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Abstract: Many sensor nodes have been widely deployed in the physical world to gather various
environmental information, such as water quality, earthquake, and huge dam safety. Due to the
limitation in the batter power, memory, and computational capacity, missing data can occur at arbitrary
sensor nodes and time slots. In extreme situations, some sensors may lose readings at consecutive
time slots. The successive missing data takes the side effects on the accuracy of real-time monitoring
as well as the performance on the data analysis in the wireless sensor networks. Unfortunately,
existing solutions to the missing data filling cannot well uncover the complex non-linear spatial
and temporal relations. To address these problems, a DNN (Deep Neural Network) multi-view
learning method (DNN-MVL) is proposed to fill the successive missing readings. DNN-MVL mainly
considers five views: global spatial view, global temporal view, local spatial view, local temporal
view, and semantic view. These five views are modeled with inverse distance of weight interpolation,
bidirectional simple exponential smoothing, user-based collaborative filtering, mass diffusion-based
collaborative filtering with the bipartite graph, and structural embedding, respectively. The results of
the five views are aggregated to a final value in a multi-view learning algorithm with DNN model to
obtain the final filling readings. Experiments on large-scale real dam deformation data demonstrate
that DNN-MVL has a mean absolute error about 6.5%, and mean relative error 21.4%, and mean
square error 8.17% for dam deformation data, outperforming all of the baseline methods.

Keywords: missing data completion; multi-view learning; information fusion; DNN; dam safety
monitoring; sensor networks

1. Introduction

Many wireless sensor networks (WSNs) have been widely deployed in the physical world to
sense and collect various environmental information or events, such as water quality [1], air quality [2],
forest fire [3], and dam safety [4]. These sensors generate massive geo-tagged time series data, helping
humans to make further analysis and decision [5]. However, affected by hardware and severe wireless
conditions, such as strong fade in WSNs, raw sensory data can have loss and corruption. Due to the
limitation in the battery power, memory, and computational capacity, the readings generated from
sensors are unreliable or inaccurate [6-9]. In addition, some sensors may malfunction and result
in faulty and missing data in the unattended situations. Massive missing readings in the WSN5s
will not only affect real-time monitoring especially for emergency conditions, but also compromise
the performance of further data analysis and decision. It is extremely important to obtain the full
and accurate monitoring data from raw readings before making any further analysis and decision.
Considering the internal and external factors, events occurred in the physical world cannot be accurately
detected using inaccurate and incomplete sensory data [10]. Therefore, it is necessary to complete the
missing reading from a large-scale wireless sensor network with geo-sensory time series data.
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Several solutions have been proposed to handle block missing data, such as K-nearest
neighbors-based local interpolation [11], Kriging interpolation [12], and multi-channel singular
spectrum analysis (MSSA) based on PCA (Principal Component Analysis) [13]. Unfortunately, those
methods cannot well establish the spatial-temporal correlations, which results in the fair-quality
interpolation. Moreover, matrix completion (MC) methods have been applied to fill the missing
reading from partially observed geo-sensory data [14,15]. Different the interpolation methods, matrix
completion often seeks to find the lowest rank matrix or well matches the known entries of a matrix
with missing data. Matrix completion techniques can be utilized for filling the random missing
readings. However, when there exist block missing readings along the column or the row due to
sensor failures, it is very difficult to find stable inputs for the matrix completion model. Some global
initialization methods have been proposed to avoid the unstable inputs for the matrix completion.
For example, non-negative matrix factorization based on the multi-view [16,17], the user-based
collaborative filtering [18], and matrix factorization and a salient version called empirical orthogonal
functions model [19-22] can be applied to fill missing values. Although those methods consider the
spatial-temporal views, they just adopt the linear fusion model with multiple views results, which
cannot generate more accurate estimate for filling missing data.

Missing data can occur at arbitrary sensor nodes and time slots. In extreme situations, some
sensors may lose readings at consecutive time slots. In this paper, the dam deformation observation
dataset is from the real Dam Safety Monitoring Systems, recording the observation values from
2017/01/01 to 2017/12/31. There are five sensor nodes for monitoring the dam deformation P02023,
P04615, P04616, P04617, and P06656, represented as S1, Sz, S3, S4, and S5, respectively shown in
Figure 1. From Figure 1a,b, three sensors P04616, P04615, P04617 are closely deployed in the spatial
space, while the spatial distribution between two sensors P02023, and P06656 is far away. As illustrated
in Figure 1c, four sensor nodes lost their readings in the time slot ¢;. Meanwhile, sensor node S, cannot
record the observed readings from the time slot t; and #;, which is called as block missing.
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Figure 1. Illustration of sensor locations of dam deformation data. (a) Densely-deployed sensors;
(b) loosely-deployed sensors; (¢) missing readings situation.

On the other hand, affected by multiple complex factors, sensor readings vary with the locations
and time significantly and non-linearly. The observed data of sensors with a shorter distance may not
always be more similar than those with a farther distance. For example, Figure 2 shows the observed
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data of five sensors from 1 January 2017 to 31 December 2017. From Figure 2a,b, the distance between
two sensors P02023 and P06656 is much farther than the distance between two sensors P04615 and
P04617. However, the readings of P02023 and P06656 are more similar than those of P04615 and P04617.
The reason is that two sensors P02023 and P06656 are in two different regions with similar mechanical
structure. This case violates the First Law of Geography: “near things are more related than distant
things.” Furthermore, sensor readings sometimes exhibit a sudden change, as illustrated in Figure 2.
The readings of sensor P02023 from 10 August 2017 to 14 August 2017. Such a sudden change may
have a side effect on the real-time monitoring and data analysis. Existing interpolation-based and
smoothing methods cannot obtain good results.
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Figure 2. Illustrations of sensor readings of dam deformation data. (a) Densely-deployed sensors;
(b) loosely-deployed sensors.

Filling block missing reading from a large-scale sensor network with geo-sensory time series
data is a challenging task. To solve the above problem, a unified multi-view-learning model in a deep
learning model (DNN-MVL) is proposed to fill the block missing values that jointly consider the spatial
relations between different time series from the different sensor nodes, and the temporal relations
between readings at different time slots in the same series from one node, and semantic correlations
through graph embedding. We conducted extensive experiments on real dam deformation monitoring
dataset and Beijing air quality dataset. The results demonstrate that the proposed method DNN-MVL
can achieve high filling accuracy in the presence of block missing data.

The rest of this paper is organized as follows. We introduce the related work in Section 2.
The preliminary and problem statement are presented in Section 3. The main framework of the
proposed DNN-MVL is introduced in Section 4. In Section 5, we present our proposed DNN-MVL
approach for filling the block missing data. Finally, we evaluate the performance of the proposed
DNN-MVL with Beijing air quality data and large-scale real dam deformation data in Section 6, and
conclude the work in Section 7.

2. Background and Related Work

Data missing is unavoidable problem during the data transmission and collection in the wireless
sensor networks. To solve the data missing problem, existing solutions can be classified into two types:
(1) the missing data is deleted from the time series. (2) The missing data is filled with an estimation
with the interpolation model based on the historical data. It is a simple way to delete the missing
readings from the time series. However, it may result in the poor data quality when deleting successive
data missing. The missing reading filling is a better approach with interpolation or matrix completion.

A lot of work has been focused on the interpolation for the missing data. K-nearest-neighbor
(KNN) [23] is a simple local interpolation method that utilizes the values of the nearest K neighbors
to estimate its missing value. KNN is only applied for data interpolation with very few missing
values. Unfortunately, it performs poorly for the blocking missing. Meanwhile, the sensory data from
WSNSs are usually the time series. The temporal correlation model can be used to fill the missing data.
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Auto-regressive integrated moving average model (ARIMA) is a well-known time series prediction
method, which combines moving average and autoregressive components [24]. ARIMA is suitable to
predict a missing value just solely considering a sensor’s readings [25]. In addition, sensor nodes are
deployed in the different locations. Different geo-tagged time series data exhibit the spatial correlation.
Inverse distance weighting (IDW), linear regression, and Kriging [26,27] are widely used spatial models.
For example, IDW is applied to estimate the rainfall distribution [28], and Kriging is used to fill the
missing temperature [29]. Those models can be used to interpolate a missing value with available
readings in the spatial correlation. While those studies still fail to capture the complex non-linear
spatial-temporal correlations.

Besides the above methods, matrix completion (MC) methods have emerged and been applied
to fill the missing reading from partially observed geo-sensory data [30,31]. Different from the
interpolation methods, matrix completion often seeks to find the lowest rank matrix or, if the rank
of the completed matrix is known, which well matches the known entries of a matrix with missing
data. Matrix completion techniques can be utilized for filling the random missing readings due to the
unreliable wireless transmissions, if exploiting the spatial-temporal correlations. However, when there
exist block missing readings along the column or the row due to fading or sensor failures, it is very
difficult to find stable inputs for the matrix completion model.

Recently, there are many data-driven methods from multiple views for filling missing values were
proposed. To model the spatial-temporal correlation, a data estimation for mobile sensors method was
presented to fill the missing data through establishing the time-dependent spatial-temporal correlation
in the mobile wireless sensor networks [32,33]. When there is not enough spatial and temporal
information, a spatial and temporal K-nearest neighbors (ST-KNN) imputation method adopted the
weighted average to fill the missing values [34]. In the recommendation system, user-based and
item-based collaborative filtering methods were introduced to fill missing values considering the
users similarity and temporal similarity [35]. However, when meeting the sparse matrix problem,
it is difficult to generate the accurate the filling values due to the inaccurate results of similarity.
Considering spatial, temporal, global and local views, combining the statistic models and data-driven
models in a spatial-temporal multi-view learning (ST-MVL) framework was established to generate a
more accurate estimate [20]. These studies on the multiple view learning methods are mainly based on
the linear fusion from different views to estimate the missing values. They fail to model the complex
non-linear relations of the space and time.

In summary, the difference of our proposed method DNN-MVL compared with other work is that
we consider the spatial correlation, temporal sequence correlation and functional correlation in a joint
deep learning model.

3. Problem Statement

In this section, we first fix some notations and present the problem formulation. In the WSNs, the
data collected from the monitoring of the dynamic environment can generally be represented by a
matrix, defined as Mgy7. The matrix Mgyt records data from S sensors over T time slots, in which
S =1{s1,...,5i,...,5,) represents the n sensors’ readings and T = {tl, Y SRR ,tm} represents the m
consecutive time slots. As shown in Figure 3, in the matrix Mgx7, a row stands for a sensor and a
column denotes a time slot. An entry m; ; represents the readings of the sensor s; at the time slot ¢;.
Due to hardware failure or severe transmission condition in the WSNs, the measured and collected
data are often unreliable. As a result, both the matrix rows and columns in the sensory matrix Mgyt
may have some successive missing data, as shown in Figure 3. In this paper, we call it a block missing
problem. The filling missing data problem aims to fill the readings at time interval given the data until
the time interval.
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Figure 3. Data matrix of sensor readings.

Since the observed data in WSNs normally have strong correlation between neighboring locations
and timestamp, we can incorporate temporal views, spatial views, and functional (semantic) views to
fill the missing readings of sensors. Therefore, in order to fill the block missing readings, we propose
DNN-MVL method to collectively consider the global-local, spatial-temporal, and semantic views
simultaneously to fill the missing readings. The results of the five views are aggregated to a final value
in a multi-view learning algorithm with DNN model.

4. Main Idea

To capture the complex and non-linear spatial-temporal correlations when filling the block missing
values, DNN-based multiple view learning framework was proposed. The temporal view establishes
the sequential relations model in the time series and estimates the missing values of a sensor based
on the readings at the neighbor time slots of the same sensor node. The readings of sensors are
often smooth in a small spatial area. The recorded data at nearby locations have similar values at a
given time. The spatial view can estimate a missing value based on the spatial similarity between a
sensor’s current readings and those of sensors’ spatial neighbors. Furthermore, different time length of
the observed data for filling missing readings can be considered as global view and local view. For
example, if an entry m; ; is lost, we can use the adjacent readings of sensor s; from ¢;_; to t; to fill the
missing readings, which is called as a temporal local view. Likewise, we also estimate the reading of
m; j based on the its spatial neighbors s;_1 and s; 1, which is a spatial local view. Obviously, local view
can capture the instantaneous changes. We can consider the readings over a long time period from t;
to t; to recover the missing value, which is regarded as a global view. Global views can represent
the long-term patterns. In general, the sensors with similar functionality may have similar patterns,
e.g., at both ends of the arch dam may have similar structural mechanics. Similar regions may not
necessarily be close in space. Therefore, the structural embedding method is applied to construct a
graph of sensors’ locations representing functional similarity among the sensors in the different regions.
In this paper, semantic similarity is equal to functional similarity.

Our proposed DNN-MVL framework includes five views, as shown in Figure 4. Global spatial
view with inverse distance weighting interpolation can compute an estimated value of a missing
reading based on the values of the sensors’ spatial neighbors. Global temporal view with bidirectional
simple exponential smoothing is used for analysis of time series data. Exponential smoothing is a
prediction model derived from amount of historical data using the exponential window function to
assign exponentially decreasing weights over time. From the local spatial view, if a sensor node is
regarded as a user, user-based collaborative filtering can predict the missing reading based on the local
similarity between a sensor’s readings and those of its neighbors. Local temporal view with mass
diffusion-based collaborative filtering method can estimate the missing readings based on the local
similarity between recent readings at the different time slots of the same sensor. Semantic view is
constructed with a graph of sensors’ locations representing the functional similarity among different
locations. With the dynamic time wrapping method, the functional similarity is measured by the
similarity between the time sequences originated from two sensor nodes. To leverage the results of
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different views for the missing readings, a deep neural network model is adopted to generate the final
results of five different views’ estimations with minimal errors.

the sensory data matrix as input
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Figure 4. Framework of proposed DNN-multi-view learning method (MVL) method.

5. DNN-Based Multiple View Learning Framework

In this section, we provide details of the proposed DNN-based multiple view learning framework
(DNN-MVL) for filling the block missing values. Our proposed DNN-MVL framework includes
five views: global temporal view with IDW, local temporal view with simple exponential smoothing
(SES), local spatial view with user-based collaborative filtering (UCF), local temporal view with mass
diffusion (MD)-CEF, and semantic view with structural embedding. The results of the five views are
aggregated to obtain the final filling readings with DNN model.

5.1. Global Spatial View: IDW

To capture the long-term patterns in spatial relations, the inverse distance weighting interpolation
(IDW)—a statistical model, is applied to interpolate a missing value based on its spatial neighbor
sensors. IDW is a deterministic method for multivariate interpolation with a known scattered set of
points. The closer the sensor with the available readings is to the target node, the greater the weight
assigned to it. The assigned values to the missing values are calculated with a weighted average of the
available readings of geospatially adjacent sensors. IDW estimates the prediction value g5 can be
calculated as follows: .

Z mi g, X di_a
Mes = l_ln—/ 1)
Y di~
i=1

where m; , is the value of sensor s; at the time slot ¢;, and 7 is the number of sensors participating
in filling missing data. d; is the spatial distance between a candidate sensor and the target sensor.
a is a positive parameter that affects the decay rate of a sensor’s weight by the geospatial distance.
The value of a varies from 0 to 1. The closer sensor’s readings can perform better filling results for
a missing reading. d;,”“ assigns a bigger weight to closer sensor’s readings. Otherwise, the farther
sensor’s readings are assigned with a smaller weight. m,s is filling results with global spatial view.

To further illustrate the spatial correlation in the different sensors’ readings, the similarity ratio
sim; ; between arbitrary two sensors’ readings at the same time slot can be calculated as follows:

Mmigq — mj,ﬂ

simj; =1— -
bl dlSi’l’,]‘

, @
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where m;, and m;, are the readings of sensor s; and sj at the time slot , respectively, dist; ; is the
geospatial distance between two sensors s; and sj.

Figure 5a,b show the similarity ratio between two sensors P04616, P04617 and other deformation
sensors in the dam safety monitoring dataset, respectively. The similarity ratio decreases as the distance
between two sensors increases in most cases, which actually follows the First Law of Geography. i.e.,
“everything is related to everything else, but near things are more related than distant things,” which is
an empirical spatial correlation in geo-sensory data. Two other sensors, P04615 and P04617, are near
target sensor P04616, with geospatial distance 54 m and 64 m respectively. If it set the decay rate « =1,
the assigned weights to two sensors are 1/54 and 1/64. We can calculate an estimation mgs = 54.2 with
the weighted average values by Equation (1). We can estimate the missing values with Equation (1).
To further illustrate the spatial correlation in the different sensors’ readings, Equation (2) is adopted to
measure the similarity of two sensors in the global spatial correlation. Two equations can compute the
spatial similarity from the different aspects. That motivates us to apply IDW interpolation to model
the global spatial view. However, not all the sensor nodes are farther away from the target sensor, their
similarities are smaller. For example, Figure 2b illustrates that the sensor P02023 is far away from
sensor P06656. They have similar data pattern. In this paper, other views should be considered to
obtain more accurate estimation.
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Figure 5. Spatial similarity in different sensors’ readings. (a) Sensor P04616; (b) sensor P04617.
5.2. Global Temporal View: SES

To consider the global temporal view, SES is utilized to estimate the missing value based on the
historical data of same sensor at other time slots. SES is a prediction model in the time series domain
using the exponential window function. SES computes the prediction value g as follows:

Mgt = Zﬁ(l L Py (3)
=1

where £; is the time slot of the missing reading, {; is a time interval between a candidate reading m;,s_ 11
of sensor s, and a target reading my,;; 8 is a smoothing parameter with a range of (0, 1). In general, if the
time interval is smaller to the target one, f(1 — ,B)j ! will be set to a bigger weight. A smaller § means
a slower decay of weight over the time interval. However, the traditional SES only uses historical
readings of the target time slot as input to model average exponential moving. In our method, it
considers both the historical readings and successive readings of a target time slot as inputs to compute
the average weighted smoothing.

Given a target time slot ¢, the observed reading of sensor s; is m;;. SES assigns a weight
Bx(1- ﬁ)ltx_tl to each reading of the same sensor s; at the candidate time slot ¢y, where [ty — t| is the
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time interval between the candidate time slot and target slot. Thus, the prediction value mg; using SES
can be calculated as follows: .
L px(1=p)" " xmy,,

x=1
T px(1-p)t
The SES model is inspired by the observation from time series data. Figure 6 shows the similarity
ratio between arbitrary two readings at two different time slots of the same sensor in the dam
deformation dataset. Each point in Figure 6 denotes the similarity ratio between the arbitrary reading

and the target reading at the given time interval in the sensor P04616. As shown in Figure 6, the curve
of similarity ratio decreases as the time interval increases. It is an empirical temporal correlation in

)

time series. The readings of recent time slots are more relevant than those of distant time slots.
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Figure 6. Temporal similarity in a sensor’s readings.

We use the example of dam deformation data to clearly demonstrate the performance of SES
model. Suppose there is a missing reading at time slot ¢y, and the observed readings at the four adjacent
time slots (fy—2, tx—1, tx+1, Ex+2) are (85,75, 75, 85) respectively. If the smoothing parameter § is set to 0.5,
the weights for four time slots are (0.25, 0.5, 0.5, 0.25). The prediction value mg; is 78.3 by Equation (4).

5.3. Local Spatial View: UCF

The fluctuation of dam deformation data is often smooth in a small region at a given time interval.
The observed readings at nearby locations are similar. The local spatial correlation between a sensor
node S, and its neighbors in a time slot ¢, can be measured as follows:

LSgap(sC, fx) = M| —N(C)M(x)/z N(c)/ (5)

where N, is the c-th row of topology matrix N, M) is the x-th column of sensory matrix M. The
topology matrix N is defined as follows:

- | 1 ifiand jarel — hop neighbors
N=(N (irf))nxn - { 0 otherwise ' ©)

With the locations of all deployed sensor nodes, it can be easily to obtain the topology matrix. In
Equation (5), N(o)M (*) is the total observed value of the neighbors of sensor s¢, and N (c) is the number
of s.’s one-hop neighbors. N (C)M(") /¥ N(;) means the average data value of one-hop neighbors of
sensor s. at the time slot ty. Equation (5) can compute the difference between the reading of sensor
sc and the average readings of its one-hop neighbors at a given time slot. Each element N(; ;; in the
matrix N represents whether the sensors s; and s; are one-hop neighbors. It is obvious that topology
matrix N has binary values to represent the relationship between two sensor nodes.

To further capture the spatial correlation between sensor nodes, UCF is motivated to model the
spatial local correlation. The main idea of UCF is that similar users usually make similar scores for
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similar items. In the dam deformation monitoring, each sensor is regarded as one user, and one
deformation reading of one sensor at a time slot is regarded as one item. The window size w is
adopted to normalize the different scale of different sensor nodes. The local readings matrix for sensor
node s, and s, from the time slot f — (w —1)/2 to t + (w + 1) /2 are [my, ¢ ((-1) /2, - - My p4-(w+1) /2] @and
[mv,t_(w_l) 27+ My i (w41) /2], respectively. The similarity measurement between two sensors s, and
sy can be computed based on the cosine vector as follows:

Y (myi— M) (my;i — M)

. i€l
sim(sy, sy) = Cw , (7)

) —2
r (mu,i - M(u)) X 5‘ (mv,i - M(v))

i€l

where m,, ; and m, ; are the observed readings of sensor s, and s, at the time slot ¢, My and M(v) are
the average values of two sensors respectively; I, and I, are two time vectors of two sensors that there
is no missing readings; I,;» is the time vector that two sensors s, and s, both have readings, that is
Ly =1,NI.

The sensors’ similarities are calculated and sorted in descending order by Equation (7). The
most similar k target sensors are selected to construct the set of the nearest neighbors V, where
Sim (Su, Sv,.,) > SIM(Su, Svg, .0
spatial view with the weighted average similarity as a weight as follows:

)and V = {ovy,...,v;}). Then, we can calculate an estimation n;; from local

k

Y, My X sim(sy, Sy)
u=1

®)

mjs = X

Y. sim(sy,sp)
u=1
IDW does not hold the sudden change in global spatial correlation, e.g., the case shown in
Figure 2b, while UCF can have good performance on the local spatial correlation by capturing the
time-dependent spatial correlation in a small area between sensors’ readings.

5.4. Local Temporal View: MD-CF

In general, dam deformation data usually change slowly over time. To study the short-term and
local temporal correlation for one sensor, we calculate the gap between each pair of adjacent readings
for the same sensor in two consecutive time stamps ¢; and ¢;_; as follows:

Toap(i, ) :|mi,j—1 —mj; )

where m; ; represents the observed data of sensor s; at the time slot ¢;. If the observed reading is not
changed from the time slot ¢, ; to t;, it has Tgap(i, j) = 0. The smaller Tgqp (i, j), the more stable the
observed readings for sensor s; at the time slot ¢;.

However, sensor readings sometimes exhibit a sudden change, as illustrated in Figure 2. The
readings of sensor P02023 from 10 August 2017 to 14 August 2017. In addition, the block missing of
data results in the data sparsity. It is hard to calculate the data similarity from the adjacent readings for
the same sensor. To fill the missing readings from the local temporal view of the same sensor, MD is
introduced to item-based collaborative filtering for estimating the missing readings, where a time slot
denotes an item. MD refers to the movement of matter from place to place, resulting in a net change in
the mass’s location [36]. MD is an extremely common phenomenon in everyday life.

With bipartite graph, mass diffusion method can be applied to fill the missing data. In the MD-CF
method, bipartite graph represents the relationship between users and items. In the bipartite graph,
sensor node denotes the user and a time slot denotes an item, as shown in Figure 7. The set of sensor
nodes is denoted as S = {sq,...,s;,...s,} and the set of time slotsis T = {tl, I SR ty}. If the reading



Sensors 2019, 19, 2895 10 of 19

of sensor node s;, at the time slot ¢ j is not missing, there has an edge between the node s, and ¢ j- That is
au; = 1. Otherwise, a,;; = 0. Thus, the bipartite graph can represent whether the sensor nodes have
the missing readings at the different time slots. Through the iteration of mass diffusion, it can seek
the degree of association between two nodes in the bipartite graph [37], and then it can calculate the
similarity of the readings at the different time slots. The specific steps are as follows:

81 S2 S Su

Sensors Users

I
' Items

Time slots .
;=1

A 1) L t t,

Figure 7. Thebipartite graph of sensors and time slots in mass diffusion (MD)-collaborative filtering (CF).

(1) Initialization phase. Assume that m, ;, denotes the reading of node s, at the time slot ¢;, and
M, is the average value of readings from the node s,. The initial energy ¢ at the time slot ¢; can be

calculated as follows: .

1+ ZT:1|mu,ti - M(u)|><tluti

()] (10)

(2) Energy diffusion from time nodes to sensor nodes. The energy of sensor node s, are equally
diffused to other sensor nodes which have readings at the time slot ;. The energy of sensor node s, at
the time slot t; is denoted as e;,;,, which can be calculated as follows:

Ctu = au,t,-/k(ti) (11)

where k(t;) is the degree of time node #; in the bipartite graph, and k(t;) refers to the number of sensor
nodes which have the readings at the time slot ¢;. If the sensor node s, has readings at the time slot £;, it
has a,;, = 1. Otherwise, a,;, = 0.

(3) Energy diffusion from sensor nodes to time nodes. The energy of sensor node s, are equally
diffused to time nodes where sensor nodes have readings at the time slot ; based on the degree of
sensor node s, in which ¢; > t;. The final energy of time node ¢; is the sum of diffused energy from
all sensor nodes connected with the time node ¢;. After twice energy diffusions, the similarity of two
different time slots ¢; and ¢; for the same node s, can be computed with the proportion of the obtained
energy from the time slot #; to ¢;. The similarity of two different time slots sim(t;, t;) can be computed

as follows: " t)—Zautjxei'u e Autj X Ayt 12
sum(tj, ti) = k(u) _k(ti)ues k(u) ’ (12

ues

where k(u) is the degree of sensor node s, in the bipartite graph, the value of e;,;, can be calculated
with Equation (11).

(4) If the missing reading at the time slot #;, the k adjacent time slots of t; are selected. Then,
the similarities of all pairs of two different time slots in are calculated by Equation (12) and sorted
in descending order, denoted as T = {tl,...,t]-,...tk}, t; ¢ T. That is sim(t;, t1) > ...sim(t;, t]-) > ... >
sim(t;, ty).

(5) Adopting the CF algorithm, the weights are assigned based on the similarities. It can obtain
the filling result from the local temporal view, as follows:

my = Z sim(ti, £) X my;/

teT

Z sim(t;, t)

teT

: (13)
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MD-CF method is applied to establish the time-dependent local temporal correlation learned
from recent data as well as avoid the low accuracy due to the block missing.

5.5. Semantic View: Structural Embedding

Intuitively, sensor nodes sharing similar functionality may have similar data distribution. However,
sensors with similar functionality may not necessarily be close in space. For example, although the
spatial distance between two sensors P02023 and P06656 is not close, shown in Figures 1 and 2, they
have a similar data distribution. This is because their mechanical models exhibit symmetric structure.
We establish a graph of sensors representing functional (semantic) similarity among sensors [38]. The
semantic graph is defined as G = (V, E, D), where the set of nodes are sensors V = S, E is the edge
set E € V®V, and D is the set of functional similarity on all of the edges. Dynamic time warping
(DTW) method [39] is applied to measure the functional similarity ¢; ; between sensor s; and sensor s;
as follows:

@ij = exp(=y X DTW(s;,s))), (14)

where y is the decay parameter and DTW(s;, s;) is the dynamic time warping distance between the
data distribution of two sensors s; and sensor s;. In the dam safety monitoring systems, we use the
average seasonal deformation time series as the dam deformation patterns. The average values can be
computed based on the training data in the experiment.

To fill the missing readings from the sematic view, the graph embedding method -LINE [40] is
applying to extract the feature vector M; of the data pattern for sensor s;. In order to train the feature
vector M, the feature vector is input to a fully connected layer. Thus, we can get the filling results m,,
with training model, which is defined as:

mse == f(er'M, + bfe) (15)
where two parameters Wy, and by, are both learning parameters.

5.6. Multi-View Learning with DNN

Each view has its own feature. It does not work well if purely using global, local, or semantic
views. It may obtain the better filling results if adopting multiple views fusion. The proposed
DNN-MVL method integrates the estimations of the above five views to generate the final result
through a multi-view learning algorithm. The linear fusion is one of the simplest solutions, however, it
cannot deal with the non-linear relation among the different estimations from five views. DNN-MVL
applies the DNN-based multi-view learning to fuse different predictions.

Algorithm 1 presents the procedure of DNN-MVL. When a sensor network faces a block missing
problem, local spatial and temporal views cannot separately work very well. First, global spatial and
temporal views (IDW and SES) are applied to generate the initial values for those missing readings,
respectively. Then, five different views are used to compute the estimations for each missing entry
by using IDW, SES, UCF, MD-CEF, and SE, respectively. Third, it aggregates the five estimations with
DNN-based multi-view learning framework to calculate the final filling value. During the procedure
of deep fusion, six-layer fully connected network is used as hiding layer, and the number of cell nodes
in hiding layer is 32, 64, 256, 18, 64, and 32, respectively. The activation function in the hidden layer
adopts ReLU function to reduce the gradient disappearance [41]. The batch normalization is adopted
to accelerate the training and convergence before the ReLU function of each layer is activated [42].
Moreover, five-fold cross-validation is used to solve the problems of over-fitting and sparse training
data. Five-fold cross validation can obtain the more reliable and stable model via avoiding the noise.
In the output layer, a linear activation function is applied to compute the final filling result. In the
DNN-MVL, the model is optimized for each sensor respectively by minimizing the least square error
between estimations and the ground truth.
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Algorithm 1: DNN_ multi-view learning method (MVL).

Input: Original Data Matrix Msxr, w, &, B, t; Structure Graph G = (V, E, D);
Output: Final filling data matrix

1. O « Get-All-Missing-Values (Mgxr);

2. If there are successive missing readings (MgxT)

3. MgxT < Initialization (MgxT, @, B);

4. For each target sensor s, at the time slot t in O

5. mys «— UCF(Mgxr, t, w)

6. my «— MD — CF(Mgxr, t, )

7. tigs < IDW(Mgyr, t, at)

8. Mgt SES(Mgxr, 1, B)

9. mse — f(WMM' + bg,)

10. mnt < DNN — MVL(mys, my, mgs, Mg, Mse )
11. Add mm into Mgy

12. Return Mgy

6. Performance Evaluations

6.1. Datasets and Ground Truth

In this paper, the real dataset is used to evaluate the proposed DNN-MVL model. The dam safety
monitor data from the highest arch dam in the world is from 2012/01/01 to 2017/08/14, which has
6159 timestamps respectively. In the experiments, 964 sensor nodes are selected from the dam safety
monitor systems. Each of node generates a reading every four hours, as depicted in Figure 1. From
the dataset, we fill the missing values whose statistics are shown in Table 1. There are two missing
situations: block missing and general missing. The block missing is comprised of spatial block missing
and temporal missing. The two-block missing may have some overlap. The spatial block missing is
referred to as the reading values of all sensors simultaneously absent. The temporal block missing
is the values of the same sensor with data absent in a certain temporal window size. As shown in
Table 1, there are 4.6% of missing values in dam-deformation property when w = 11. General missing
is the missing values except for the block missing. For example, about 15.2% of sensor readings in the
Dam-Deformation dataset, including 8.4% general missing and 2.7% spatial block missing.

Table 1. Statistics on missing values in experimental datasets.

Missing Dam-Deformation
- Spatial 2.7%
Block M
ock vissing Temporal (w = 11) 4.6%
General Missing 8.4%
Overall 15.2%

6.2. Data Preprocessing

In the experiment, the one-year data is partitioned into two parts. The data in March, June,
September, and December are drop out as a testing set, and the rest are used for training. To train the
proposed DNN-MVL framework, the local matrix from the training dataset is selected as the non-block
missing data. Then, the well-trained model is applied to fill the block missing data. The values of the
non-missing data in the testing set as the ground truth to evaluate the accuracy of our model. The
dataset partition is shown in the Table 2.
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Table 2. Test dataset and ground truth partition.

Dataset Dam Deformation
Start time 2012/01/01
End time 2017/08/14
Test set March, June, September, December
Training set others that are NOT in test set

6.3. Baselines

We compare our model with the following methods and tuned the parameter for all the methods.

Auto-regressive integrated moving average (ARIMA): ARIMA is a well-known model for
forecasting time series which combines moving average and autoregressive components for modeling
time series. ARIMA is fitted to predict a missing value based on the stationary time series. Seasonal
ARIMA (SARIMA) considers the seasonal factors in time series.

Kriging: Kriging is a method of interpolation for which the interpolated values are modeled
values are modeled by a Gaussian process governed by prior covariance. The method is widely used
to interpolate a missing value with available readings in the domain of spatial analysis.

Data estimation for mobile sensors (DEMS): Gruenwald et al. proposed a method to predict the
values based on the spatial-temporal correlations, considering the previous readings of a missing
sensor and its neighbor’s readings at current time linearly.

Spatial-temporal K-nearest neighbor (ST-KNN): ST-KNN uses the weighted average readings of
one sensor’s k nearest spatial and temporal neighbors to fill its missing values. For example, if k = 6,
the six nearest neighbors are selected based on the spatial and temporal model.

Collaborative filtering (CF): CF is a technique used by recommender systems. CF is a method of
making automatic predictions (filtering) about the interests of a user by collecting preferences from
many users (collaborating). In the experiment, every sensor is regarded as one user, and the readings
of each sensor is regarded as the user’s preferences. CF is applied to generate a prediction and fill the
missing reading based on the neighbor’s readings.

Spatial-temporal multi-view-learning (ST-MVL): Considering the temporal correlation between
readings at different timestamps in the same series and the spatial correlation between different time
series, a spatial-temporal multi-view-based learning method was proposed to collectively fill missing
reading in a collection of geo-sensory time series.

We use mean absolute error (MAE), mean relative error (MRE), and mean square error (MSE) to
evaluate our DNN-MVL framework, which are defined as follows:

Yo Imi— i Y m
MAE—%,MRE izt T il ,MSE = 52 (16)
i= 1

where m; and 771; mean the prediction value and the ground truth for the time interval t + 1, and where
£ is total number of samples.

6.4. Experimental Results Analysis

6.4.1. Comparison with the Baseline Methods

Table 3 shows the performance of the proposed DNN-MVL as compared to all other methods,
where DNN-MVL outperforms all other competing methods based on dam deformation dataset. From
the experimental results, it can find that DNN-MVL can achieve the lowest MAE (13.54), MRE (0.19),
and MSE (19.45) for filling the spatial block missing; and lowest MAE (9.75), MRE (0.156), and MSE
(18.38) for filling the temporal block missing, among all the methods. More specially, we can see that
ARIMA and SARIMA performed poorly, e.g., they had a MAE of 25.34 and 25.42 and an MSE of 29.11
and 30.24 when filling the spatial and temporal block missing values, respectively. The reason is that
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they just dependent on the historical spatial or temporal readings for prediction. DEMS, ST-KNN, and
CF methods further consider the temporal-spatial correlation simultaneously, and therefore they can
achieve better performance compared to ARIMA, Kriging, only relying on temporal or spatial relations,
respectively. However, DEMS, ST-KNN, and CF methods do not model the global and local features.
The proposed DNN-MVL achieved a lower MAE, MRE, and MSE compared to the best of the above
three methods. The reason is that DNN-MVL combines the different views to predict the missing
values through a non-linear multi-view learning way. Furthermore, DNN-MVL can obtain 6.5% (MAE),
21.4% (MRE), and 8.17% (MSE) relative improvement over the best performance among all baseline
methods—ST-MVL in filling the spatial block missing values; and 7.60% (MAE), 22.64% (MRE), 10.10%
(MSE) relative improvement for temporal block missing. Compared to ST-MVL, DNN-MVL adopts
a semantic view to capture the functionality similarity, which are utilized to model the functional
correlation among sensors. Therefore, DNN-MVL can significantly improve the effectiveness of filling
the block missing readings.

Table 3. Comparison among different methods (based on dam deformation data).

Spatial Block Missing Temporal Block Missing
Method

MAE MRE MSE MAE MRE MSE

ARIMA 25.34 0.35 29.11 \ \ \
SARIMA 21.06 0.32 27.79 25.42 0.56 30.24
Kriging \ \ \ 15.31 0.28 27.85
DEMS 16.89 0.284 25.14 12.95 0.277 23.79
ST-KNN 17.55 0.31 28.87 12.32 0.27 22.59
CF 16.78 0.285 24.98 12.76 0.274 21.56
ST-MVL 14.62 0.256 21.62 11.51 0.23 19.47

DNN-MVL 13.54 0.19 19.45 9.75 0.156 18.38

To further evaluate the filling performance of both methods (DNN-MVL and ST-MVL) on the
different datasets, the full dataset of dam deformation is divided into 11 training sets to compare
the prediction values and ground truths. Figure 8a—c illustrates the MAE, MSE, and MRE results
of DNN-MVL and ST-MVL in 11 different training sets. As shown in Figure 8a—c, DNN-MVL also
outperforms the ST-MVL under all training sets.

ST-MVL 5 N NsT-MVL
08

[EEDNN-MVL

MSE
MRE

Figure 8. Comparisons in evaluations of training set. (a) Mean absolute error (MAE); (b) mean square
error (MSE); (c) mean relative error (MRE).

6.4.2. Results of Combination Methods

To further study the effect of different view components on the filling the missing readings, we also
compare the performance of different views combination proposed in our method, as shown in Table 4.
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Table 4. Results of different combination methods (dam deformation data).

Method Spatial Block Missing Temporal Block Missing
MAE MSE MRE MAE MSE MRE
IDW \ \ \ 12.64 21.12 0.242
Global SES 16.31 23.68 0.32 \ \ \
IDW +SES 1631 23.68 0.32 12.64 21.12 0.242
UCF \ \ \ 12.73 21.34 0.245
Local MD-CF 15.98 22.14 0.294 \ \ \
UCF +
MD-CE 15.12 21.92 0.27 \ \ \
ST-MVL 14.62 21.62 0.256 11.51 19.47 0.21
DNN-MVL 13.54 19.45 0.19 9.75 18.38 0.156

Table 4 shows the results of different combinations from multiple views based on the dam
deformation data. Our proposed DNN-MVL method can bring a significant improvement beyond the
best single view SES and the best combination of two views (IDW + SES). Meanwhile, the combination
methods from two views can have better performance than those with a single view. For example, the
combinations of two views UCF and MD-CF can achieve higher accuracy than those with one single
view UCF and MD-CF, respectively. In addition, UCF and MD-CF methods have better missing results
than IDW and SES, respectively, which shows the effectiveness of the local dependency when filling
the missing readings. ST-MVL can outperforms the global view and local view significantly, due to
capturing the non-linear relations with the spatial-temporal view. Furthermore, DNN-MVL fuses the
results from five views, including long-term patterns, knowledge-driven contexts, spatial correlation
among different locations, and temporal correlation among different time slots. DNN-MVL can reduce
the MAE 7.38% compared with ST-MVL. Our proposed method can exhibit the best performance on
filling results.

We study the filling performance on the window size of missing data sequence for five different
views, as shown in Figure 9. Figure 9a—c shows the filling error of MAE, MSE, and MRE with respect
to the window size w, respectively. The window size is set to 9, 21, 45, and 90. A large window
size may lose time dependency, but a small window size may not capture the similarity between the
different timestamps. As shown in Figure 9, when the window size is set to 9, DNN-MVL can achieve
the smallest filling error. As the window size increases, the filling accuracy decreases, but mainly
remains stable. The reason is when considering longer temporal dependency, more parameters need
to be learned. As a result, the training becomes harder and the filling error is bigger. Moreover, if
considering single view, we cannot obtain the filling results. Due to considering the temporal, spatial
and functional dependency, DNN-MVL has the best performance on filling the block missing values.

MAE

e

i

s
e,

e

e

9 21 45 90 9 21 45 90
window size window size

(a) (b) (9
Figure 9. Performances of different views’ combinations. (a) MAE; (b) MSE; (c) MRE.

window size
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6.4.3. Results of Filling Readings

Figure 10 illustrates the results of filling the missing data in dam deformation data. Figure 10a,b
are the filling results for the missing window size w = 45 and w= 60, respectively. The monitoring
system generates the value six times in one day. The readings of sensor node P04617 from 12 August-28
August are missing, as shown in Figure 10a. Adopting the DNN-MVL method, the error of filling
MAE is 2.38 and MSE was 3.25 when the window size w was set to 45. Figure 10b plots the filling
results of another sensor node P04616 with the window size w = 60 from 22 March-11 April. The MAE
was 2.96 and MSE was 3.38. It can find that the bigger size of slide window w may not always get the
better filling results due to the missing readings of long sequence data.

: ‘ ' 70 1 1
—&— Sensor P04617- original | | 65 |-~ Sensor PO4616 ongimal |

~84) —4— Sensor P04617- filling —%— Sensor PO4616 - filing |
R : ~ 66
=8 g o4
g ¢ IO
® 82y g 62
g = e,
=] ' = 60
- R Y : -
o 1 &
a | g 38 T
R T < A g 56
. 795 7 s
: ; : 52
1313 12:08-17 120821 12-0825 50
- e o e 14-03-22 14-03-27 14-04-01 14-04-06
Date D
ate
(@ (b)
Figure 10. The illustration of filling results in different sensors’ readings. (a) Sensor P04617;

(b) sensor P04616.

6.4.4. Results of Different Parameters

Different values of multiple parameters are tested to find a better setting for the final filling results.
Figure 11a—c illustrates the filling results changing values of parameters from the different views,
respectively. In the experiments, when the parameter « for the global spatial view is tuned to 1, the
parameter § for the global temporal view is set to 0.95, the parameter w of the window size for the local
view was set to nine, respectively, the dam deformation has a minimum MRE. The optimal algorithm
Adam [43] is adopted with a neural network of six fully connected layers. The number of hidden units
are 64, 128, 256, 256, 64, and 32, respectively. The learning rate in a deep neural network is 0.001.

044— . 0.46 0.45 "

: . [—0—MREin the ]
0.42{[ —=—MRE inthe « | 0.44 7/\//
04 0.42 04
038 0.4 *\Y /
036 0.38
g g N E 0.35
0.36

034
032 0.34 \ \\
03 0.32 \ 0.3
0.28 0.3 I —+—MRE inthe 0
0.26 \9/‘ 0.25 1
1 2 3 4 5 04 05 06 07 08 08 1 5 10 15 20 25
power parameter o smoothing parameter window size parameter o
(a) (b) (0)

Figure 11. Impact of different parameters for DNN-MVL. (a) Power parameter a; (b) smoothing
parameter f; (c) window size w.

7. Conclusions

In this paper, a unified multi-view-learning model in a deep learning model (DNN-MVL) is
proposed to fill the block missing values that jointly consider five views: global spatial view, global
temporal view, local spatial view, local temporal view, and semantic view. These five views are
modeled with inverse distance of weight interpolation, bidirectional simple exponential smoothing,
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user-based collaborative filtering, mass diffusion-based collaborative filtering with the bipartite graph,
and structural embedding, respectively. The results of the five views are aggregated to a final value in
a multi-view learning algorithm with DNN model to obtain the final filling readings. Experiments
on large-scale real dam deformation data demonstrate that DNN-MVL has a mean absolute error
about 6.5%, and mean relative error 21.4%, and mean square error 8.17% for dam deformation data,
outperforming all of the baseline methods.
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