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Abstract: In this paper, we propose two novel methods for robot-world-hand–eye calibration
and provide a comparative analysis against six state-of-the-art methods. We examine the
calibration problem from two alternative geometrical interpretations, called ‘hand–eye’ and
‘robot-world-hand–eye’, respectively. The study analyses the effects of specifying the objective
function as pose error or reprojection error minimization problem. We provide three real and three
simulated datasets with rendered images as part of the study. In addition, we propose a robotic
arm error modeling approach to be used along with the simulated datasets for generating a realistic
response. The tests on simulated data are performed in both ideal cases and with pseudo-realistic
robotic arm pose and visual noise. Our methods show significant improvement and robustness on
many metrics in various scenarios compared to state-of-the-art methods.

Keywords: robot-world-hand–eye calibration; hand–eye calibration; optimization

1. Introduction

Hand–eye calibration is an essential component of vision-based robot control also known as
visual servoing. Visual servoing effectively uses visual information from the camera as feedback to
plan and control action and motion for various applications such as robotic grasping [1] and medical
procedures [2]. All such applications require accurate hand–eye calibration primarily to complement
the accurate robotic arm pose with the sensor-based measurement of the observed environment into a
more complete set of information.

Hand–eye calibration requires accurate estimation of the homogenous transformation between the
robot hand/end-effector and the optical frame of the camera affixed to the end effector. The problem
can be formulated as AX = XB, where A and B are the robotic arm and camera poses between
two successive time frames, respectively, and X is the unknown transform between the robot hand
(end effector) and the camera [3,4].

Alternatively, the estimation of a homogeneous transformation from the robot base to the
calibration pattern/world coordinate system can be obtained as a byproduct of the problem solution
widely known as robot-world-hand–eye (RWHE) calibration, formulated as AX = ZB. In this
formulation, we define X as the transformation from robot base to world/pattern coordinate and Z is
the transformation from the tool center point (TCP) to the camera frame. These two notations might be
opposite in some other studies. The transformations A and B no longer represent the relative motion
poses between different time instants. Instead, they now represent the transformation from TCP to the
robot base frame, and the transformation from the camera to the world frame.
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A considerable number of studies have been carried out to solve the problem of hand–eye
calibration. While the core problem has been well addressed, the need for improved accuracy and
robustness has increased with time as the hand–eye calibration problem expands to finds its uses in
various fields of science.

The earliest approach presented for hand–eye calibration estimated the rotational and translational
parts individually. Due to the nature of the approach, the solution is known as separable solution.
Shiu and Ahmed [4] presented a closed-form approach to finding the solution for the problem
formulation AX = XB by separately estimating the rotation and translation from robot wrist to the
camera in that order. The drawback of the approach presented was that the linear system doubles
at each new entry of the image frame. Tsai [3] approached the problem from the same perspective,
however, they improved the efficiency of the method by keeping the number of unknowns fixed
irrespective of the number of images and robot poses. Moreover, the derivation is both simpler and
computationally efficient compared to [4]. Zhuang [5] adopted the quaternion representation for
solving the rotation transformation from hand to eye and robot base to the world. The translation
components are then computed using linear least squares. Liang et al. [6] proposed a closed-form
solution by linearly decomposing the relative poses. The implementation is relatively simple; however,
the approach is not robust to noise in the measurements and suffers intensely in terms of accuracy.
Hirsh et al. [7] proposed a separable approach that solves for X and Z alternatingly in an iterative
process. The approach makes an assumption that one of the unknown is pseudo-known for that
time being and estimates the best possible values for the other unknown by distributing the error.
In the first case, it assumes that Z is known by the system and estimates X by averaging over the
equation X = ZBnA−1 for all n poses of B. Similarly, an estimation for Z is obtained by using the
previously obtained X. This process continues until the system reaches the condition to terminate the
iterative estimation. In a recent study, Shah [8] proposed a separable approach that forms its bases
on the methods presented by Li et al. [9]. Shah suggests using the Kronecker product to solve the
hand–eye calibration problem. The method first computes the rotational matrices for the unknown X,
followed by computing the translation vectors. Kronecker product is an effective approach to estimate
the optimal transformation in this problem. However, the resulting rotational matrices might not
follow orthogonality. To compensate for this issue, the best approximations for orthonormal rotational
matrices are obtained using Singular Value Decomposition (SVD). The primary difference between the
work of [8] and [9] is that Li et al. do not update the positions that were only optimal for the rotational
transformation before the orthonormal approximation. This augments to any errors that might already
be present in the solution. In contrast, Shah [8] explicitly re-computes the translations based on the new
orthonormal approximations of the rotations RX and RZ. Earlier studies have shown that separable
approaches have a core limitation, which results in slightly high position errors. Since the orientations
and translation are computed independently and in the mentioned order, the errors from orientations
step propagate to the position estimation step. Typically, separate solution based approaches have
good orientation accuracy; however, the position accuracy is often compromised.

The second class of solutions is based on simultaneous computation of the orientation and
position. Chen [10] argued that rotation and translation are interdependent quantities and, therefore,
should not be estimated separately. He proposed a simultaneous approach to the hand–eye problem
based on screw theory where both the rotation and translation components are computed altogether.
In his work, Chen estimates a rigid transformation to align the camera screw axis to the robot screw axis.
Dornaika and Horaud [11], proposed a nonlinear least square based approach to solve the hand–eye
calibration problem. The optimization approach solved for an abundant number of parameters that
represent rotations in the form of matrices. The cost function constrained the optimization to solve
for orthonormal rotation matrices. It was observed that the nonlinear iterative approach yielded
better results to linear and closed form solution in term of accuracy. Henceforth, many studies have
opted for nonlinear cost minimization approach since they are more tolerant to nonlinearities present
in measurements in the form of noise and errors. Shi et al. [12] proposed to replace the rotation
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matrices with quaternion representation to facilitate the iterative optimization approach towards a
solution. In [13], Wei et al. contributed an approach for an online hand–eye calibration approach that
estimate the transformations through active motion. The method discards degenerative cases where
no or little rotation cases induce high errors into the system. Strobel and Hirzinger [14], proposed
an adaptive technique for hand–eye calibration using nonlinear optimization. The approach adjusts
weights that are assigned to the rotation and translation errors during the cost minimization step.
In [15], Fassi and Legnai construed a geometrical interpretation of the hand–eye calibration problem
for the formulation AX = XB. They argued that the general formulation can lead to an infinite
solution and therefore a constrained multi-equation based system is always suitable to optimize.
Some cases that result in singularity were also discussed. Zhao [16] presents a convex cost function by
employing the Kronecker product in both rotational matrix and quaternion form. The study argues
that a global solution can be obtained using linear optimization without specifying any initial points.
This serves as an advantage over using L2 based optimization. Heller et al. [17] proposed a solution
to the hand–eye calibration problem using the branch-and-bound (BnB) method introduced in [18].
The authors minimize the cost function under the epipolar constraints and claim to yield a globally
optimum solution with respect to L∞−norm. Tabb [19] tackled the problem of hand–eye calibration
from the iterative optimization based approach and compared the performance of various objective
functions. The study focused on AX = ZB formulation and solved for the orientation and translation
both separately and simultaneously using the nonlinear optimizer. Moreover, a variety of rotation
representations was adopted including Euler, rotation matrix and quaternion in order to study their
effect on accuracy. The study explored the possibility of a robust and accurate solution by minimizing
pose and reprojection errors using different costs. The authors used the nonlinear optimizer Ceres [20]
to solve for a solution using the Levenberg-Marquardt algorithm.

In this study, we present a collection of iterative methods for the hand–eye calibration problem
under both AX = XB and AX = ZB formulations. We adopt the iterative cost minimization based
approach similar to Tabb [19]. However, the geometrical formulation is reverted to the generic form for
better coherence. Moreover, we study the problem from AX = XB formulation, which is not present
in [19]. The prospects of a new cost functions for the non-linear regression step are also studied.
Each method is quantified from pose optimization and reprojection error minimization perspective.
The main contributions of this study are as follows:

(1) We provide a comprehensive analysis and comparison of various cost functions for various
problem formulations.

(2) We provide a dataset composed of three simulated sequences and three real data sequence, which
we believe is handful for testing and validation by the research community. To the best of our
knowledge, this is the first simulated data set for hand–eye calibration with synthetic images
that are available for public use. Moreover, the real data sequences include chess and ChArUco
calibration board of varying sizes. The datasets are available from [21].

(3) We provide extensive testing and validation results on a simulated dataset with realistic robot
(position and orientation) and camera noise to allow comparisons between the estimated and
true solutions more accurately.

(4) We provide an open-source code of the implementation of this study along with the surveyed
approaches to support reproducible research. The code is available from [21].

The article is organized as follows: In Section 2, we present in detail the problem formulations
for robot-world-hand–eye calibration. In Section 3, we discuss the development of real and synthetic
dataset for evaluation purpose. Section 4 presents the error metrics used to quantify the performance
of the calibration methods. Section 5 summarizes the experimental results using both synthetic and
real datasets against the aforementioned error metrics. Finally, Section 6 concludes the article.
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2. Methods

For the needs of our study, we introduce notations, as illustrated in Figure 1. Throughout this
article, we will represent homogenous transformations by T supported with various sub-indexes.
The sub-indexes b, t, c and w indicate the coordinate frames associated with robot base, robot tool,
camera and the calibration pattern, respectively. The sub-indexes i and j are associated with time instants
of the state of the system. For the first general formulation AX = XB illustrated in Figure 1a, bTbi is the
equivalent to Ai and denotes the homogenous transformations from robot base to the tool center point
(TCP)/end-effector. ci

Tw is the equivalent of Bi and denotes the homogenous transformation from
camera to the world/calibration pattern. The formulation uses the relative transformation A (tj

Tti). and

B (cj
Tci) from their respective previous pose to another pose. The unknown X or tT

c is the required
homogenous transformation from the end effector to the camera.
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The second general formulation, AX = ZB is illustrated in Figure 1b. The formulation uses
absolute transformation A(tT

b) and B(cTw) from their respective coordinate frames. The unknown
X(bTw) and Z(tT

c) are the homogenous transformations from robot base to the world frame and the
end effector to the camera frame, respectively. The hand–eye transformation is referred to as Z in this
formulation for coherence in literature, since many studies opt for such notation.

In this section, we focus on various cost functions for the two general problem formulations with
the aim to analyze their performance under real situations. For both cases, we consider solving the
problem by minimizing pose error and reprojection error. Some studies including [19] propose to
optimize the camera’s intrinsic parameters using the nonlinear solver to yield better results. However,
Koide and Menegatti [22] argue that the approach involving camera intrinsic optimization overfits the
model on the data for the reprojection error; consequently, the results are poor for other error metrics
including reconstruction accuracy. Following the insight from [22], we solve for the transformation by
minimizing the reprojection error.

The main information required for hand–eye calibration are the Tool Centre Point (TCP)/end
effector poses and the camera poses. The TCP pose of the robotic arm is directly provided by the
software of the robotic arm against the base of the arm. The pose is typically quite accurate due
to the high accuracy of the encoders in the robotic arm that provide feedback for the angles of the
joints. In general, for many robotic arms, the precision for the end effector’s position is around
0.1–0.2 mm. On the other hand, the camera pose against the world frame can be obtained through
various methods. The common approach is to use a calibration pattern for simultaneously calculating
the calibration parameters of the camera and the pose of the camera against the pattern or in this case
world frame. Many researchers favor this approach since the calibration pattern is easy to acquire
and its use yields good results. In contrast, some studies [23,24] prefer Structure from Motion (SFM)
to acquire the relative camera transformation when the camera is moved from one point to another.
The approach is independent of the calibration pattern and can acquire the correspondences from the
feature-rich environment. However, SFM based camera calibration and camera pose computation
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are prone to errors. The approach inherits additional errors into the hand–eye calibration process
and reduces the overall accuracy of the system. To compensate for these errors, the process must
include additional steps to mitigate the effects. The added efforts deviate the focus from the core target,
which is accurate hand–eye calibration. In this study, we utilize industrial-grade calibration boards in
order to estimate the camera intrinsic parameters and camera extrinsics for the robot-world-hand–eye
calibration problem. The camera calibration approach used in this study is based on the widely adopted
method by Zhang [25].

2.1. Hand–Eye Formulation

This mathematical problem formulation involves estimating one unknown with the help of two
known homogenous transformations in a single equation. Let bTti be the homogenous transformation
from the base of the robot to the robot TCP. The homogenous transformation relating the camera
coordinate frame to the world coordinate frame affixed to the calibration patters is ci

Tw. The unknown
homogenous transformation from the tool to the camera coordinate frame to be estimated is represented
by tT

c. Then from Figure 1a, we can form the following relationship

bTt2−1
bTt1

tT
c = tT

c
c2

Tw
c1

Tw−1
←

(
t1

Tc1 = t2
Tc2

)
(1)

t2
Tb

bTt1
tT

c = tT
c

c2
Tw

wTc1 . (2)

Generalizing Equation (2) gives us Equation (3).

tj
Tti

tT
c = tT

c
cj

Tci (3)

 tj
Rti

tj
Tti

01×3 1

 [
tR

c
tt

c

01×3 1

]
=

[
tR

c
tt

c

01×3 1

]  cj
Rci cj

tci

01×3 1

 (4)

Equation (4) represents the direct geometrical relationship between various coordinate frames
involved in the system. In order to attain a solution and achieve dependable results it is required that the
data is recorded for at least 3 positions with non-parallel movements of the rotational axis [14]. We can
directly minimize the relationship in Equation (4) to estimate the unknown parameters presented in
Equation (5). In the experimentation section, we refer to the cost functions in Equations (5) and (6) as
Xc1 and Xc2, respectively.{

q(t,c), tt
c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||n

(
t j

Tti
[
q(t,c), tt

c
]
HT
−

[
q(t,c), tt

c
]
HT cj

Tci

)
||

2
2 (5)

In light of recommendation of [19], we can also re-arrange Equation (5) in the following manner.{
q(t,c), tt

c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||n

(
tj

Tti −

[
q(t,c), tt

c
]
HT cj

Tci
[̃
q(t,c), t̃t

c
]
HT

)
||

2
2 (6)

Here, the symbol []HT denotes the conversion of the parameters to homogenous transformation
representation. The solver optimizes the parameters in quaternion representation q(t,c) of the rotational
matrix tR

c and translation tt
c. The operation n denotes the aggregation of the 4 × 4-error matrix into

a scalar value by summation of normalized values of quaternion angles and normalized translation
vector. The terms q̃(t,c) and t̃t

c are the quaternion and translation vector obtained from the inverse
of tT

c. The objective functions minimize the L2-norm of the residual scaler values. The solutions in
Equations (5) and (6) belong to the simultaneous solution category of hand–eye calibration because the
rotation and translation are solved at the same time. We use the Levenberg –Marquardt algorithm
to search for a minimum in the search space. The objective function successfully converges to a
solution without any initial estimates for the q(t,c) and tt

c. We have observed that the cost function in
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Equation (6) enjoys a slight improvement in some cases over Equation (5), which will be discussed in
the experimental results and discussion section.

The second approach to seek a solution is based on reprojection-based methods. Reprojection
error minimization has shown promising results for pose estimation in various problem cases [26,27].
Tabb [19] examined the reprojection-based method for the AX = ZB formulation. We generalize this
approach for the case of the AX = XB formulation. Let W be the 3D points in the world frame and
Pc be the same points in the camera frame. In the case of the chessboard pattern, these points are the
corners of the chessboard. The following relationship represents the objective function for minimizing
the reprojection error of the 3D points from pose i to pose j. The cost function in Equation (7) is referred
to as RX here onwards.{

q(t,c), tt
c
}
= argmin

q(t,c) , tt
c

∑
n−1
i=1, j=i+1||P j −Π

(
K,

[̃
q(t,c), t̃t

c
]
HT tj

Tti
[
q(t,c), tt

c
]
HT

, Pc
i

)
||

2
2 (7)

In the equation, Π represents the operation that projects the 3D points from world space to
image space using the camera intrinsic K and the camera extrinsic obtained using the homogenous
transformations given in Equation (7), while P j are the observed 2D points in the j-th image.

It is important to note that the reprojection error minimization based approach is not invariant to
the choice of initial estimates for the solver. However, if a good initial estimate is provided, the nonlinear
optimization of reprojection error can provide a more accurate solution with a fine resolution.

2.2. Robot-World-Hand–Eye Formulation

This mathematical formulation involves the estimation of an additional homogenous
transformation that is between the robot base frame and world frame. Therefore, we have two
known and two unknown homogenous transformations. Let tT

b. be the homogenous transformation
from robot TCP to the base of the robot. The homogenous transformation relating the camera coordinate
frame to the world coordinate is cTw.The additional unknown homogenous transformation from the
robot base frame to the world frame is bTw. Then from Figure 1b, we can form a straightforward
geometrical relationship as:

tT
b

bTw = tT
c

cTw (8)[
tR

b
tt

b

01×3 1

] [
bRw

btw

01×3 1

]
=

[
tR

c
tt

c

01×3 1

] [
cRw

ctw

01×3 1

]
(9)

Similar to the previous cases, we can directly use the relationship in aforementioned equations to
obtain tT

c and bTw using nonlinear minimization of their respective costs{
q(t,c), tt

c, q(b,w), btw
}
= argmin

q(t,c) , tt
c, q(b,w),btw

∑
n
i=1||n

(
tT

b
i

[
q(b,w), btw

]
HT
−

[
q(t,c), tt

c
]
HT cTw

i

)
||

2
2 (10)

We can observe from Equation (10), that we are attempting to solve for two unknown homogenous
transformations. The adopted parametrization involves optimizing over 14 parameters, where the
two quaternions and translation vectors contribute to 8 and 6 parameters, respectively. While the
robot-world-hand–eye calibration involves more unknowns for estimation, nonetheless, it constrains
the geometry with more anchor points and helps to converge closer to the global minimum. With the
advent of modern nonlinear solvers, the problem of optimizing for a large number of unknowns has
become simpler and more efficient. As before, the objective function in Equation (10) can be re-arranged
in the form of Equation (11). The cost functions in Equations (10) and (11) are referred to as Zc1 and
Zc2, respectively, in Tabb [19]{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w),btw

∑
n
i=1||n

(
tT

b
i −

[
q(t,c), tt

c
]
HT cTw

i

[̃
q(b,w), b̃tw

]
HT

)
||

2
2 (11)
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The objective function successfully converges to a solution for q(t,c), tt
c, q(b,w) and btw. However,

the primary difference here is that the solver depends on initialization. In case of bad initial estimates,
the optimization algorithm might not converge to a stable solution. However, the formulation presented
is not a high dimensional optimization problem and therefore, a rough initial estimate is sufficient.
The initial estimates can be acquired from any fast closed-form method such as Tsai [3] or Shah [8].

This formulation can also be viewed as reprojection error minimization problem. The following
equation presents a cost function that minimizes the reprojection of the 3D world points W onto the
image space in camera frame, where Pi are the observed 2D points in the i-th image. The cost functions
in Equation (12) is referred to as rp1 in [19].{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w),btw

∑ n
i=1||Pi −Π

(
K,

[̃
q(t,c), t̃t

c
]
HT tT

b
i

[
q(b,w), btw

]
HT

, W
)
||

2
2 (12)

In contrast to the reprojection error cost function for problem formulation = XB, this formulation
from [19] has the added advantage that it is not explicitly affected by the errors in pose estimation
caused by blurred images or low camera resolution. If the camera intrinsic parameters are accurate
enough, then the extrinsic can be indirectly computed as a transformation through tT

c, tT
b and bTw

through the minimization of the objective function. On the contrary, the reprojection error cost function
presented for problem formulation AX = XB is more robust to robot pose errors given good images.

A marginal improvement in the results can be observed in various cases by using log(cosh(x))
as the loss function. The relative improvement is discussed in detail in Section 5. log(cosh(x))
approximates x2

2 for small value of x and abs(x) − log(2), for large values. This essentially means
that log(cosh(x)) imitates the behavior of the mean squared error but is more robust to noise and
outliers. Moreover, the function is twice differentiable everywhere and therefore does not deteriorate
the convexity of the problem. The modified version is given as followed, where E(x) is the error
in terms of difference between the observed points and the reprojected points. The cost function in
Equation (13) is referred to as RZ hereafter.{

q(t,c), tt
c, q(b,w), btw

}
= argmin

q(t,c) , tt
c, q(b,w),btw

∑
n
i=1|| log(cosh( E(x)))||22 (13)

3. Performance Evaluation Using Datasets

In order to assess the performance of the robot-world-hand–eye calibration methods, we present
multiple datasets to test the methods in laboratory and near field settings. These datasets contain data
acquired using various combinations of camera, lens, calibration patterns and robot poses. A detailed
description of datasets is provided in Table 1. The table also lists the length of each side of square
of the calibration patterns, focal length of the lenses, and number of robot poses used to acquire
images. The datasets include real data and simulated data with synthetic images. To the best of our
knowledge, this study is the first to provide simulated robot-world-hand–eye calibration dataset with
synthetic/rendered images as open source for public use. A more detailed explanation of the datasets
is presented in the following subsections.

Table 1. Description of the dataset acquired and generated for testing.

No. Dataset Data Type Lens Focal
Length [mm]

Square
Size [mm] Image Size Robot Poses

1 kuka_1 Real 12 20 1928 × 1208 KR16L6-2 30
2 kuka_2 Real 16 15 1920 × 1200 KR16L6-2 28
3 kuka_3 Real 12 60 1928 × 1208 KR16L6-2 29
4 CS_synthetic_1 Simulated 18 200 1920 × 1080 N/A 15
5 CS_synthetic_2 Simulated 18 200 1920 × 1080 N/A 19
6 CS_synthetic_3 Simulated 18 200 1920 × 1080 N/A 30
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3.1. Real Datasets

To acquire real data for this experiment, a KUKA KR16L6-2 serial 6-DOF robot arm was used
with Basler acA1920-50gc camera using 12 mm and 16 mm lenses as shown in Figure 2. The primary
aim in recording these datasets was to collect real data for various robot-world-hand–eye calibration
tests. With this aim, the collection provides three real datasets with varying robot poses and calibration
patterns as shown in Figure 3. In this study, we primarily use the chessboard pattern for accurate
camera calibration and robot-world-hand–eye calibration. A minor yet significant difference between
the datasets [28], used in [19], is that the robot hand/camera orientation changes are quite gentle.
This is done to facilitate the OpenCV camera calibration implementation used in [19], therefore the
aforementioned implementation is not invariant to significant orientation changes and as a result, it flips
the origin of the calibration pattern. For our experiments, we utilized MATLAB’s implementation
of [25], which can correctly detect the orientation of the pattern in any given pose. However, this neat
trick requires that the calibration pattern is asymmetric in the number of rows and columns and that
one of the sides has an even number of squares while the other side has odd. This requirement makes
the datasets in [28], which have chessboard patterns with even number of rows and columns, unusable
in our tests.
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In addition, the calibration board used in the third dataset is a ChArUco pattern with square size
of 60 mm, shown in Figure 3c. ChArUco tries to combine the benefit of both chessboard and ArUco
markers and tends to facilitate the calibration process by fast, robust and accurate corner detection
even in occluded or partial views [29]. The ChArUco dataset is only provided as open source material
for future testing and has not been utilized in this study.

3.2. Simulated Dataset with Synthetic Images

The real data has the advantage of encapsulating all the uncertainties of a real system; however,
in such cases we do not have any ground truth information. It is not possible to acquire the ground truth
TCP-to-camera transformation, since the camera frame lies inside the camera. While various metric
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for relative errors and error distribution can be used, nonetheless, the absolute pose error is always
missing to quantify accuracy. The main purpose of using simulated data is to quantify the accuracy of
the estimated poses against ground truth pose for various robot-world-hand–eye calibration methods.
We provide three simulated datasets as part of the dataset package excerpts of which are shown in
Figure 4. Each dataset provides different number of poses and complexity through the orientation
of the camera. The simulated data comprises of synthetic images generated in Blender [30], a 3D
computer graphics software, of the specifications mentioned in Table 1. For simplification, we assume
that the camera position is the same, as the robot TCP position. Then the homogenous transformation
from hand-to-eye constitutes of rotation resulting from the orientation difference between the Blender
world frame and Blender camera frame.
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3.3. Pseudo-Real Noise Modeling

While simulated data carries the advantage of providing the ground truth information for various
robot-world-hand–eye calibration, the limitation is that it lacks the uncertainties of the real world
situations. These uncertainties could originate from either robot TCP pose errors or camera pose errors.
Many studies [19,22,31] suggest testing the robustness of the methods by inducing one type of noise at
a time into the system and evaluating its performance based on the response. Unfortunately, these
uncertainties are mostly co-existent and co-dependent in real-world cases. In this study, we propose
to model the uncertainties in terms of pose and pixel errors and induce a realistic amount of noise
simultaneously into the simulated dataset for testing. The motivation behind inducing such type
of noise is to carry the advantage of testing simulated data for accuracy and adjoining it with the
robustness of testing on real data.

We aim at introducing a realistic amount of noise. The robot position repeatability is generally
provided in the datasheets, which ranges from 0.1–0.3 mm for various robots. However, the orientation
repeatability is absent since it cannot be measured for real robots at such a fine resolution. Here,
we propose a reverse engineering approach to acquire a statistically valid amount of orientation noise.
The position and orientation error of the TCP arises from the accumulated errors of the individual
joints of the robotic arm due to robot flexibility and backlash. Using inverse kinematic we can find the
joint angles for any position of TCP within its workspace.

Once the joint angles are available, we can introduce noise into the individual joints through trial
and error until it produces the end-effector position error comparable to the realistic error. Through
forward kinematics, we can then estimate the position and orientation of the end-effector under
various arm configurations. Figure 5 shows the operation flow for computing the error range of the
new orientations.

For our test, we used the position error of the KUKA KR16L6-2 computed through highly accurate
laser sensor. The mean of the errors in X, Y and Z axes were 0.06 mm, –0.05 mm and –0.04 mm, while
the standard deviation of the errors were 0.22 mm, 0.18 mm and 0.17 mm. A normally distributed
error for each axis is generated based on these values and introduced to the system to estimate the
corresponding effects in the orientation of the TCP. The range of realistic valid error for the TCP position
is shown in Figure 6a, while the output of the orientation error using the aforementioned framework is
shown in Figure 6b.
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4. Error Metrics

In order to compare the results of all the methods with other existing studies, we suggest to
use mean rotation error (deg), mean translation error (mm), reprojection error (px), absolute rotation
error (deg), and absolute translation error (mm). Each error metric has its own merits and demerits.
We have avoided the use of reconstruction error since it involves further estimation of valid 3D points
from the reprojected 2D points. This can be achieved by searching the space for such 3D points using
nonlinear minimization, as before. However, it is not possible to segregate the error that arises from
the pose estimation step and the reconstruction step, while using the error metric.

The first error is the mean rotation error derived from Equations (4) and (9) for AX = XB and
AX = ZB formulation, respectively. Equation (16) gives the mean rotation error, which takes its input
from Equations (14) and (15) for their respective formulation. Here, the angle represents the conversion
from a rotation matrix to axis-angle for simpler user interpretation.
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The second error metric focuses on computing the translation errors. As above, the translation errors
emerge from the same Equations (4) and (9).
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The third metric to measure the quality of the results is the reprojection root mean squared error
(rrmse). The rrmse is measured in pixels and is a good metric to measure the quality of the results in
the absence of ground truth information. The rrmse provides an added advantage that it back-projects
the 3D points from the calibration board onto the images by first transforming them through the
robotic arm. In case, if the hand eye calibration is not correct, the reprojection errors will be large.
The rrmse for both the formulations are given in Equations (19) and (20).

errmse =

√√√√
1
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For the case of simulated data, we have accurate ground truth pose from the robot TCP to the
camera. We can effectively utilize that information to acquire the absolute rotation error and absolute
translation errors. The absolute rotation error can be obtained using Equation (21), while the absolute
translation error is given using Equation (22). Here, tR

c
gt and tt

c
gt are the ground truth values.

eaR = ||angle
(
tR

c −1
tR

c
gt

)
||

2
2 (21)

eat = ||tt
c
gt − tt

c)||22 (22)

5. Experimental Results and Discussion

In this section, we report the experimental results for various cases and discuss the obtained
results. We tabulate the results obtained for these cases using our own and six other studies to provide
a clear comparison. Tables 1–4 summarize the results using the error metrics described in Section 4,
over the datasets presented in Section 3. To elaborate on the naming, Xc1, Xc2, RX, and RZ refer to the
optimization of the cost function based on Equations (5)–(7) and (13), respectively. In addition, Figure 7
illustrates the results from simulated data in dataset 5 over varying visual noise in the presence of the
pseudo-realistic robotic arm pose noise. Tables 2 and 3 shows the evaluation of the aforementioned
methods on datasets 1 and 2, respectively. Both datasets vary in the use of camera lenses and robot arm
poses. It can be observed that the method by Shah [8] provides a better distribution of the rotational
error and hence has the lowest relative rotation error (erR) values, while the method by Li et al. [9]
yields a comparable result. The lowest relative translation error (ert) varies for both datasets and is
yielded by the proposed method Xc2 and Park and Martin [32]. However, for dataset 2, it seems that
Xc2 has not converged properly and has obtained a local minimum. On the other hand, the method by
Park and Martin [32], still yields a relatively low ert. Moreover, for both datasets 1 and 2, the method
by Horaud and Dornaika [11] provides comparable results to Park and Martin [32].

For the reprojection root mean squared error errmse, the best results are obtained using the proposed
RX approach for both tests. This is aided by the fact that the recorded datasets do not have large visual
errors and as a result, RX performs comparably better. Moreover, since the cost function has only one
unknown transformation to minimize for, the optimizer distributes the errors more evenly for the
reprojection based cost function. Other reprojection based approaches namely Tabb’s rp1 [19] and RZ
achieve quite close results to RX. It is noteworthy, that in spite of being a closed-form approach, Shah [8]
obtains quite good errmse that are at a competitive level to the reprojection errors based approaches.
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Table 2. Comparison of methods using the described error metrics for dataset 1.

Method Evaluation Form Relative Rotation
(erR)

Relative
Translation (ert)

Reprojection
Error errmse

Tsai [3] AXXB 0.051508 1.1855 2.5386
Horaud and Dornaika [11] AXXB 0.051082 1.0673 2.5102

Park and Martin [32] AXXB 0.051046 1.0669 2.5091
Li et al. [9] AXZB 0.043268 1.6106 2.5135

Shah [8] AXZB 0.042594 1.5907 2.4828
Xc1 AXXB 0.11619 7.0582 17.806
Xc2 AXXB 0.075211 0.71369 3.3834

Tabb Zc1 [19] AXXB 0.051092 1.1315 2.5796
Tabb Zc2 [19] AXZB 0.10205 3.6313 5.2324

RX AXXB 0.076491 1.7654 2.3673
Tabb rp1 [19] AXZB 0.066738 1.9455 2.4004

RZ AXZB 0.079488 2.0806 2.4114

Table 3. Comparison of methods using the described error metrics for dataset 2.

Method Evaluation Form Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection Error
errmse

Tsai [3] AXXB 0.046162 0.48363 1.9944
Horaud and Dornaika [11] AXXB 0.042587 0.4104 1.3804

Park and Martin [32] AXXB 0.042639 0.41033 1.3807
Li et al. [9] AXZB 0.040297 39.535 61.466

Shah [8] AXZB 0.04028 0.6078 1.5767
Xc1 AXXB 1.2697 10.038 54.436
Xc2 AXXB 9.7461 24.908 197.96

Tabb Zc1 [19] AXXB 0.61435 4.9182 16.103
Tabb Zc2 [19] AXZB 0.48439 13.518 23.672

RX AXXB 0.092173 0.6726 1.1234
Tabb rp1 [19] AXZB 0.16515 0.84439 1.1438

RZ AXZB 0.14824 0.81163 1.1567

Table 4. Comparison of methods using the described error metrics for dataset 6.

Method Evaluation
Form

Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection
Error errmse

Absolute Rotation
Error (eaR)

Absolute Translation
Error (eat)

Tsai [3] AXXB 0.65051 50.062 20.423 1.1567 8.2512
Horaud and Dornaika [11] AXXB 0.049173 6.2428 0.60685 0.028066 2.0674

Park and Martin [32] AXXB NaN NaN NaN NaN NaN
Li et al. [9] AXZB 0.031909 3.6514 0.44024 0.012108 1.0889

Shah [8] AXZB 0.032997 1.5195 0.18418 0.021235 1.0213
Xc1 AXXB 0.051304 5.7074 0.50083 0.0079584 0.73682
Xc2 AXXB 0.051239 5.7076 0.493 0.0075352 0.75278

Tabb Zc1 [19] AXXB 0.049653 5.8363 0.45621 0.01299 0.97462
Tabb Zc2 [19] AXZB 0.033778 1.9665 0.31189 0.011335 0.69158

RX AXXB 0.049583 5.8213 0.34127 0.01078 0.25753
Tabb rp1 [19] AXZB 0.031857 1.0829 0.057526 0.0085848 0.19154

RZ AXZB 0.032432 1.1072 0.05826 0.0084204 0.21121

We further study the performance of the methods using our simulated datasets. The primary
difference between dataset 4 and 6 is the number and complexity of the unique camera poses for
image acquisition. During experimentation, we observed that the resolution of the accuracy slightly
improved with the increased number of images acquired from significantly different poses. However,
none of the methods suffered significantly from comparably less information in dataset 4, therefore,
we consider datasets 5 and 6 for extensive quantitative comparison of the methods. In addition to
the previous tabulated results, Tables 4 and 5 provide experimental results on simulated data with
synthetic images from dataset 6. The main difference between the two tests is that the first test (Table 4)
considers ideal simulated data, while the second test (Table 5) has visual and robot pose noise induced.
The robot pose noise is derived from the process explained in Section 3.3, while the visual noise is
selected such that the resultant reprojection error amounts to the reprojection errors of real data tests.
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Tables 4 and 5, present two absolute errors due to the presence of ground truth information for
the simulated cases. It can be observed that Tabb’s rp1 [19] achieves the least erR, ert, errmse and eat.
Xc2 yields minimum Absolute Rotation Error (eaR). For this dataset, the method by Park and Martin [32],
failed to find a solution as it suffered from singularity. It is important to note for an ensued comparison
that the proposed method RZ yields the second best results over most of the error metrics with minor
differences from the least errors. This is important in a sense that all the errors are equally distributed
and restricted close to their minimum values.

The backend experiments for the results in Table 5 use the same methods, metrics and dataset,
as for Table 4. In agreement with the results of real data, Shah [8] yields the least erR for this dataset
as well. In addition to a validation on the performance of Shah [8], this indicates that a realistic amount
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of orientation noise is present in the system for the method to emanate similar response. The proposed
method RZ yields the minimum ert, errmse and, eat and the second best result for eaR. Tabb Zc1 [19]
obtains the minimum eaR.

Table 5. Comparison of methods using the described error metrics for dataset 6 with robot pose and
visual noise.

Method Evaluation
Form

Relative
Rotation (erR)

Relative
Translation (ert)

Reprojection
Error errmse

Absolute Rotation
Error (eaR)

Absolute Translation
Error (eat)

Tsai [3] AXXB 34.925 2476.4 99190 28.04 747.48
Horaud and Dornaika [11] AXXB 1.723 199.92 18.764 0.43124 47.913

Park and Martin [32] AXXB 1.7208 199.98 18.916 0.43819 47.733
Li et al. [9] AXZB 1.177 80.061 7.8757 0.0029485 23.272

Shah [8] AXZB 1.1767 58.552 8.5123 0.51765 8.3389
Xc1 AXXB 1.7752 192.86 17.442 0.12827 37.068
Xc2 AXXB 1.8026 193.22 19.031 0.20831 40.4

Tabb Zc1 [19] AXXB 1.7989 206.01 13.445 0.0042828 11.368
Tabb Zc2 [19] AXZB 1.2571 86.844 13.891 0.050182 27.247

RX AXXB 1.8087 204.06 12.534 0.027714 7.0139
Tabb rp1 [19] AXZB 1.2093 44.982 1.5463 0.0075401 0.95904

RZ AXZB 1.2079 44.932 1.546 0.0069577 0.95845

This comparison demonstrates that the proposed RZ is more robust to outliers present in the data
and performs marginally better compared to Tabb’s rp1 [19] in the presence of noise.

Figure 7 shows the evaluation results for dataset 5 composed of simulated data. As before,
the dataset is injected pseudo-realistic robotic arm pose noise and tested over varying realistic range
of visual noise. The plots represent the averaged results over 1000 iterations in order to achieve a
stable response. The 95% confidence interval from all the iterations for each experimentation point
is also shown in Figure 7. It can be observed that the confidence intervals are quite narrow with the
exception of the response of Tsai [3] over reprojection error metric. The narrow range of confidence
interval indicates that we are 95% sure that our true mean lies somewhere within that narrow interval.
Moreover, this implies that the noise introduced during different iterations is consistent in behavior
and emulates a coherent response from the methods. The plot curves for each method pass through
the mean values at each experimentation point. The results show that Tabb rp1 [19] and the proposed
RZ are quite robust to the increments in visual noise compared to other methods over all error metrics.
Moreover, at high visual noise RZ shows a slight improvement over Tabb rp1 [19]. It is noteworthy
that despite the increase in relative rotation, translation and reprojection error, the absolute rotation
and translation errors stay much more the same for Tabb rp1 [19] and RZ. Tsai [3] performs poorly and
erratically in the presence of noise in data. In the absence of visual noise Tabb’s Zc1 [19], Xc1, RX and
Shah [8] can achieve lower errors compared to Tabb rp1 [19] and RZ for multiple metrics. However,
real data always contains some magnitude of visual noise due to various reasons. The presence
of visual noise may affect each method differently depending on the approach used. Nonetheless,
the nonlinear reprojection based methods of the formulation AX = ZB show good estimation results
under visual noise and hand pose noise.

6. Conclusions

This study has examined the robot-world-hand–eye calibration problem in its two alternative
geometrical interpretations, and has proposed a collection of novel methods. It benefits from non-linear
optimizers that iteratively minimize the cost function and determine the transformations. We have
conducted a comparative study to quantify the performances of optimizing over pose errors and
reprojection errors. The code for the presented methods is provided as open-source for further use.
Our collection of methods was evaluated with respect to state-of-the-art methods. The study also
contributes new datasets for testing and validation purposes. These include subsets of three real data
and three simulated data with synthetic images. Simulated data are beneficial as they provide ground
truth. We have proposed a noise modeling approach to generate realistic robot TCP orientation noise
to study the robustness of methods under realistic conditions. We showed that our methods perform
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well under different testing conditions. RX yields good results with high accuracy under realistic visual
noise with respect to reprojection error. In addition, RZ is more robust to visual noise and yields more
consistent results for a greater range of visual noise.
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