figure 13 shows a predominance of “General Failure”, “High High” and “Module Error” alarms,
what may indicate that the plant has experienced a troubled period. Although it is not an accurate
visualization technique, word clouds are in this case convenient to draw attention to episodes of high
frequency and potentially of high significance in the operational context of the plant.

Module Error: O or Module Status: 2

General Failure

Module Error: 0 or Module Status: 0O

High High Alarm Value -9.24344 Limit 60

High High Alarm Value 100.153 Limit 60

061 Limit

: High High Alarm Value 9.21293 Limit 60 Module Error: 272 or Module Status::0
High High Alarm Value 100.183 Limit 60
Module Erro 3 or_Module Status ) 2

Figure 13. Word cloud from sentences of column Desc?2 for critical alarms.
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3.4. Categories Interactions

An important step in an EDA is to lay emphasis on unveiling possible relationships among
variables under analysis. For categorical data, a suited method for this task is Multiple Correspondence
Analysis (MCA), an extension of the Correspondence Analysis (CA) for summarizing and visualizing
a data table containing more than two categorical variables [52]. MCA is part of Principal Component
(PC) methods family whose purpose is summarizing and visualizing the most important information
contained in a multivariate data set and can be understood as the categorical data counterpart of
Principal Component Analysis (PCA) [52,53].

In short, MCA is data-driven and assumption-free dimensionality reduction method which
distributes values of a table of relative frequency or multiple contingencies (Burt table) in an
n-dimensional space, and then processes the distance (Chi-square distance) between the variables in
each dimension to establish the similarity degree of variables [54,55]. More on MCA method can be
comprehensively found in recent specialized books [52,53].

The aim in this step is to proceed MCA to some key variables of the study data set to point
out relationships among variables and categories as well as reinforce prior association hypotheses.
To perform MCA over target data, FactoMineR [56], a R language package dedicated to multivariate
EDA focused on classical PC methods, was used. The R language package factoextra [57], specialized
in the extraction and visualization of PC results, was used for plotting.

As MCA focus primarily on studying the categories, once they represent both variables and
a group of individuals [53], variables categories scatterplot (or cloud of categories) was built and
represented in Figure 14. In this MCA plot, elements from MCA results are depicted in a so called factor
map, a Cartesian plane whose axis are defined by MCA two main dimensions (principal components)
and plotted points given by the coordinates of each variable categories in those dimensions. Columns
Type, Category, State, Level, IsArchived and part_of_the_day were subjected to MCA and are represented
in the scatterplot (Figure 14) by their categories representation in the factor map. Also, axis labels
explicit that the two first dimensions retain almost 25% of the total inertia (variation) contained in the
data. Categories names are colored according to their contribution values in the factor map, a measure
obtained from their squared cosine (cos?) which in turn represents the quality of the coordinates in
that map.

By interpreting Figure 14, it is possible to figure out that variable categories such as INFO (column
Level), ACTIVE (column State), EVENT (column Type), SYSTEM (column Category), MAINTENANCE
(column Level) and PROCESS (column Category) contribute the most to the main dimensions.
Consequently, they are the most important in explaining the variability in the data set, with
INFO, ACTIVE and EVENT being categories more correlated with dimension 1 while SYSTEM,
MAINTENANCE and PROCESS are more correlated with dimension 2.

Regarding the relationships between variable categories, much can extracted from the factor
map. As an example, it is plausible to say that variable categories with a similar profile are grouped
together in the graph. Hence, the well defined cluster formed by categories EVENT, ACTIVE and
INFO evinces a stronger relationship (positive correlation) among theses categories when compared
to the others. The same way, as negatively correlated variable categories are positioned on opposed
quadrants, WARNING and SYSTEM categories are prone to a mutual exclusion relationship.
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Figure 14. MCA factor map for key variables categories.

4. Discussion

This section provides a discussion of the limitations, obstacles and merits regarding this research.

4.1. A Superb Guidance But No Definitive Answer

This paper was engaged to contextualize the application of Data Science and Big Data aspects
as an undeniable trend in industry. Corroborating with this, the extensive use of EDA, a classic
data analysis approach which uses quantitative, qualitative and visual methods, is proposed as a
primer step in industrial alarm and event data analysis. EDA is one of several possible approaches in
data analysis, but has the advantage of being an uncomplicated “hands-on” approach facilitated by
current available tools. In this paper, a basic EDA a pipeline was systematized throughout the gradual
understanding of data aspects to obtain from interesting insights to real knowledge relating to data
under study. From the examples shown in this work, EDA proved to be able to attain a panoramic
view of data, point out general relationships and, consequently, guide further analysis. Although not
yielding ultimate conclusions, EDA showed itself effective in extracting valuable information from the
kind of data under study. It is worth mentioning that results presented in this work comprises only a
small sample of EDA capabilities, used to attest the ability of expressing a hitherto concealed amount
of notable importance information, specially to field experts. EDA has a broad scope and can also
include deeper statistical analyses which can lead lead to the discovery of cause-effect relationships,
serial dependence among registries and more sophisticated patterns.

4.2. Use of Real-World Data

The study summarized in this work through a series of graphs and diagrams was conducted
using real-world industrial events and alarms data from a petrochemical plant consisting of a small
sample related to only a single unit, out of a total of ten, of an industrial process. Selected data refers
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to a representative scheduling horizon of a typical crude oil processing operation in a petrochemical
plant, which lasts for 3 to 4 days [58,59]. This data volume also corresponds to data locally stored
in the SCADA system under study and therefore more easily retrievable. The entire plant produces
nearly 10 million events and alarm entries a day, totaling about 2 Terabytes of raw data per day of
operation, of which almost no advantage is taken. Concerning paper originality, no scientific research
on analyzing this kind of industrial data has been identified.

4.3. Use of an Open-Source Tool-Set

This research was carried out with the use of an open-source tool-set whose cores comprise Python
and R programming languages and their vast ecosystems of 3rd-party libraries related to data science
tasks. An open-source research environment was highly preferred over proprietary solutions mainly
due to gains in flexibility, scalability and customization obtained with this choice, as well as due to the
abundant documentation, fast-growing community of users and and increasing improvement of these
tools, allied with a zero-cost setup. This constitutes an inexpensive but powerful environment suited
to perform diverse and complex data science tasks. R’s built in Data Frame structure and Python’s
pandas library, extensively used in this research, are foundation data structuring and manipulation
tools upon which all computation tasks can be constructed. With regards to results visualization,
R’s ggplot2 and Python's matplotlib offer a general-purpose and versatile publication-quality image
generation environment that was used directly or indirectly through other libraries which rely on them
as base graphical systems.

4.4. The Need for an Industrial Big Data Infrastructure

This EDA excerpt is part of a research carried out in a offline and controlled laboratory
environment, using a conventional computational infrastructure, a set of open-source tools (R and
Python libraries) and a small data sample. Perform collection, aggregation, handling and processing of
the real data mass of data is indeed a challenge to be overcome. In order to make EDA and other more
sophisticated data-driven approaches feasible and viable in such a voluminous data and time-restricted
scenario, it is necessary to establish a hardware and software infrastructure capable of meeting the great
computational demands of those approaches. Industry has been aligning to some Big Data precepts
to accomplish such a kind of processing which, in terms of computational infrastructure, includes,
among other aspects, a high computing power, parallel, distributed and online processing of massive
data capabilities, distributed file systems with safe access, intelligent, fast and robust communications
infrastructure, as well as an analysis systematization based on the specific plant knowledge [12-14].

Literature confirms this matter as a high relevance interest topic. A recent contribution concerns
the establishment of a Big Data engine able of meeting industrial needs and peculiarities [13]. In that
work, the author permeates the potential of a collection of Big Data architectures, optimization
approaches and Big Data benchmarking tools in industry and introduces a conception of an
industrial Big Data architecture capable of addressing the limitations and improve efficiency of
those architectures in relation to their map-reduce models. Another promising reference in this area
defines a cloud-assisted architectures and mechanisms for Big Data data processing in the field of
preventive maintenance are proposed and compared [15]. Other prominent contribution is a survey
focused on key techniques for designing and implementing efficient and high performance industrial
Big Data analytics platforms [60]. This recurrence proves that the establishment of an Industrial Big
Data infrastructure figures as a requirement for today’s industries.

5. Conclusions and Future Work

This work aimed at showing that performing a graphically-rich and informative EDA can pave a
shift from where data is simply showed to where a history is told from data. By establishing a low
complexity exploratory data analysis pipeline and using adequate visualization methods, valuable
information can be obtained from previously neglected (or simply took aside) data. This may lead to
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improvements in operating, testing, maintenance, monitoring and auditing procedures to ensure safer,
more reliable and more effective operations. Apart from that, more appropriate data visualization
approaches can also inspire a new-thinking on the design of industrial HMIs, dashboards and panels.

The stages, strategies and methods in this kind of approach are not limited to the ones explored in
this research. They must be adapted, extended and deepen according to the nature of the data under
analysis, the desired time-window and the goals established for the analysis.

A future work is to enhance and better systematize EDA pipelines in an automated framework
able to also consider the domain knowledge supplied by field specialists in order to refine data
inquiry and narrow search spaces. Driven by EDA findings, future directions should aim at enriching
storytelling by employing more sophisticated analysis strategies such as statistical hypothesis testing,
clustering, classification, feature engineering and machine learning to guide diagnostic, prognostic
and prediction of abnormal operational situations for different time horizons. A challenge is to make
these data analysis improvements in such a voluminous data scenario feasible. Hence, the design,
test and build of an industrial Big Data infrastructure is in the roadmap, in a first moment, relying on
current leading Big Data solutions that should be set up and configured to meet specific industrial
plants criteria.
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