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Abstract: Accurate and dynamic monitoring of crop nitrogen status is the basis of scientific decisions
regarding fertilization. In this study, we compared and analyzed three types of spectral variables:
Sensitive spectral bands, the position of spectral features, and typical hyperspectral vegetation indices.
First, the Savitzky-Golay technique was used to smooth the original spectrum, following which
three types of spectral parameters describing crop spectral characteristics were extracted. Next, the
successive projections algorithm (SPA) was adopted to screen out the sensitive variable set from
each type of parameters. Finally, partial least squares (PLS) regression and random forest (RF)
algorithms were used to comprehensively compare and analyze the performance of different types of
spectral variables for estimating corn leaf nitrogen content (LNC). The results show that the integrated
variable set composed of the optimal ones screened by SPA from three types of variables had the best
performance for LNC estimation by the validation data set, with the values of R2, root means square
error (RMSE), and normalized root mean square error (NRMSE) of 0.77, 0.31, and 17.1%, and 0.55, 0.43,
and 23.9% from PLS and RF, respectively. It indicates that the PLS model with optimally multitype
spectral variables can provide better fits and be a more effective tool for evaluating corn LNC.

Keywords: hyperspectral; leaf nitrogen content (LNC); successive projections algorithm (SPA); partial
least squares (PLS) model; random forest (RF) model

1. Introduction

Hyperspectral data with high spectral resolution could reveal small changes in the biochemical
components of plant leaves, and its acquisition was rapid and non-destructive. In fact, rapid,
non-destructive monitoring of plant leaf biochemical components by hyperspectral means has
now became an important part of the evaluation of vegetative growth status. However, although
hyperspectral data with hundreds or even thousands of bands could provide more detailed and
richer spectral information than multispectral data, it suffered from significant data redundancy, high
correlation between adjacent bands, etc. [1]. Therefore, more research was required to determine how
best to extract from hyperspectral data the characteristic spectral variables to effectively monitor the
biochemical components of crop targets.

At present, spectral variables based on extracted hyperspectral data might be divided into three
categories generally:

(1) Characteristic reflected bands. Hyperspectral data offer more accurate bands, which can better
reflect the characteristics of vegetation. Bai et al. [2] applied the successive projections to extract eight
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sensitive bands correlated with total nitrogen content of winter wheat leaves (1985, 2474, 1751, 1916,
2507, 1955, 2465, and 344 nm). These bands had an extremely negative correlation, great significance
and established a highly accurate and stable successive projections algorithm- partial least squares
(SPA-PLS) model to estimate leaf content in the wheat jointing stage. He et al. [3] used the variable
importance for projection (VIP) and the grey relational analysis (GRA) to extract five optimal first
derivative spectra in the range of 350–2500 nm in winter wheat. On the whole, those bands had a
pretty strong relationship and established better results with leaf nitrogen content (LNC) in validation.

(2) Position of reflected features. Reflectance and absorption features that characterize
hyperspectral data are also related to specific physical and chemical crop characteristics [4]. Wei et al. [5]
extracted the red edge position by using six different methods, and analyzed the relationship between
the red edge position extracted from canopy spectra and associated LNC of the vegetation above
ground. Cho et al. [6] extracted the red edge position (REP) from rye canopy, and corn leaf and
mixed grass/herb leaf stack hyperspectral data via a new technique and REPs extracted using this new
technique (linear extrapolation method) showed high correlations with a wide range of foliar nitrogen
concentrations (NC).

(3) Vegetation index characteristics. Vegetation indices are combinations of linear and nonlinear
characteristics in the visible-near-infrared band and quantitatively reflect vegetation growth under
certain conditions. Chen et al. [7] compared the double-peak canopy nitrogen index (DCNI), with
some existing vegetation indices such as modified chlorophyll absorption ratio index (MCARI), canopy
chlorophyll index (CCI), Medium Resolution Imaging Spectrometer (MERIS) terrestrial chlorophyll
index (MTCI), etc. and determined that the DCNI of wheat and corn provided the best spectral index
for evaluating the efficiency of crop nitrogen treatment. Finally, through the correlation analysis
among the normalized differential red edge index (NDRE), water sensitivity index (WI), and crop leaf
area index (LAI). Shu et al. [8] constructed a new red-edge resistance water vegetable index (RRWVI)
to improve the accuracy of hyperspectral inversion of the crop leaf area index (LAI). Tan et al. [9]
comprehensively analyzed the correlation and predictability of ratio vegetation index (RVI), normalized
difference vegetation index (NDVI), difference vegetation index (DVI), etc. and summer corn LAIs.
The results suggested that the correlation between those commonly used spectral vegetation indices
and LAI reached the significant level of 0.05.

On the one hand, in this paper, the characteristics of corn canopy spectra were systematically
summarized and studied from three perspectives. Those studies demonstrate that hyperspectral
variable features have been utilized in research. Although these features could be used to monitor and
evaluate crop growth parameters, most studies only use a single type of spectral variable. The various
types of spectral variables provide useful information from different viewpoints about crop growth
parameters. Therefore, if making use of different spectral variables to improve the accuracy offered
a possible way with which crop-target parameters were monitored, little information was currently
available on how to comprehensively exploit multiple hyperspectral variables to better exploit the rich
information of hyperspectral spectrum and thereby we might improve the accuracy of crop nutrient
status. On the other hand, hyperspectral data were characterized by multiple collinearity. Multiple
linear regression analysis (MLRA) model, PROperties SPECTra (Prospect) model, Decision Support
System for Agrotechnology Transfer (DSSAT) model, and so on were commonly used methods for LNC
inversion. The PLS regression method was an extension of the multiple linear-regression model, which
was widely used because it could reduce the problem of collinearity between data variables [10–12].
Furthermore, although the random forest (RF) model, which was used mostly in biology and had high
predictive and learning ability, resolved the problem of singular values between response variables
and explanatory variables [13], few reports had used it to monitor the nitrogen content in corn. Thus,
the present study applied these three categories of spectral variables based on extracted hyperspectral
information and combines them with sensitive variables selected by using the successive projections
algorithm (SPA) to estimate the LNC of corn. Furthermore, we compared the PLS and RF modeling
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methods for monitoring corn LNC to obtain new ideas and methods for evaluating the nitrogen
nutrition spectrum of crops.

2. Materials and Methods

2.1. Study Area and Preprocessing

2.1.1. Study Area

The experiment was done at the National Precision Agriculture Research and Demonstration
Base in 2012. The base is located northeast of Xiaotangshan Town, Changping District, Beijing
(40◦00′–40◦21′ N, 116◦34′–117◦00′ E, 36 m). The climate was a temperate continental monsoon climate.
The soil in the experimental area was a silt-clay loam, which the PH value reached 8.0. The average soil
nutrients of the site were as follows: Organic matter 1.14%; alkaline nitrogen 49.9 mg·kg−1; available
phosphorus 17.0 mg·kg−1; and available potassium 145 mg·kg−1. Three nitrogen levels were used: No
nitrogen content of 0 kg N·ha−1, normal nitrogen content of 337 kg N·ha−1, and excess nitrogen content
of 765 kg N·ha−1. The experiments were done in replicates of three. We used 18 study plots. 1#–9# plots
were planted ‘Nongda 108′ (Mid-drape type) and 10#–18# plots were planted ‘Jinghua 8′ (compact
type). The total study area was 924 m2 and each area was 7 × 7 m2. The blank line was 42 m2 in the
middle. Figure 1 shows the study plots. Corn samples were extracted at four growth stages of V6, V14,
R1, and R2 in 18 plots, respectively. Sowing was done on 21 June 2012 and harvesting on 15 October
2012 of corn. All plots followed the local standard practices (weed control, pest management, and
fertilizer application).
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2.1.2. Spectrum Acquisition

The experiment was done during the different growth stages of corn: July 30 (V6—6 leaf), August
15 (V14—14 leaf), August 26 (R1—silking), and September 14 (R2—blister stage). Corn canopy
hyperspectral data were collected from each experimental plot.

The spectral reflectance was acquired by using an ASD FieldSpec FR2500 Spectrometer (Analytical
Spectral Device, Boulder, CO, USA) with a spectral range of 350–2500 nm. The resolution was 1.4 nm



Sensors 2019, 19, 2898 4 of 17

from 350 to 1000 nm, and 1 nm from 1000 to 2500 nm. Generally, measurements were done at 10:00 a.m.
and 14:00 p.m. Beijing time during clear, windless, cloudless conditions. The probe was oriented
vertically downward when viewed. The height was 1.3 m from the ground and the field of view angel
was 25◦. Each measurement was corrected before and after by using the reference plate.

2.1.3. Plant Sample and LNC Acquirement

After making spectral measurements of each experimental plot, the stems and leaves were
separated, and the leaves were placed in a paper bag. The leaves were then placed in an oven at 105 ◦C
for 30 min, and then baked at 80 ◦C for 48 h or more until weighed. The dried-leaf samples were
weighed, and then the leaves were pulverized and their nitrogen content was determined by using
a Kjeldahl analyzer (Buchi B-339, FOSS, Sweden). The total statistics were 72 of four growth stage
in 18 plots; 48 for calibration, and 24 for validation. Table 1 showed the total statistics of green LNC
measured. The LNC range for the calibration dataset in 2012 was from 0.92 to 2.83, with an average of
1.91 and a standard deviation of 0.59. Similarly, the statistical parameters for the test dataset in 2012
was 0.82–2.68, 1.81, and 0.65, respectively.

Table 1. Descriptive statistics of leaf nitrogen content (LNC).

Dataset Year Samples Max Min Mean SD Coefficient of Variation

Calibration dataset 2012 48 2.83 0.92 1.91 0.59 0.31
Validation dataset 2012 24 2.68 0.82 1.81 0.65 0.36

2.2. Principles and Methods

2.2.1. Preprocessing of Hyperspectral Data

To eliminate part of the noise in the spectrum, we applied a Savitzky-Golay (SG) convolution
smoothing method [14,15]. Based on the results of preliminary experiments, maximum denoising
was achieved with a moving window width of 17 and a polynomial frequency of two. We calculated
various spectral variables, such as first derivative (FD), position features, and vegetation indices, based
on the spectral reflectance after SG denoising. The FD formula was:

FDλ(i) =
Rλ( j+1) −Rλ( j)

λ( j + 1) − λ( j)
, (1)

where FD is the first derivative of reflectance at wavelength midpoint i between wavebands j and j + 1,
Rλ( j) is the reflectance at waveband j, Rλ( j+1) is the reflectance at waveband j + 1, and λ(j + 1)− λ( j) is
the difference in wavelength between wavebands j and j + 1.

2.2.2. Spectral Position Features

Figure 2 showed the characteristic absorption and reflections of the summer corn canopy for three
nitrogen treatments. The figure showed the three absorptions (560–760, 920–1080, and 1120–1280 nm)
and six reflections (500–670, 780–970, 980–1200, 1200–1350, 1480–1720, and 2000–2300 nm) that were
used to study the characteristic absorption and reflection positions [16]. In the present study, we
explored only three parameters: Depth, area, and normalized depth [17,18].

The absorption depth (A_Depthi) was calculated as follows:

A_Depthi = 1−R′i(λmin) = 1−Ri(λmin)/Rci(λmin), (2)

where R′i(λmin) is the continuum-removal reflectance and is defined as the ratio of Ri(λmin) that is the
reflectance at corresponding wavelength λ in the absorption region to the continuum line Rci(λmin) in
the corresponding band. The index i identifies the number of absorption positions (i = 1, 2, 3).
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The absorption area (A_Areai) was calculated as follows:

A_Areai =

∫ λk

λ j

(Rci(λ) −Ri(λ))dλ. (3)

The absorption area (A_Areai) is the integral of the difference between the reflectance of continuum
line Rci(λ) and the reflectance Ri(λ) at the corresponding wavelength λ in the absorption region. The
wavelengths λ j and λk are the initial and final wavelengths in each absorption region.

The normalized absorption depth (A_NDi) was:

A_NDi = A_Depthi/A_Areai. (4)

A_NDi is the ratio of the absorption depth to the integrated absorption wavelength.
Each reflection depth (R_Depthi) was defined as:

R_Depthi = 1−R′i(λmax) = 1−Rci(λmax)/Ri(λmax). (5)

The reflection depth is the difference between unity and the continuum-removed reflectance R′i(λmax).
The continuum-removed reflectance R′i(λmax) is the ratio of the inner continuous line Rci(λmax) in the
reflection position and the maximum reflectance value Ri(λmax) at the corresponding band. The index
i indicates the number of the corresponding band (i = 1, 2, 3).

The reflection area (R_Areai) was defined as:

R_Areai =

∫ λk

λ j

(Ri(λ) − Rci(λ))dλ, (6)

which is the definite integral of the difference between the reflectance Ri(λ) in the corresponding band
λ at the reflectance region and the inner continuum line Rci(λ). The wavelengths λ j and λk are the
initial and final wavelengths in each reflectance region, respectively. The index i is the number of the
band (i = 1, 2, 3).

The normalized reflection depth (R_NDi) was the ratio of the reflectance depth (R_Depthi) to the
reflectance area (R_Areai):

R_NDi = R_Depthi/R_Areai. (7)
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For more information, please see the relevant literature [19–21]. Table 2 showed the positional
bands used in this study.

Table 2. Partial characteristic variables of the hyperspectral data.

Variables Definition and Description

Db Maximum value of the 1st derivative with a blue edge (490–530 nm)
λb Wavelength at Db
Dy Maximum value of the 1st derivative with a yellow edge (560–640 nm)
λy Wavelength at Dy
Dr Maximum value of the 1st derivative with a red edge (680–760 nm)
λr Wavelength at Dr
Rg Maximum reflectance with a green peak (510–560 nm)
λg Wavelength at Rg
Ro Lowest reflectance with a red well (650–690 nm)
λo Wavelength at Ro

SDb Sum of the 1st derivative values within the blue edge
SDy Sum of the 1st derivative values within the yellow edge
SDr Sum of the 1st derivative values within the red well

2.2.3. Vegetation Indices

Many different optical indices have been reported in the literature and have proven to be
well correlated with vegetation parameters. Consequently, we selected 34 vegetation indices
(VIs) for estimating the corn canopy LNC (Table 3). Six of these indices were nitrogen-sensitive
hyperspectral VIs [7], such as the optimal vegetation index (Viopt), the normalized difference vegetation
index green-blue# (NDVIg-b

#), the ratio vegetation index I# (RVI I#), RVI II#, the combined index
(MCARI/MTVI2), the double-peak canopy nitrogen index# (DCNI#), NDVI I#, RVI III#, DVI I#, SAVI I#,
normalized difference red-edge (NDRE), etc. Another 23 indices were used: The anti-atmospheric
vegetation index (ARVI), the difference vegetation index (DVI II#), the enhanced vegetation index (EVI),
the green normalized vegetation index (GNDVI), the modified nonlinear vegetation index (MNLI), the
second modified SAVI (MSAVI2), the modified simple ratio (MSR), NDVI II#, the nonlinear vegetation
index (NLI), the optimized SAVI (OSAVI), RDVI, the ratio vegetation index IV (RVI IV), SAVI II#,
TVI and the modified triangle vegetation index (MTVI2), the red-edge-related index NDVIRed-edge,
CIRed-edge, MTCI, the water-related index (WI, NDWI), the normalized difference infrared index (NDII),
the water stress index (DSWI), the standardized LAI-determining index (sLAIDI*), etc. The VIs that
related to the wide-band information were obtained from hyperspectral calculation using the spectral
response functions of the corresponding sensors [22].

2.3. Screening and Modeling Methods

2.3.1. Successive Projections Algorithm

In recent years, the successive projections algorithm (SPA) [23,24] has been ever more widely
used for screening and extracting sensitive variables and is a forward-variable-selection algorithm that
effectively eliminates the collinearity problem in spectral information. By reducing the redundancy
between variables and selecting representative feature parameters for modeling, the efficiency of
modeling analysis could be greatly improved.
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Table 3. Summary of partial vegetation indices.

Index Name Formula Reference

Viopt Optimal vegetation index (1 + 0.45) ((R800)2 + 1)/(R670 + 0.45) [25]

NDVIg-b
# Normalized difference vegetation index# (R573 − R440)/(R573 + R440) [26]

RVI I# Ratio vegetation index I# R810/R660 [27]

RVI II# Ratio vegetation index II# R810/R560 [28]

MCARI/MTVI2 Combined index
MCARI/MTVI2
MCARI:(R700 − R670 − 0.2(R700 − R550)) (R700/R670)
MTVI2: 1.5(1.2(R800 −R550))/sqrt((2R800 + 1)2− (6R800 − 5sqrt(R670)) − 0.5)

[29]

DCNI# Double-peak canopy nitrogen index I# (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) [7]

NDVI I Normalized difference vegetation index I (R800 − R670)/(R800 + R670) [30]

RVI III Ratio vegetation index III R800/R670 [31]

DVI I Difference vegetation index I R800-R670 [32]

SAVI I Soil-adjusted vegetation index I 1.5(R800 − R670)/(R800 + R670 + 0.5) [33]

NDRE Normalized difference red edge (R790 − R720)/(R790 + R720) [34]

ARVI Atmospherically-resistant vegetation index ARVI = (RNIR − RB)/(RNIR + RB)
RB = R-γ(B-R), γ = 1 [35]

DVI II Difference vegetation index II DVI = RNIR − RR [36]

EVI Enhanced vegetation index EVI = 2.5(RNIR − RR)/(RNIR + 6RR − 7.5RB + 1) [37]

GNDVI Green normalized difference vegetation index GNDVI = (RNIR − RR)/(RNIR + RR) [38]

MNLI Modified nonlinear vegetation index MNLI = 1.5(RNIR
2
− RR)/(RNIR

2 + RR + 0.5) [39]

MSAVI2 The second modified SAVI MSAVI2 =
(
2RNIR + 1− sqrt

(
(2RNIR + 1)2

− 8(RNIR −RR)
))

/2 [40]

MSR Modified simple ratio MSR = (RNIR/RR − 1) / (RNIR/RR + 1) [41]

NDVI II Normalized difference vegetation index II NDVI = (RNIR − RR) / (RNIR + RR) [42]

NLI Nonlinear vegetation index NLI = (RNIR
2
− RR)/(RNIR

2 + RR) [43]

OSAVI Optimization of soil-adjusted vegetation index OSAVI = (1 + 0.16) (RNIR − RR)/(RNIR + RR + 0.16) [44]

RDVI Renormalization difference vegetation index RDVI = (RNIR −RR)/(sqrt(RNIR + RR)) [45]

RVI IV Ratio vegetation index RVI = RNIR/RR [33]

SAVI II Soil-adjusted vegetation index II SAVI = 1.5(RNIR − RR)/ (RNIR + RR + 0.5) [46]

TVI Triangular vegetation index TVI = 60(RNIR − RG) − 100(RR − RG) [47]

MTVI2 Modified triangular vegetation index MTVI2 = 1.5(1.2(RNIR − RG) − 2.5(RR − RG))/(sqrt ((2RNIR + 1)2
− (6RNIR − 5sqrt (RR) − 0.5)) [48]

NDVIRed-edge Red-edge NDVI NDVIRed-edge = (RNIR − RRed-edge)/(RNIR − RRed-edge) [49]

CIRed-edge Red-edge Chlorophyll Index CIRed-edge = (RNIR/RRed-edge) − 1 [50]

MTCI MERIS Terrestrial Chlorophyll Index MTCI = (RNIR − RRed-edge)/(RRed-edge − RNIR) [51]

WI Water Index WI = R900/R970 [52]

NDWI Normalized difference water index NDWI = (R860 − R1240)/(R860 + R1240) [53]

NDII Normalized difference infrared index NDII = (R819 − R1600)/(R819 + R1600) [54]

DSWI Disease water stress index DSWI = (R803 − R549)/(R1659 + R681) [55]

sLAIDI * Standardized LAI-determining index sLAIDI * = s(R1050 − R1250)/(R1050 + R1250)R1555, s = 1 [56]

* I, II, III, IV, V were just only for the same planting indices that distinguished different bands.
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In order to solve the collinearity problems, a minimally redundant subset of wavebands is selected
in SPA and it belongs to the class of forward selection methods [57]. SPA starts with one wavelength
and selects a new one at each iteration by using projection operators in a vector space until reaching the
predefined number of wavelengths. Root means square error (RMSE) was used as the evaluation index.
The final number of variables selected by the SPA is defined based on the lower RMSE value obtained.

2.3.2. Partial Least Squares Regression

Partial least squares regression [58] is a statistical method that included principal component
analysis, canonical correlation analysis, and multiple linear regression methods [59]. PLS regression
is a modeling technique for studying multi-dependent variables or single-dependent variables and
multi-independent variables. It can screen out low-collinearity components in the case of small
sample size.

Consider m dependent variables y1, y2, . . . , ym and n arguments x1, x2, . . . , xn. The quantities
E0, E1, . . . , Er, F0, . . . , Fr are standardized observation data arrays of two sets of variables from which
we extract the components t1, . . . , tr(r ≤ m),th is a linear combination from the independent-variable
set X = (x1, . . . , xm)

T and carries the maximum information possible from X. At the same time, th has
the greatest explanatory power for the dependent-variable system F0. If we extract r components
t1, . . . , tr from the independent-variable set, the PLS regression will establish the regression equation for
y1, y2, . . . , ym and t1, . . . , tr, and then express y1, y2, . . . , ym and the regression equation of the original
independent variables; that is, the PLS regression equation:

y j = a j1x1 + . . .+ a jmxm, ( j = 1, 2, . . . , p). (8)

2.3.3. Random Forest

Random forest (RF) [60,61] used bootstrapping to randomly draw samples that were resampled
and put back. The extracted samples are used to construct a classification decision tree, and the
non-extracted samples constitute the out-of-bag (OOB) data set.

Given n features, RF arbitrarily extracts less than m (m < n) features at each node of each tree,
selects the classification of the decision tree with the largest amount of information among the m
features, and does not prune the classification decision tree.

A plurality of regression decision trees is constructed by using the extracted samples to form a RF,
and then the data are classified, and the result is decided by voting.

Each time a RF forms, the OOB data set is used to evaluate the classification results, following
which we evaluate the combined classifier. The variable that generates the decision tree is randomly
selected each time from the training set, so the random forest has a stable error rate, and each OOB
generated can be used to evaluate the classifier performance.

2.3.4. Statistical Analysis Method

Between the sensitive bands, the location characteristics, VIs, and corn canopy LNC were analyzed
by using Rstudio 3.5.3. The validation samples were one-third of the samples (i.e., 24 samples) and did
not participate in the validation. The operation of partial least squares and random forest algorithm
was done in MATLAB R2014a. The determination coefficient R2, the RMSE, and the normalized root
mean square error (NRMSE) serve as indicators to explain and quantify the relationship with nitrogen
in canopy leaves. They were calculated as follows:

R2 = (Σn
i=1yi − y)2/(Σn

i=1xi − y)2, (9)

RMSE =
√

Σn
i=1, j=1(xi − y j)

2/n , (10)

NRMSE =
√

Σn
i=1, j=1(xi − y j)

2/n/y, (11)
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where xi is the measured nitrogen content in corn canopy leaves, yi is the predicted nitrogen content
in corn canopy leaves, y is the mean nitrogen content in corn canopy leaves, and n is the number
of samples.

3. Results

3.1. Optimal Spectral Characteristics

3.1.1. Sensitive Reflectance Feature Data Set

Figure 3 shows a correlation between the corn canopy reflectance spectra and the FD spectra and
LNC. The reflectance spectrum in Figure 3 suggests a negative correlation between the blue (630 nm),
the red (711 nm), and the short-wave near-infrared (1996–2346 nm) reflectance spectra, and a positive
correlation in the near-infrared (739–1135 nm). The FD spectrum shows a positive correlation at 661
and 751 nm, and a negative correlation at 691 nm. Spectral first derivative (FD) operation reduces
the background noise and raises the efficiency of the target. The correlation coefficient of the FD
spectrum is greater than the reflection spectrum in the visible light and NIR range (400–1400 nm).
Using the SPA algorithm, four reflectance wavelengths and two FD wavelengths were selected to form
a sensitive spectral dataset (Figure 4). The 724, 1343 nm (Ref), 658, and 937 nm (FD) wavelengths were
well correlated with LNC, and 724 nm, 658 nm, and 937 nm fell in the visible light and NIR bands,
indicating that the corn canopy reflectance spectrum and the FD spectrum were strongly correlated
with LNC in the visible range (400–700 nm) and NIR range (700–800 nm).
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The original spectrum is easily affected by illumination, soil background, atmosphere, and other
factors. However, derivative transformation can reduce or eliminate the influence of background and
atmospheric scattering and improve the contrast of different absorption characteristics. Therefore
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the reflection spectral bands and the first derivative bands selected were used separately in PLS and
RF models.

The SPA screened out six sensitive spectra (including four reflectance spectral wavelengths: 412,
724, 1084, and 1343 nm and two first derivative spectral wavelengths: 658 and 937 nm) with the least
linearity of leaf nitrogen content. A model was established between the four reflectance spectra and
the LNC based on the PLS and RF regression. Similarly, a model was established between the two first
derivative spectra and LNC based on the PLS and RF regression. The results are given in Table 4. The
PLS model was used to estimate the nitrogen content of leaves. The coefficient R2, the RMSE, and the
NRMSE of the reflection spectral bands were 0.59, 38.2%, and 0.20, respectively. For the FD bands,
these values are 0.54, 39.7%, and 0.21, respectively. The RF model was used to estimate the nitrogen
content of leaves. The coefficient R2, the RMSE, and the NRMSE of the bands of the reflection spectrum
were 0.61, 42.1%, and 0.22, respectively; and for the FD bands these values were 0.59, 37.9%, and 0.20,
respectively. These values represented good results for the modeling.

In the validation set, when PLS was used to estimate the LNC, R2 for the reflectance spectrum
was 0.22 greater than for the RF model, the RMSE was 0.2 less, and the NRMSE was 11.2% less. The
coefficient R2 of the RF model for the FD value was 0.02 less than the Ref, the RMSE was 0.05 less,
and the NRMSE was 2.6% less. These results showed that the inversion of the corn LNC by the PLS
model was better than the RF model for the reflectance spectra, which suggested that the PLS model
should provide more accurate predictions of the LNC. However, the RF model was more stable than
the PLS model.

Table 4. Accuracy between the sensitive band and FD spectrum and LNC.

Algorithm Feature
Types

Calibration Set (n = 48) Validation Set (n = 24)

R2 RMSE NRMSE R2 RMSE NRMSE

Partial Least Squares (PLS) Ref 0.59 0.38 19.8% 0.82 0.28 15.2%
FD 0.54 0.40 20.8% 0.64 0.38 21.0%

Random Forest (RF) Ref 0.61 0.42 22.1% 0.60 0.48 26.4%
FD 0.59 0.38 19.9% 0.58 0.43 23.6%

3.1.2. Position Feature Data Set

We selected the position characteristics of 40 hyperspectral reflectance wavelengths and calculated
the positional correlation of each calibration set (75%; Figure 5). The results showed that the LNC was
strongly correlated with Db, Dr, λb, Rg, λg, and SDb, whereas the LNC was weakly correlated with the
other parameters. Two positional parameters SDb and Dr with smaller collinearity were selected by
the SPA algorithm and were modeled using the LNC (Table 5). The results of estimating the LNC in
the optical layer for R2, RMSE, and NRMSE were 0.50, 41.2%, 0.22 and 0.57, 39.9%, 0.21 for the PLS and
RF models, respectively. The coefficient R2 of the RF model was 0.07 greater, the RMSE was 0.01 less,
and the NRMSE was 0.7% less than for the PLS model, which indicated that the RF model was more
stable and the PLS model had better results than the RF model. The coefficient R2 of the PLS model in
the validation set was 0.1 greater, the RMSE was 0.07 lower, and the NRMSE was 3.2% lower than the
RF model.
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Table 5. Modeling results between position features and LNC.

Algorithm Feature
Types

Calibration set (n = 48) Validation set (n = 24)

R2 RMSE NRMSE R2 RMSE NRMSE

Partial Least Squares (PLS) Positions 0.50 0.41 21.6% 0.62 0.41 22.9%
Random Forest (RF) Positions 0.57 0.40 20.9% 0.52 0.47 26.1%

3.1.3. Vegetation Indices Data Set

For this study, 34 vegetation indices (VIs; Figure 6) were selected to study the correlation between
them and LNC. The results show that DVI I, DVI II, and TVI had a weaker relevance with LNC than
others. Such results are expressed in Figure 6, where these VIs are represented by smaller circles and
lighter color when compared to the other VIs.
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The SPA algorithm selected the eigenvalues NDVIg-b
# and DVI II, which had small collinearity

between VIs. The two parameters were modeled with the LNC (Table 6), and the results show that R2,
RMSE, and NRMSE were 0.68, 33.3%, 0.17 and 0.64, 35.6%, 0.19, when the canopy LNC was estimated
by the PLS model and the RF model, respectively. For the estimation, the coefficient R2 was 0.04 greater,
the RMSE was 0.03 less, and the NRMSE was 0.8% less for the PLS model than for the RF model. For
the validation model, the coefficient R2 was 0.2 greater, the RMSE was 11.2% less, and the NRMSE was
0.06 less for the PLS model than for the RF model. These results indicated that the RF model was more
stable and that the PLS model might provide more accurate results to estimate the LNC.

Table 6. Modeling results between VIs and LNC.

Algorithm Feature
Types

Calibration Set (n = 48) Validation Set (n = 24)

R2 RMSE NRMSE R2 RMSE NRMSE

Partial Least Squares (PLS) VIs 0.68 0.33 17.4% 0.80 0.31 16.9%

Random Forest (RF) VIs 0.64 0.36 18.6% 0.60 0.42 23.1%

3.2. Composite Spectral Features

To further improve the accuracy of the spectral estimates of the corn canopy LNC, six sensitive
spectral features (four reflective spectral features, two FD features), two positional features, and two
VIs were obtained from the three spectral variables. The SPA algorithm was then used to further
screen the sensitive characteristic parameters to model, which were combined into a new set of spectral
variables. The analysis shows that the spectral reflection bands at 724 and 1343 nm, FD band at 658 nm,
and NDVIg-b

# became the new sensitive spectral variables. Table 7 gives the results of using these
new characteristic parameters to estimate the corn canopy LNC. For estimating the corn canopy LNC,
R2 was 0.14 greater, RMSE was 7.5% lower, and the NRMSE was 0.03 lower for the PLS model than
for the RF model. Figure 7a,b show the results of the validation model. The fit was better between
the measured value and the predicted value, R2 was 0.22 greater, RMSE was 0.12 less, and NRMSE
was 6.8% less for the PLS model than for the RF model. The results of the RF model did not differ
significantly, and the results were relatively stable. However, the result of the PLS model was better.
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Table 7. Modeling results between comprehensive parameters and LNC.

Algorithm Feature
Types

Calibration Set (n = 48) Validation Set (n = 24)

R2 RMSE NRMSE R2 RMSE NRMSE

Partial Least Squares (PLS) Integrated
data 0.71 0.32 16.7% 0.77 0.31 17.1%

Random Forest (RF) Integrated
data 0.57 0.39 20.4% 0.55 0.43 23.9%

4. Discussion

In order to reduce the influence of water vapor and other factors of hyperspectral data [62,63], we
chose 400–1353 nm, 1437–1799 nm, and 1992–2354 nm to study the spectra. We selected reflectance
spectra of 412, 724, 1084, and 1343 nm and first derivative spectra of 658 and 937 nm. Kokaly
and Clark [18] got the spectral characteristics of absorption and reflection positions via using the
continuum-removal method. We selected two positions characteristic using the same method: SDb
and Dr. The vegetation indices were a linear and non-linear combination of different bands, and the
functional relationship of vegetation characteristic parameters was more stable and reliable than a
single band [64]. We selected NDVIg-b

#, DVI II of the two optimal VIs.
Serious multi-collinearity problems arose in sensitive bands, positions and VIs. The optimal

sensitive band features, position features, and VIs of hyperspectral data were selected by using SPA
and they had a good correlation with LNC (Figures 4–6), but the correlation between the position
features and LNC was low. Bands that the optimal parameters used were mainly focused on visible-
and near-infrared-band. This result was consistent with the results of a previous study [65]. In this
paper, the R2 between the optimal reflectance spectra, VIs and LNC achieved 0.82 and 0.80. The
parameters were mainly concentrated on blue-light, red-edge, and NIR bands, it might be the influence
of internal factors such as chlorophyll and cell of plants, and the position parameters were red-shifted
due to the difference of leaves nitrogen content. The integrated spectral features (reflectance at 724 and
1343 nm, FD at 658 nm, and NDVIg-b#) determined R2, the RMSE, and the NRMSE for the calibration
set (validation set) of the PLS model and the RF model to be 0.71, 31.8%, 0.17 (0.77, 31.0%, 0.17) and
0.57, 39.3%, and 0.20 (0.55, 43.3%, and 0.24), respectively. Chen et al. [7] suggested that the R2 values
were 0.72 for corn. Ours results were increased by 0.05 than theirs in the PLS model and there were no
significant differences in values. The composite spectral features integrated characteristics of three
variable sets and the results of PLS model were more stable, when comparing the results for calibration
and validation datasets, than any other three variable datasets used independently. The reflectance
bands and position features were easily affected by external light, water and nitrogen content, and so
on. VIs had the ability to eliminate effects of soil background factors, especially NDVIg-b#.

Most previous studies focused on a single variable of the spectrum [2,11,66] to study corn leaves
nitrogen content, whereas few studies discussed the comprehensive processing of data or compared
models with similar variables. The present study used two models for the analysis: The PLS and RF
models. The LNC model established by the PLS algorithm was the best in the two models. The method
of linear model was obviously better than machine learning. The results of the PLS model could
decompose and filter the data by leveraging the number of input samples. A high precision model was
established for the comprehensive variable with the strongest explanatory power of the dependent
variable [67,68]. The RF model is a machine learning algorithm with simple implementation, good
precision, and strong over-fitting ability [69]. This is indicative of a strong learning ability, which is
consistent with the results of Feng et al. In the process of modeling with the four variable datasets as
the independent variable and LNC as dependent variables, the modeling result of the RF model was
not very different, but the result of the PLS model was better, which could better predict LNC. Based
on sensitive variables obtained from screened multi-variety and multi-growth data over one year, the
next step is to lengthen the study (multiple years) and use more regional data for an in-depth analysis.
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5. Conclusions

In this paper, the results showed that the spectral bands, absorption and reflection positions, and
VIs were usually good predictors. LNC had better correlation with the optimal sensitive bands and
VIs (Figures 4 and 5), but the optimal positions have a bad correlation with LNC (Figure 6). These
hyperspectral features were mostly concentrated on the 300–1400 nm region, and the features in visible
light and NIR regions was able to better realize the monitoring of corn LNC [70].

After screening out the original spectral bands for sensitive reflect feature dataset by SPA, for the
validation set, the R2, RMSE, and NRMSE of the PLS model and RF model were 0.82, 27.5%, and 0.15
and 0.64, 37.9%, and 0.21, respectively. The R2, RMSE, and NRMSE for the first derivative bands of the
PLS model and RF model were 0.60, 47.7%, and 0.26 and 0.58, 42.8%, and 0.24, respectively. The R2,
RMSE, and NRMSE for the position feature dataset of the PLS model and RF model were 0.62, 41.5%,
and 0.23 and 0.52, 47.2%, and 0.26, respectively. The R2, RMSE, and NRMSE for the vegetation indices
feature dataset of the PLS model and RF model were 0.80, 0.31, and 16.9% and 0.60, 0.42, and 23.1%,
respectively. The R2, RMSE, and NRMSE for the reflect feature integration dataset of the PLS model
and RF model were 0.77, 0.31, and 17.1% and 0.55, 0.43, and 23.9%, respectively. For estimating the
corn LNC, the RF model had a good learning ability and stable results. However, the results of R2,
RMSE, and NRMSE were poor in the validation set with a small sample size, while the results of PLS
were good, especially in the integration dataset, which could better estimate the LNC.
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