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Abstract: Internet of things (IoT) infrastructure, fast access to knowledge becomes critical. In some
application domains, such as robotics, autonomous driving, predictive maintenance, and anomaly
detection, the response time of the system is more critical to ensure Quality of Service than the quality
of the answer. In this paper, we propose a methodology, a set of predefined steps to be taken in order to
map the models to hardware, especially field programmable gate arrays (FPGAs), with the main focus
on latency reduction. Multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES)
was employed along with custom scores for sparsity, bit-width of the representation and quality
of the model. Furthermore, we created a framework which enables mapping of neural models to
FPGAs. The proposed solution is validated using three case studies and Xilinx Zynq UltraScale+
MPSoC 285 XCZU15EG as a platform. The results show a compression ratio for quantization and
pruning in different scenarios with and without retraining procedures. Using our publicly available
framework, we achieved 210 ns of latency for a single processing step for a model composed of two
long short-term memory (LSTM) and a single dense layer.

Keywords: neural networks; internet of things (IoT); FPGA; deep learning; recurrent neural
network (RNN)

1. Introduction

Artificial Intelligence algorithms are developing rapidly and in multiple areas. One of the crucial
factors causing this significant leap is the exponential increase of the available data, mainly due to
the adoption of the IoTinternet of things (IoT). To be able to make correct decisions, from those vast
amounts of data, the knowledge needs to be extracted. This task is usually done using machine
learning algorithms, nowadays very often implemented as neural networks. Fast and well-defined
system response time increasingly becomes a more decisive factor in the Quality of Service.

The structure of a conventional data processing and knowledge extraction system is presented
in Figure 1, with most of the data processing done in the computing cloud. As a result, the latency
of the system response depends on both computing and data-transfer time between edge devices,
over the network, and to the data centers. The computing acceleration is possible at every step of
the path. The most notable latency decrease can, however, be achieved by relocating as much of the
computations into the edge (IoT) devices as possible. Consequently, the amount of data transferred
and processed in the upper levels of hierarchy can be significantly reduced.

The maintenance or improvement of the system working parameters, simultaneous with the
growing amount of data, and increased expectations regarding the system response time is a complex
problem. It was conceptually presented in Figure 2. There are three main dimensions of the compression
operation, namely the model size, the latency of the model response, and quality of the processing
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results delivered by the compressed model. Aggressive compression usually leads to a reduction
of model size and processing latency at the expense of the quality of the model performance
(e.g., an accuracy drop in the classification set-up) which is undesirable and even not acceptable
in many applications. Consequently, the most desirable but unreachable result of the compression
operation may be visualized as the coordinate system origin, as presented in Figure 2. Moving towards
this location requires deep learning (DL) models to be compressed in a way that does little or no harm
to their performance. Furthermore, the compressed modules implemented in the IoT platforms need to
be scalable and portable across different devices within the sensor network. This requirement imposes
additional conditions on the compression process and makes it even more challenging.
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device
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Computing center
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Figure 1. Data flow and processing stages in a standard system setup.
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Figure 2. Constrains and demands for Deep Learning models compression.

It is worth noting that for over 30 years, Moore’s law determined the progress in computing
devices. Thus, the preferred strategy was to wait for a new generation of devices to show up rather
than optimizing existing software and platforms. Nowadays, in an era of IoT, multi-core processors,
deep learning, and 5G networks, it is better to develop custom solutions which can be employed across
various embedded platforms.
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Unfortunately, designing, training and modifying DL architectures, created with currently widely
available frameworks offering a lot of flexibility and extensive features range, remain in contrast to
rigid and well-grounded hardware digital systems design methodology [1–4]. Bringing those two
different worlds together is a challenging endeavor, especially when it comes to creating a methodology
and a framework which preserve all the desirable traits of machine learning software.

Popular frameworks provide extensions designed for mobile applications [5–7]. However, as they
target mobile devices such as smartphones, latency requirements are not very strict. For example,
TensorFlow Lite [5] provides performance benchmarks for popular architectures, and the lowest mean
inference time is reported for quantized Mobilenet_1.0_224 on iPhone 8 which is 24.4 ms, for other
models or on other devices latency is higher.

To accelerate neural models inference many researchers turned to field-programmable gate arrays
(FPGAs) [8–10]. However, they usually target larger networks, often with image processing in mind.
Such architectures are too sizable to be fully unrolled in hardware; therefore, their implementations
are based on various types of processing elements with loadable parameters.

Authors of survey [9] put together several neural networks implementations in FPGAs and
compared their performance and resource requirements. Usually, the factor that implementations
are optimized against is the number of operations per second. Performance is often achieved by
processing many samples in a single batch; however, they also report latency for batch size equal to 1,
which is desirable for IoT devices working in the real-time regime. Depending on the network model
and the device it was run on, the latency varies from a few milliseconds to a couple of hundreds of
milliseconds.

LeFlow [8] presents a very interesting usage of Google’s XLA compiler. Authors provide latency
results for single layers, and they were able to infer through a small fully connected layer in 380 clock
cycles at 267.45 MHz resulting in 1420 ns latency, fully unrolled element-by-element multiplication of
two arrays of size 64 took 428 ns.

The most similar work to ours is presented in [10]. The authors use Xilinx Vivado HLS for mapping
to FPGA along with their custom supporting code. The tool was benchmarked with a simple four-layer
fully-connected model. More details about this experiment can be found in Section 3.4.

The primary pitfall of the commercially available frameworks is the restricted choice of models
and the limited ability to modify and extend both the flow and architectures. On the other hand,
mapping applications developed by more research-oriented teams suffer from several deficiencies
which make them hard for practical application both in terms of the design time and the flow
complexity. They usually lack a clear and convenient path of migration between high-level tools
used for model development and simulation and low-level software used directly for FPGA mapping.
Consequently, all the issues which occur on a platform level which involve model modification, such as
running out of available resources and necessity to redesign the model, are very time-consuming
and error-prone. Usually, the low-level software was not created with DL models mapping in mind,
so there are no routines and mechanisms which facilitate the process.

The main techniques for neural network compression include weights pruning, weights
quantization [4,11]. The pruning is done with the aim of the elimination of selected weights by
zeroing them, or, in a more sophisticated version, forcing them to acquire specific values so that their
histogram is narrow [4]. Employment of pruning before weights quantization allows to significantly
improve both the quality of results generated by the compressed model and the efficiency of weights
quantization itself. Several pruning methods are described in Appendix A.

The purpose of weight quantization is the conversion from float to fixed-point representation,
as required by efficient hardware implementation. Change of the representation from floating-point to
fixed-point representation affects the dynamic range of possible representation. However, when the
distribution of the weights is unimodal and narrow, it can be adequately represented as fixed-point.
It is worth noting that modern FPGAs can handle floating-point operations, but they are very
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resource-consuming and sub-optimal [12]. Common quantization approaches are described in
Appendix B.

Several works [4,13,14] showed that pruning, quantization, and retraining results in much better
results in terms of the weights sparsity than just using static operations. The retraining operation
allows to shape histogram of weights and dynamically modify them. There is a range of methods
which address this task, and it is still a field of intense exploration [15].

The mapping process should account for each of model, data, and the platform profile, and this is
a primary goal of the compression procedure. The compression may be done through the reduction of
the weights’ bit-width to its limit, while simultaneously retaining the high quality of results produced
by the model.

This paper aims to introduce a methodology for mapping neural models to hardware FPGA
platforms with a particular focus on IoT devices. The proposed approach may also be used to assess
the feasibility of distributed sensors systems concerning resources consumption of individual nodes as
well as the latency budget.

We also conducted the experiments with data bucketization (as introduced in [16,17]) which can
enable data stream down-scaling between nodes within the system. This down-scaling is done with
little or none performance degradation of the model of several modes distributed across devices within
the network.

For mapping the model which specified compression parameters to FPGA, we have developed a
tool, called DL2HDL (see Supplementary Materials). The tool encapsulates a series of hardware-oriented
conversion procedures which enable efficient implementation of neural architecture components
(e.g., layers and activation functions).

This paper’s main contributions are as follows:

• A methodology for mapping recurrent neural network-based models to hardware,
• A case studies of the proposed methodology, done in the area of time series analysis (TSA),
• Custom set of scoring metrics, along with multi-objective covariance matrix adaptation evolution

strategy (MO-CMA-ES) applying scheme,
• DL2HDL, a publicly available framework to map models written in Python to FPGAs.

The rest of the paper is organized as follows. The Section 2 explains the proposed methodology
and describes the mapping tool and FPGA implementation details. In the Section 3 the case study
setup and experimental results are described. Finally, the Section 4 contains the discussion and future
work directions, while conclusions are presented in the Section 5.

2. Materials and Methods

The ultimate goal of the mapping procedure is to stay within the latency budget, even if it
incurs some acceptable performance loss. The critical aspect of the process is to mitigate the design
timing requirements and resources consumption. Consequently, dedicated strategies and methods
are essential.

2.1. Architecture of Tensors Processing

There is a set of processing stages in the proposed flow which shape tensors propagated
throughout the neural module. In each stage, a different operations’ precision and operands of various
bit-width can be used.

An overview of the proposed processing flow is presented in Figure 3. The high-level sequence of
operations is very similar whether the flow in FPGAs after the module was mapped to hardware, or the
one performed as an emulation before mapping, done on central processing unit (CPU), is considered.

When entering the module, the original (input) data was subject to optional bucketization and
quantized. The bucketization operation has a beneficial impact on the utilization of the available
dynamic range of the input data, which was discussed in [16,17]. Then, the data was quantized
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through mapping to the fixed-point notation. The data quantization mapping schemes were the same
as weights quantization ones, presented in Appendix B.
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Figure 3. Simplified data flow during inference; fl(m, e) denotes a number in floating-point notation,
with m bits for mantissa and e bits for exponent; fx(i, f ) denotes a number in fixed-point notation,
with i bits for integral part and f bits for fractional. In the simplest case m0 = m1 = . . . = mk,
e0 = e1 = . . . = ek, i0 = i1 = . . . = in and f0 = f1 = . . . = fn, however those values can be arbitrary
chosen to achieve the best resources utilization.

Figure 3 also presents weights pruning and quantization flow. These operations were done in the
same way regardless of the platform (CPU or FPGA). In the first step, weights are pruned, and then the
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quantization operation is performed. If the processing was done on CPU, the quantized weights were
stored in the floating-point container. Alternatively, for hardware operations, the quantized weights
were directly mapped to FPGA, and the computations were conducted using fixed-point representation.

The core operation in the neural models’ computations was matrix multiplication. When the
model compression was emulated on the CPU, the multiplication was done in floating-point precision.
On the other hand, in the FPGA flow, the matrix multiplication was done with the precision that
prevents overflow, e.g., for two 8 bit arguments fed to single atom multiplication the result occupies
16 bits and was truncated to eight bits (upper eight bits were taken). Consequently, to precisely emulate
the hardware flow on CPU, after each matrix multiplication operation, the result should be quantized.
This operation is called the activations quantization. It is worth emphasizing that all operations within
the hardware platform (FPGA) were done using fixed-point, and the activations quantization can be
perceived as being done automatically.

During the emulation, the activations quantization effect can be observed through the performance
degradation (e.g., accuracy drop in the classification task). When the performance degradation is too
severe, it means that the activations quantization was too aggressive, i.e., too few bits were allocated
for the propagation of the activation between the processing stages of the module. If activations
quantization was applied during emulation, the module’s output can be extracted from FPGA and
mapped back to the floating-point, and then directly compared with the CPU results.

In the proposed mapping scheme, we did not incorporate activation quantization in the flow
but used functional simulation of the hardware description language (HDL) code. This omission is
possible since our flow is equipped with the simulation step. By examination of the simulation results,
we can determine if the overflow occurs. When it happens, the bit-width allocated for the activations
should be increased.

2.2. Mapping Strategies

Different paths may be taken to map a deep learning model to platforms with limited resources.
The process is complicated and depends on preliminary constraints of a particular design. Two different
strategies may be adopted when it comes to the starting point of the mapping flow, the choice of which
depends whether we start from scratch or with a pre-trained model. The first strategy leaves much
more freedom for the mapping procedures to be applied since the architecture of the model is not fixed
at this point and can be modified. On the other hand, when it comes to a mapping of a pre-trained
model, we are much more limited concerning the number of available tools that can be used in the
process, since the architecture and the internal structure should remain as intact as possible. In practice,
it is hardly ever achievable, and modifications such as quantization, pruning, or compression are
essential to reduce response latency and memory footprint of the model.

We propose a series of strategies based on our experience in hardware design, deep learning
architectures, and FPGA optimization. Since FPGAs may be considered as highly flexible among
application-specific integrated circuits (ASICs), general-purpose graphics processing units (GPGPUs),
CPUs, and other dedicated platforms [18,19], the presented strategies may be tailored for other
hardware as well.

The strategies are split into two main paths. The first one is addressing the flow of a pre-trained
model (Figure 4). The second one covers a scenario where a designer starts from the beginning with all
the freedom to create a model, which however has to be optimized with hardware constraints in mind
(Figure 5).

Before any strategies are attempted, the pre-trained model should be examined concerning
incurred latency and resources consumption. The initial calculations should address the border
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scenario, i.e., the least amount of memory the L-layered model may occupy, assuming the weights are
compressed to one bit and 95 % of coefficients are removed (Equation (1)).

memory =
L−1

∑
i=0

size(layeri) ∗ 1 bit ∗ 0.05. (1)
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Figure 4. Strategies for mapping a pre-trained model.
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Figure 5. Advanced strategies for model mapping.

Such quantization and pruning settings are, of course, very optimistic and hardly ever achievable.
Consequently, if border conditions analysis shows that the model still exceeds available resources,
its architecture should be changed or a bigger FPGA chip should be used.
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In the next step, the baseline results should be obtained. It can be done by a simple mapping
operation performed after changing the data format to fixed-point. The format change was needed
since even though the float-point representation absorbs the same amount of memory (e.g., 32 bit),
it leads to much more expensive arithmetic operations. Usually, it turns out after the synthesis
and implementation for FPGAs that the model exceeds available resources of the chip. After the
compression potential of the model was analyzed, a suitable set of strategies and parameters for the
next stages can be chosen.

Ehile two basic proposed flows, A and B, are very similar, the second one is, however, more
computationally demanding, therefore it is advisable to start with scenario A if possible. When applying
both pruning and quantization, which was the most common case, the pruning should be
applied first. It is because quantization granulates the weights search space of the optimal
point, making the pruning process harder to converge. The pruning and quantization operations
are usually applied on the per-tensor level. However, for some models, especially the ones
equipped with depth-wise/point-wise layers (e.g., Mobilenet, Resnext, Xception) performing
pruning and quantization operations on per-tensor level can lead to significant degradation of
performance [20]. Therefore, the higher granularity of the operations (channel or gate level) is essential
for better convergence of pruning and quantization operations.

As incurred latency is affected both by the number of required operations and their precision,
the first stage of model mapping procedure should allow to quickly obtain a set of pruning and
quantization parameters’ combinations for further (and more time-consuming) tests. To this effect,
we propose to apply a software pruning/quantization simulation and some form of multi-objective
optimization. For large datasets, the optimization can be performed using a small, but representative
test dataset (e.g., 5 % to 10 % of original), and final results should be validated on the full test dataset.
The optimization objectives should include keeping the model quality as close to original as possible,
ensuring the biggest overall model weights’ sparsity, and bringing the precision down as much as
possible. The analysis of the original model resources consumption can help to define the range of the
optimization parameters, e.g., it may turn out that to fit the model into the required hardware reaching
a specific sparsity or quantization level is required.

The generated parameters’ combinations suitability for further tests may need to be further
examined, e.g., to remove all combinations that yield the model with quality drop above the acceptance
threshold, usually ≈1 percentage point (p.p.). It may also be beneficial to run the inference with the
full testing dataset and verify the model quality. Once the candidates were selected, the pruned and
quantized models were once again mapped to FPGA for the examination of incurred latency. If the
latency is satisfactory, the procedure is over; else flow B can be used. It may also turn out that the flow
B better addresses the distribution of the compressed model across the IoT platforms comprised of
multiple nodes with limited and different resources.

In the flow A, the pruning and quantization parameters were chosen for the whole model
(e.g., the precision of N bits) and then applied per-tensor (e.g., prune X% of each tensor, find the
number of integral/fractional bits that will best represent this tensor). In scenario B, the pruning
and quantization parameters are chosen and applied on the per-tensor basis, i.e., each tensor can
have different precision and pruning conditions than the other. This individualization can potentially
yield even better results, but is much more computationally intensive, since the number of optimized
parameters grows with the number of layers.

The next two mapping methods cover scenarios when the model is created from scratch or can
be retrained, and the flexibility of modification is left to the designer. In scenario C, the model is
interchangeably quantized (using flows A or B) and retrained to regain performance lost in the process
and shape the coefficients. Especially trained quantization [21,22] allows shaping coefficients in a way
which make a whole model more pruning-prone. If the expected latency is not satisfied, procedure D
can be tried.
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Procedure D differs from the previously presented scenarios since it incorporates input data
bucketization. As such, it is suitable mostly for classification tasks. In the first step, the data should be
bucketized, and the model trained. We recommend the adaptive bucketization procedure, which takes
the best advantage of the dynamic range of data representation (please See section 2.1 and Appendix A
of [17] and Section 4.2 of [16] for details). This process is arbitrary and should be monitored concerning
the performance of the model.

It is worth mentioning that using data bucketization makes the data more susceptible to
compression, which in turn may result in the data throughput increase within the system. Furthermore,
during experiments, we have noticed that data bucketization may also positively impact model
compression (see Section 3.3.5). This effect is caused by the distribution of the input data being affected
by a profile of the model weights.

As a second stage of the procedure D, scenario A or B was followed. It those steps fail to meet the
latency budget again, scenario C was applied. As the final step, when all those procedures failed to
satisfy latency constraints, model modification was recommended. This case was typical when it comes
to DL models binarization [11,23] because the network structure was deprived of most information
carriers. In such a scenario, after all the operations were applied, the model was extended with
few more layers and retrained. The procedure was applied until the performance close the original
was reached.

2.3. Analyzed Model—LSTM

The proposed methodology can be applied to various models; however, in our work, we focused
on models that can be used for predictive maintenance or anomaly detection, in particular, the long
short-term memory (LSTM) networks.

All the tested models utilized LSTM cells and dense units. Each of the LSTM layers comprised of
three tensors (W—input connections weights, U—recurrent connections weights and b—bias). Each of
the LSTM layer tensors can be further deconstructed into four tensors: i (input), f (forget), c (cell state)
and o (output) ones. For input tensor x at time t the LSTM layer output ht can be calculated as in
Equations (2)–(6), with c0 = 0, h0 = 0, σ being the hard sigmoid activation function and the ◦ operator
denoting the element-wise product.

it = σ (Wixt + Uiht−1 + bi) (2)

ft = σ
(

W f xt + U f ht−1 + b f

)
(3)

ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc) (4)

ot = σ (Woxt + Uoht−1 + bo) (5)

ht = ot ◦ tanh(ct) (6)

A dense layer can be described by two tensors; W—input connections weights and b—bias.
The parameter φ denotes the activation function—we have used softmax for classification tasks and
linear activation for regression. A dense layer output can be calculated as follows:

ot = φ (Wxt + b) . (7)

For calculation of the total number of model parameters, the size of each tensor needs to be found.
If k is the number of input features, m—output features, and n—LSTM cells, the tensor sizes can be
calculated as in Equation (8):
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size(WLSTM) = size(Wi) + size(W f ) + size(Wc) + size(Wo)

= k · n + k · n + k · n + k · n = 4 · k · n,

size(ULSTM) = size(Ui) + size(U f ) + size(Uc) + size(Uo)

= n · n + n · n + n · n + n · n = 4 · n2,

size(bLSTM) = size(bi) + size(b f ) + size(bc) + size(bo)

= n + n + n + n = 4 · n,

size(WDense) = n ·m,

size(bDense) = m.

(8)

It is worth noting that in the case of multi-layer networks, the number of previous layer’s
LSTM cells becomes the number of input features for the next layer. For example, a two-layer LSTM
network, with n = [8, 4] with k = 3 input features (data channels) and m = 2 output features (classes;
e.g., anomaly/non-anomaly) would yield following values:

size(WLSTM1) = 4 · k · n1 = 96,

size(ULSTM1) = 4 · n2
1 = 256,

size(bLSTM1) = 4 · n1 = 32,

size(WLSTM2) = 4 · n1 · n2 = 128,

size(ULSTM2) = 4 · n2
2 = 64,

size(bLSTM2) = 4 · n2 = 16,

size(WDense) = n2 ·m = 8,

size(bDense) = m = 2,

(9)

summing up to 384 parameters in first LSTM layer, 208 in the second and 10 in the dense layer, with the
total number of model parameters equal to 602.

Applying the flow A of the presented methodology to the LSTM network means that the pruning
and quantization parameters are selected globally for the model, and then applied for each of the W, U,
and b tensors. For example, when ‘hist_amount’ pruning method was used and pruning fraction = 0.1,
it is ≈10 % of each tensor that was pruned, and not some small fraction in one layer and much higher
in another.

Flow B, on the other hand, was designed to realize something akin to that second scenario.
Its objective was, in our case, finding the best pruning and quantization parameters for each of the W,
U, and b tensors individually, potentially resulting in lower resources consumption (e.g., when some
of the tensors can be more aggressively compressed than in flow A) or better quality (e.g., retaining
the high precision representation where it is needed and dropping it elsewhere). For the two-layer
network mentioned above, this means that instead of finding the single pruning fraction value, it needs
to optimize eight of them; similarly for the quantization bits.

2.4. Optimization Strategy—MO-CMA-ES

In this work, we deal with a range of relatively small number of parameters, but quite diverse.
There were also several criteria (e.g., the sparsity of the model, model performance) which were
simultaneously taken into account during the optimization process. This multiplicity makes it very
challenging to define a single descriptive objective function. Lack of a well defined objective function
or an inability to provide such may be prohibitive for using simple optimization methods or heuristics.
Furthermore, the parameter space is non-convex and not differentiable; thus, the gradient-based
optimization methods may not be employed. Utilization of naive grid or random search approaches
does no lead to satisfactory results because those procedures do not account for a complex nature of
the parameters space and do not improve in the process. Consequently, a very long examination time
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or a very dense grid of a parameters space would be required, which is prohibitive, especially for large
models where the computing time of each instance is long.

This leaves us with black-box optimization techniques. In this work, we have decided to
utilize evolutionary approach. There are many of such techniques [24], but all of them may be
formulated as an algorithm that delivers a set of candidate solutions to evaluate the optimization task
(see Algorithm 1).

Algorithm 1 Basic evolutionary strategy.

while true do
token, solution← sampler.ask() . ask for candidate solution
loss← evaluate(solution) . evaluate the given solution
sampler.update(token, loss) . give fitness result back to ES
if loss < REQUIRED_LOSS then

break
end if

end while

The straightforward approach of evolution strategy (ES) is based on using a standard distribution
with initially defined mean and variance. In each step, the very best value from the previous step of
the procedure and use it as a new mean. This approach has severe limitations and is prone to get
stuck in a local minimum. There is also a whole range of genetic algorithms (GAs) which introduce
mechanisms such as crossover recombination and mutations. GAs help to maintain a diversity of a set
of candidate solutions and perform better than the simpler algorithms. A whole range of improved GAs
was also developed, such as Enforced SubPopulations (ESP) [25], and NeuroEvolution of Augmenting
Topologies (NEAT) [26], which use clustering of similar solutions to maintain better diversity of
the population.

A limitation of simple ESs and GAs is taking a fixed value of standard deviation noise parameter.
This premise affects the efficiency of the explore-and-exploit mechanism operating in the solution
space. When an algorithm is close to the desired solution with high confidence, it should exploit
it; on the other hand, in the exploration phase, the algorithm should penetrate as ample candidate
solution space as possible.

The covariance matrix adaptation evolution strategy (CMA-ES) is a modern single objective ES,
introduced for the first time in [27], and later improved in [28,29]. It turned out that it works very well
in a wide range of problems in a continuous domain.

The CMA-ES uses a number of best solutions from the current generation to calculate both mean
and standard deviation of the parameters being optimized. The change of the standard deviation
value allows to adjust the size of the search space, i.e., whether algorithm focuses on exploitation
or exploration, as can be seen in Figure 6. Those re-calculated values are then used to generate
the candidate solutions for the next generation, with parameters sampled from a multivariate
normal distribution.

One of the beneficial properties of CMA-ES is the rate at which good approximations of the global
minimum can be found. It is also resistant to using the incorrect initial set of parameters due to its
self-adaptive nature.

There is an extension of CMA-ES for multi-objective optimization denoted as MO-CMA-ES [30].
Since MO-CMA-ES operates on multiple objectives, it yields Pareto fronts as a result (Algorithm 2).
The Pareto front is a set of results which cannot be improved any further i.e., improvement of any of
the objectives can be made only at the expense of the others. The Pareto fronts are also used in the
process of the next candidate solution selection.
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Figure 6. Sample multi-objective covariance matrix adaptation evolution strategy phases. (a) Explore—
algorithm samples the whole search space; (b) exploit—algorithm starts to converge to the best solutions.

A detailed description of CMA-ES and MO-CMA-ES is beyond the scope of this paper, however
we encourage the reader to look into [24,27–30] for more information.

Algorithm 2 Multi-objective evolutionary strategy.

for step← 0 to max_steps do
token, solution← sampler.ask() . ask for candidate solution
loss← evaluate(solution) . evaluate the given solution
sampler.update(token, loss) . give fitness result back to ES

end for
results← sampler.results()
f irst_ f ront← get_first_pareto_front(results)

To optimize pruning and weights quantization parameters we used MO-CMA-ES provided by
the chocolate package [31]. We optimized four basic parameters: pruning method, pruning fraction,
quantization method, and quantization bit-width. The number of parameters increased to 2 + 2 ∗ L
with the number of layers L when the individualized approach was used. Evaluated pruning methods
are described in Appendix A, and quantization methods are explained in Appendix B.

We used three optimization criteria (designed for minimalization):

1. Quality score, where qualorig is the original model’s quality measure, preferably in [0, 1] range,
qualpq is the quality after weights pruning and quantization, and allowed_drop = 0.01 is the
allowed quality drop. If quality score < 1, the pruned and quantized model’s quality is considered
to be satisfactory.

quality score =
qualorig − qualpq

allowed drop
. (10)

When using a quality measure that is designed to be minimized (such as root-mean-square error
(RMSE)), the quality score is additionally negated.

2. Sparsity score, where N is the number of model weights, and wi is the i-th weight value.

sparsity score = 1− 1
N

N−1

∑
i=0

(wi == 0) (11)
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3. Used bits score, where N is the number of model weights, and bit-width (wi) is the i-th weight
bit-width after quantization. Used bits score is adjusted to fall into [0, 1) range, assuming the
maximum allowed bit-width after quantization is 31 bit.

used bits score =
1

N · 32 bit

N−1

∑
i=0

bit-width (wi). (12)

As presented in Algorithm 2, the optimization was run for a fixed number of max steps, calculated
according to the Equation (13). The number of parents used to generate the candidates was mu = 30.

max steps = number of parameters ∗ number of optimization criterions ∗mu ∗ 10. (13)

2.5. Mapping Tool

As mentioned in Introduction, there are many challenges associated with hybrid model mapping,
such as inter-tool format translation, arbitrary precision emulation, and incorporation of pruning and
quantization on all the processing levels. Rather than enumerating and presenting all of them, it is
better to provide a set of requirements which a decent and useful framework should meet. They are
based on our experience of many years of using high-level languages (HLLs) for hardware design
such as OpenCL, MitrionC, ImpulseC, CataputC as well as DL models training. Primarily educative
in terms of experience was our work [32], which led us to an idea and an architecture presented in
this paper.

A high-level tool for mapping Machine Learning models to hardware, especially FPGAs should:

• provide the ability to migrate, map and test using a single set of tests at all levels of the project
description abstraction (from the meta description on the top layer, through the intermediate
format up to HDL). This ability is especially important if there are changes in the notation of the
data structure at particular levels of the description,

• allow parametrizing modules on a high level of description,
• provide a mechanism for arbitrary data representation and modification along with all the

associated arithmetic operations,
• enable of simulation at all the development levels, preferably using the same tests, or provide

mechanisms which generate test-benches for hardware simulations,
• come with a library of predefined DL modules comprising a set of basic application programming

interfaces (APIs) for developing new custom elements,
• include HDL generation back-end which preserves the original architecture of the model, so the

debugging and analysis on the hardware level is facilitated.

We treated the directions presented above as guidelines in the process of designing our DL2HDL
(see Supplementary Materials). The block diagram of the tool flow is presented in Figure 7.

In the first step of the process, a deep learning model was trained in Keras or PyTorch. Since the
main flow is in PyTorch, a model trained or provided in Keras is converted to PyTorch. The conversion
tool was embedded within the flow. The PyTorch was chosen because it is a dynamic-graph-based
framework, which made it much easier for debugging and instrumenting the code. It was especially
vital during the initial stages of development of the flow.

Once the DL model was trained, quantized and pruned, the three actions were taken:

• appropriate components from the custom DL library are picked and embedded in the model,
• MyHDL wrapper around the DL learning components was generated,
• MyHDL test files were generated to be used for verification of the code this stage.

The custom library of the DL components was created along with a tool which populates a DL
model with the elements from the library. Currently, the library contains the following components:
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• a set of activation functions: relu, sigmoid, tanh and softmax
• a set of layers: linear, conv1D, conv2D,
• LSTM,
• maxpool.

All the layers were parameterizable, which enabled smooth integration to form a complete model.
In addition to the layers, sample complete models based on recurrent neural network (RNN) and
convolutional neural network (CNN) were available.

Extract model structure & weights
in PyTorch format

Model

MyHDL simulation
Optional

Map to HDL

Behavioral simulation
Optional

Synthesis

Implementation

Bitstream loading

Quantization and pruning

Generate model in Python
MyHDL-based

Generate test bench
Optional

N
N

 fr
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ew
or

k
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Conversion to PyTorch format
Optional

Latency and resources estimation
Optional

Latency and resources results

Figure 7. DL2HDL flow.
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Next, once the model was compiled HDL was generated using the to_HDL conversion tool based
on MyHDL package [33]. From this point in the flow, a standard FPGA flow was followed, which is
composed of functional simulation, synthesis, and implementation. As the final step, a bitstream was
generated and uploaded to FPGA.

It is worth noting that at any stage of this flow, it was possible to revert and redo the step
before. This option was per the principles of proposed methodology because it allows for redoing the
operations many times before the satisfactory latency is met.

2.6. FPGA System Architecture

Figure 8 presents the schematic of the network implemented using DL2HDL tool. All component
are connected using AMBA AXI4-Stream interface [34], which facilitates easy modifications. Data
transfer to and from the network is managed by receiver, and transmitter blocks. In our implementation,
a receiver collected serial data using 32-bit wide interface and when full feature map is received,
transmits it as one data word. For example, if input data for the LSTM is a set of values from four
analog-to-digital converters (ADCs) then the output word width was 4× ADC data width.

Receiver LSTM LSTM Flow Ctrl Linear Softmax Transmitter
Axis[NxM0]Axis[32] Axis[NxM1] Axis[NxM2] Axis[NxM3] Axis[NxM4] Axis[NxM5] Axis[32]

LSTM Cell

Cell

Data

Hidden

Cell

Hidden

Reg

Reg

Reg

Broadcast
Reg

Axis

Axis

Axis

Axis

Axis

Axis

Axis

Axis

Axis

Sequence 
Counter

IN

OUT

Figure 8. Field-programmable gate array (FPGA) network implementation schematic. N—bit width,
M—# of elements in a feature map.

This approach allows for full unroll of operations in subsequent blocks. The transmitter works
similarly but in the opposite direction. However, thanks to the modular approach and standard
interface, receiver and transmitter blocks can be easily replaced to match the desired interface. LSTM
layers work on a series of data, but the linear layer needs a single sample, and for that purpose, the flow
control block was introduced. It counted the sequence samples and passed only the last one to linear
layer; other connection schemes can also be implemented. Inside the LSTM, apart from an LSTM cell,
additional registers were placed to ensure synchronization of passing data in temporal dimension,
additional sequence counter control clearing and setting these registers to zero input at the beginning
of each new sequence.

The LSTM cell was built according to the Equations (2)–(6). First, the linear operations were
performed, and gates were concatenated for input and hidden state so that only two linear modules
were required. Then the data was split for separate activations, and all element-wise operations were
performed. Single data word contains a complete feature map; therefore, element-wise operations
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can be fully unrolled. As they execute relatively simple operations, additional registers were not
necessary; as a result, element-wise operations do not introduce latency in terms of clock cycles,
only indirectly in logic complexity between modules. However, during development, the tests
showed that the linear modules have a large impact on final latency. Hyperbolic tangent was
implemented as a linear approximation, which is further discussed in Appendix D, and hard sigmoid
was implemented similarly.

In linear module operations are split for each output unit, then multiplication is fully unrolled.
The results are accumulated using tree addition presented in Figure 9. Summation operation proved
to be time-consuming in terms of logic complexity, and it is necessary to insert registers between
summation levels for bigger layers. For modern Xilinx devices, it is enough to insert registers every
two to three levels to bring logic complexity close to the rest of the design; this parameter can be easily
changed. Multiplication results were in fixed point format; summation result was also a fixed point,
which introduces the risk of overflow for narrow representations. This effect was mitigated by the
distribution of results concentrated on both the positive and negative side of zero; however, to ensure
proper operation data width need to be verified during a simulation on training data set. Components
inside the LSTM cell were also using AXI4-Stream interfaces to communicate.

Le
ve

l 0
Le

ve
l 1

Le
ve

l 2
Le

ve
l 3

Figure 9. Summation scheme in linear layer.

Summation in softmax function was implemented similarly as in the linear layer. Additionally,
there is a choice between two exponent implementations: calculated approximation, and a look-up
table. Look-up table implementation was significantly faster, but its size grows with data width,
therefore for wider data approximation scheme should be selected. In most of our experiments,
the look-up table proved to give better results.

We have noticed that using the same bit-width for data, weights, and activations representation
is, in most cases, wholly sufficient and optimal. Using smaller bit-with may lead to overflow. On the
other hand, using a larger bus size is sub-optimal in terms of resources consumption of an FPGA.

3. Results

To present and validate the methodology, we have examined three datasets using ’analysta’, our
time series analysis framework (see Supplementary Materials). The first one is the International Airline
Passengers data from the Time Series Data Library (TSDL) [35]. It was used in a toy example, depicting
selected aspects of the methodology. The [IAP] tag was used in figures’ and tables’ captions for easier
identification of the related results.

The second dataset contains PM2.5 pollution data of the US Embassy in Beijing in conjunction
with meteorological data from Beijing Capital International Airport [36]. The model objective in this
example was to predict the pollution value. The related results are marked with the [PM2.5] tag.

The third, most extensive use case was based on the experiments conducted in [17], which was
focused on exploring the influence of history length and various data quantization schemes on the
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models’ performance. The data we used came from the post mortem (PM) database of European
Organization for Nuclear Research (CERN) Large Hadron Collider (LHC), representing the state of
the superconducting magnets. The figures and tables containing related results are marked with the
[LHC] tag.

It may be beneficial to estimate and compare the resulting model size with original, uncompressed
one to interpret the compression results. For model with N weights wi ∈W, its approximate size after
pruning and linear quantization can be calculated as follows:

compressed model size =
N−1

∑
i=0

bit-width (wi) if wi <> 0. (14)

This value can then be compared with original size, calculated as N · 32 bit:

percentage of original model size =
100 % ∗ compressed model size

N · 32 bit
. (15)

3.1. International Airline Passengers

To illustrate the selected aspects of the methodology, we used the International Airline Passengers
dataset [35]. It contains the number of international airline passengers in thousands per month,
collected between January 1949 and December 1960, and has 144 data points in total, first 92 of which
we used for training, 23 for validation and the remaining 29 for testing. The history window length
was set to 5, and batch size was = 1.

3.1.1. Initial Conditions Analysis

The network we used contained n = 4 LSTM cells and a single dense unit, with a single input
(k = 1) and a single output feature (m = 1). Total number of parameters, with tensor sizes calculated
according to Equation (8), was 101. The uncompressed model memory usage, assuming 32 bit
representation, was therefore 404 B. The hypothetical memory usage after extreme compression
can be calculated according to Equation (1):

memory = 101 ∗ 1 bit ∗ 0.05 ≈ 5 bit ≈ 1 B. (16)

3.1.2. Pruning/Quantization Optimization

The optimization was done according to flow A—finding per-model weights pruning and
quantization parameters. Due to the small size of the original dataset, the optimization process
could use it as a whole. The RMSE (see Equation (A14) in Appendix C) was used as a quality measure,
resulting in a following quality score:

quality score =
RMSEpq − RMSEorig

0.01
. (17)

Optimization was run for 3600 steps and resulted in 49 unique Pareto optimal solutions, four of
which retained the required quality score < 1. The results are shown in Table 1 and Figure 10a.
Figure 10a shows that the best result results range 12.22 % to 12.50 % with size of 4 to 5 bits. It is worth
noting that the biggest contribution came from quantization, and the sparsity level due to pruning was
relatively low. This sparsity level resulted from a small size of the model, which cannot be pruned as
effectively as large models.
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Figure 10. [IAP] Unique first Pareto front results. (a) Flow A: per-model pruning and quantization.
trendline(x) = −89.1− 48.2 ln x; (b) Flow B: individualized pruning and quantization. trendline(x) =
−275− 74 ln x; (c) Flow C-A: pruning and quantization with single retraining epoch. trendline(x) =
−320− 109 ln x.
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Table 1. [IAP] Results for pruned and quantized model. Percentages in the ‘#LUT’ and ‘#DSP’ refer to
the overall resources available on the chip.

Pruning Quantization Quality Sparsity % of Original
#LUT #DSP

Latency

Method Fraction Method Bits Score (%) Size; Equation (15) (ns)

simple 0 thq 4 −27.08 0 12.50 143 (0.04 %) 0 (0 %) 27

hist_amount 0.1916 linear 5 −8.52 23.08 12.38 427 (0.13 %) 0 (0 %) 37

hist_amount 0.2379 thq 5 −2.54 23.32 12.22 403 (0.12 %) 0 (0 %) 36

simple 0.1286 thq 13 0.89 27.64 30.57 1634 (0.48 %) 85 (2.41 %) 111

3.1.3. Individualized Pruning and Quantization

The individualized weights pruning and quantization optimization (flow B) was run for
10,800 steps. Its aim was to find optimal pruning fraction and quantization bits for each of the
W, U and b tensors. It resulted in 192 unique Pareto solutions, 52 of which retained the required quality.
While the pruning fraction in each of those solutions was different, only 37 different values of quality
score and sparsity score were yielded, with small values differences having no impact on the final result.
Those 37 representative results are shown in the Table A2 (Appendix E) and Figure 10b.

It is worth noting that in this case, the individualized pruning and quantization led to much
better results than the per model approach (flow A). This is reflected in Table A2, where the lowest
compressed model size is 0.68 % of the original. It is worth noting that for the best case in Table A2
sparsity is 78.85 % and 1 to 3 bits are used for most of weights representation.

3.1.4. Pruning and Quantization with Retraining

For optimization with retraining, we have limited the range of the optimized parameters to the
number of bits ∈ [4, 31] and pruning fraction ∈ [0, 0.5). We have applied the retraining procedure
using keras.optimizers.SGD (lr = 0.0001, momentum = 0.0, decay = 0.0, nesterov = False) and weights
masking. The masking means that the model weights that were pruned were discarded from the
training process in the next iteration. Optimization was run for 3600 steps and resulted in 44 unique
Pareto optimal solutions, 30 of which retained the required quality score < 1. In all of those 30 solutions,
the ‘thq’ was selected as the quantization method, with the number of bits = 4, and ‘simple’ pruning
method was chosen. Similarly to the individualized optimization, the pruning fraction in each of those
solutions was different, however only seven different values of quality score and sparsity score were
yielded. Those seven representative results are shown in Table A3 (Appendix E) and Figure 10c. It can
be seen that for this example, the retraining positively impacts the model compression limits.

3.2. Beijing PM2.5 Pollution

This dataset contains hourly readings of the PM2.5 concentration from the US Embassy in
Beijing, combined with the meteorological data from Beijing Capital International Airport [36],
and includes missing data. Each sample contains 13 attributes, including date of the reading, hour,
PM2.5 concentration (µg/m3), dew point (◦C), temperature (◦C), pressure (hPa), combined wind
direction, cumulated wind speed (m s−1), cumulated hours of snow and cumulated hours of rain.

The combined wind direction is expressed as one of five broad categories:

1. northwest (NW), which includes W, WNW, NW, NNW, and N;
2. northeast (NE), which includes NNE, NE, and ENE;
3. southeast (SE), which includes E, ESE, SE, SSE, and S;
4. southwest (SW), which includes SSW, SW, and WSW;
5. calm and variable (CV).

The gaps in the data shorter than 12 h were interpolated. Longer gaps split the data into 37
variable-length series, containing 42,168 samples in total. Series were then assigned to training,



Sensors 2019, 19, 2981 20 of 47

validation and testing sets, maintaining roughly a 64-16-20 split. The model task was to predict the
value of the PM2.5 concentration. For experiments, the history window length was set to 72, with batch
size = 1024.

3.2.1. Initial Conditions Analysis

The network we used contained 16 LSTM cells and a single dense unit, for a total of 1873
parameters. The hypothetical memory usage after extreme compression is:

memory = 1873 ∗ 1 bit ∗ 0.05 ≈ 94 bit ≈ 12 B. (18)

3.2.2. Pruning/Quantization Optimization

Optimization was run for 3600 steps. Since the dataset is quite small, it was used whole during
the optimization process. Similarly to the International Airline Passengers example, the RMSE was
used in a quality score.

Optimization resulted in 165 unique Pareto optimal solutions, 39 of which retained the required
quality score < 1. For selected of those solutions, the hardware resources consumption and latency were
simulated and presented in Table 2. The full results are shown in Table A4 (Appendix E) and Figure 11a.
In terms of percentage of original model size, the best result for this dataset is comparable to the one
achieved for International Airline Passengers (Section 3.1.2), but the Pareto front is much larger.

Table 2. [PM2.5] Selected results for pruned and quantized model. Percentages in the ‘#LUT’ and
‘#DSP’ refer to the overall resources available on the chip. Full results are available in Table A4.

Pruning Quantization Quality Sparsity % of Original
#LUT #DSP

Latency

Method Fraction Method Bits Score (%) Size; Equation (15) (ns)

simple 0.0312 linear 15 −0.01 13.46 42.30 21,125 (6.19 %) 1559 (44.19 %) 110

simple 0.0380 log_linear 21 −0.01 14.75 58.27 36,393 (10.66 %) 1634 (46.32 %) 132

simple 0.0237 linear 6 0.34 10.03 17.42 5422 (1.59 %) 0 (0 %) 54

hist 0.0924 linear 11 0.37 19.22 28.26 18,886 (5.53 %) 655 (18.57 %) 101

simple 0.0596 linear 31 0.53 20.73 80.74 46,441 (13.61 %) 3178 (90.08 %) 184

simple 0.0675 log_linear 17 0.55 21.33 43.08 23,024 (6.75 %) 1499 (42.49 %) 113

simple 0.0862 linear 19 0.56 26.30 45.14 24,703 (7.24 %) 1424 (40.36 %) 120

simple 0.0625 linear 10 0.61 20.91 25.83 27,095 (7.94 %) 0 (0 %) 84

simple 0.0874 log_linear 16 0.63 26.40 37.83 20,003 (5.86 %) 1382 (39.17 %) 111

hist 0.2085 thq 9 0.65 22.65 21.43 17,697 (5.19 %) 0 (0 %) 70

hist 0.1185 linear 5 0.65 19.70 12.57 972 (0.28 %) 0 (0 %) 57

hist 0.2323 linear 14 0.73 22.91 32.91 19,383 (5.68 %) 1316 (37.3 %) 110

hist 0.2074 linear 8 0.80 22.65 19.05 12,411 (3.64 %) 0 (0 %) 69

simple 0.0786 linear 7 0.83 24.93 17.00 7751 (2.27 %) 0 (0 %) 60

simple 0.0908 linear 18 0.99 28.50 41.95 22,591 (6.62 %) 1375 (38.97 %) 119

simple 0.0811 linear 13 0.99 25.13 31.30 18,170 (5.32 %) 1166 (33.05 %) 112
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Figure 11. [PM2.5] Unique first Pareto front results. (a) Flow A: per-model pruning and quantization.
trendline(x) = −6.6− 12 ln x; (b) flow B: individualized pruning and quantization. trendline(x) =
−4.65− 8.13 ln x; (c) flow C-A: pruning and quantization with single retraining epoch. trendline(x) =
−5.87− 9.04 ln x.
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3.2.3. Individualized Pruning and Quantization

The individualized pruning and quantization optimization (flow B) was run for 10,800 steps.
It resulted in 332 unique Pareto solutions, 11 of which retained the required quality. The results are
presented in Table A5 (Appendix E) and Figure 11b.

In case of this dataset, the individualized pruning and quantization did not lead to as good results
as applying the flow A. This inability to at least match the best per-model outcomes may indicate that
the selected number of optimization steps was too low for the number of optimized parameters.

3.2.4. Pruning and Quantization with Retraining

For optimization with retraining, we have limited the range of the optimized parameters to the
number of bits ∈ [4, 31] and pruning fraction ∈ [0, 0.5). Optimization was run for 3600 steps and
resulted in 111 unique Pareto optimal solutions, 40 of which retained the required quality score (<1).
The results are presented in Table A6 (Appendix E) and Figure 11c. Adding the retraining operation
yielded solutions with the slightly improved quality score; however, contrary to the example presented
in Section 3.1.4, it does not seem to affect the model compression limits.

3.3. Superconducting Magnets

This case study was based on the experiments conducted in [17], which was focused on
exploring the influence of history length and various data quantization schemes on the models’
performance. The data we used came from the PM database of CERN LHC, representing the state of
the superconducting magnets. Four data channels were used: UDIFF (total voltage), URES (resistive
voltage), IDCCT (current measured using Hall sensor), and IDIDT (time derivative of the electric current).
Anomalies were marked using QUENCHTIME field as a start and until the end of series. Overall,≈26 %
of used samples were marked as anomalous, which allowed using the accuracy (see Equation (A15) in
Appendix C) as one of the quality measures.

The currently used system can detect an anomaly (a quench) with a latency of ≈10 ms. Such a low
latency is needed to start the shutdown procedure and safely discharge the magnet, without it being
damaged. This system, however, requires manual adjustments for each magnet type and needs to be
reworked for new devices that will be introduced in high-luminosity (HL) LHC phase. Our recent
work concentrates on proposing an alternative solution, based on RNNs, that could become a part of
the new protection device [16,17]. In order to meet the hard real-time requirements, the RNN-based
model needs to be mapped to hardware, more specifically the FPGA. Also, the FPGA reconfigurability
is a vital trait due to the necessary modifications caused by the change of the data’ parameters
during the operational period as a result of normal working conditions and the elements degradation.
Consequently, the model should be updated regularly with a newly trained version to maintain the
highest performance.

While the work on designing the exact solution that will ensure the required quality is still ongoing,
the research has reached the stage at which the actual hardware results are needed. The mapping flow
was tested using a Keras model comprised of two LSTM layers, first with 64 cells and second with
32 cells, and a two-unit dense layer (for one-hot encoding). Total number of model parameters can be
seen in Table 3.

Table 3. [LHC] Sizes of tensors containing the model weights.

LSTM1 LSTM2 Dense
Total

W1 U1 b1 Total W2 U2 b2 Total WD bD Total

1024 16,384 256 17,664 8192 4096 128 12,416 64 2 66 30,146
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3.3.1. Initial Conditions Analysis

The tested model comprises of two LSTM layers and a single dense layer. The exact tensors
sizes for the used architecture can be seen in Table 3. Equation (1) was used along with the data in
Table 3 to compute the critical amount of memory size, which is essential to proceed with the proposed
procedures. The calculations are as follows:

memory = (17664 + 12416 + 66) ∗ 1 bit ∗ 0.05 ≈ 1507 bit ≈ 188 B. (19)

We also directly mapped the model to using 32-bit fixed-point precision without compression
and it turned out that it exceeded available resources on the target FPGA, Xilinx Zynq UltraScale +
MPSoC XCZU15EG. This result led us to the conclusion that the proposed methodology is essential in
order to map the model to the FPGA.

3.3.2. Pruning/Quantization Optimization

To speed up the optimization process (done according to flow A), we have extracted the testing
subset containing ≈8 % of original samples. The subset size was selected based on the incremental
dataset boosting method. At first, mean and variance were calculated for a single batch with
size = 16,384). Then, the dataset was expanded by another batch, with mean and variance calculated
again. If they changed more than a selected threshold (in our case 1%) when compared to the previous
values, the dataset was expanded by a single batch again. In the end, the quality measures for the
subset were compared with original ones (as seen in Table 4), and similarity confirmed.

Table 4. [LHC] Models’ predictions quality depending on test set size. For quality measures definitions
see Appendix C.

Data Bucketization Accuracy F1
Score

F2
Score Precision Recall Total

Samples
Anomalous Data

(%)

all no 0.8604 0.7892 0.7913 0.7857 0.7927 499 020 32.96yes 0.8634 0.7869 0.7738 0.8098 0.7654

subset no 0.8586 0.7888 0.7910 0.7853 0.7924 40 960 33.34yes 0.8609 0.7857 0.7733 0.8074 0.7652

Optimization was run for 3600 steps, and resulted in 34 unique Pareto optimal solutions (Figure 12a),
14 of which retained the required accuracy (drop < 1 p.p.). For those solutions, the quality score was
validated using full test set and the hardware resources consumption and latency were simulated.

The simulation results are presented in Table 5. Different variants of quantization procedure were
used along with different bit-width. Many of the solutions exceeded the resources’ capacity of the
FPGA chip used for the experiments. However, the results which were obtained show that regardless
of the procedure, the best 5 bit to 6 bit quantization leads to negligible accuracy drop and the best
processing latency of a single chunk at the level of 210 ns.

We also run a short experiment with combining the sparsity_score and used_bits_score into a single
loss value, it, however, yielded inferior results (out of 2400 optimization steps it generated 18 unique
Pareto optimal solutions, only two of which retained the required accuracy).
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Figure 12. [LHC] Unique first Pareto front results for model trained on continuous data. (a) Flow
A: per-model pruning and quantization. trendline(x) = 0.364− 1.63 ln x; (b) flow B: individualized
pruning and quantization. trendline(x) = 1.02− 1.81 ln x.
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Table 5. [LHC] Results for pruned and quantized model trained (and retrained) on continuous data. In ‘quality score’ and ‘sparsity’ columns, values in parentheses
indicate results obtained when using model retraining (see Section 3.3.4), with results better than with no retraining marked in bold. Pauses indicate results, for which
the resources consumption exceeded the XCZU15EG FPGA capacity. Percentages in the ‘#LUT’ and ‘#DSP’ refer to the overall resources available on the chip.

Pruning Quantization Quality Score
Sparsity (%)

% of Original Size;
#LUT #DSP Latency (ns)

Method Fraction Method Bits Optimization Full Equation (15)

hist_amount 0.0816 linear 16 −0.3955 (−0.0293) −0.4058 8.10 (8.10) 46.01 – – –

hist_amount 0.3365 minmax 13 −0.1953 (0.8179) −0.1645 33.71 (33.54) 26.93 – – –

hist_amount 0.3385 linear 26 −0.1709 (−0.4004) −0.1495 33.76 (33.76) 53.77 – – –

hist_amount 0.3392 linear 29 −0.1660 (−0.0269) −0.1479 33.76 (33.76) 59.97 – – –

simple 0.0035 minmax 6 −0.1514 (−0.1831) −0.2222 2.13 (4.28) 18.48 41,991 (12.30 %) 4 (0.11 %) 263

hist_amount 0.4199 linear 31 −0.0806 (51.8018) −0.1741 41.86 (41.86) 56.06 – – –

hist_amount 0.3449 linear 26 −0.0244 (0.9424) 0.0573 34.71 (34.71) 53.24 – – –

hist_amount 0.1391 linear 11 −0.0024 (−0.2466) 0.0142 13.96 (13.96) 29.61 260,116 (76.22 %) 1729 (49.01 %) 477

hist_amount 0.1764 linear 11 0.0049 (1.0889) 0.0465 17.25 (17.42) 28.32 253,541 (74.29 %) 1711 (48.50 %) 443

simple 0 thq 5 0.0537 (0.0537) 0.1148 0 (0) 15.63 13,694 (4.01 %) 4 (0.11 %) 210

hist_amount 0.3499 linear 25 0.0659 (0.1050) 0.1170 35.08 (35.08) 50.64 – – –

hist_amount 0.3474 linear 22 0.0732 (0.0122) 0.1345 34.77 (34.77) 44.94 – – –

hist_amount 0.3541 log_minmax 6 0.2588 (0.1929) 0.2950 35.80 (35.80) 12.14 38,147 (11.18 %) 4 (0.11 %) 253

hist_amount 0.4812 linear 26 0.9326 (51.4990) 0.9683 47.88 (41.86) 42.03 – – –
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3.3.3. Individualized Pruning and Quantization

The optimization, with pruning and quantization parameters separate for each of the W, U and
b tensors, ran for 16,200 steps. It resulted in 110 Pareto solutions (Figure 12b), but only two of those
retained the required accuracy (drop < 1 p.p.), and further 12 results had drop < 2 p.p. The best results,
presented in Table A7 (Appendix E), are slightly worse than the solutions found when applying flow
A. This, in conjunction with the small number of results retaining the required quality may indicate,
that the selected number of optimization steps was too low.

3.3.4. Pruning and Quantization with Retraining

Pruning and retraining can be considered as one of the most flexible compression schemes
since it enables weights shaping after each iteration step. However, it is worth noting that
optimization with retraining can also be very time consuming, e.g., in our case a single
pruning-quantization-retraining-pruning-quantization step took ≈23 min, so the optimization running
for 3600 steps was estimated to take nearly two months. Therefore, we decided to apply the retraining
procedure only in conjunction with previously optimized parameters. The results are presented
in Table 5 (in parentheses). For retraining, the full dataset was used, and in only in a few cases,
the performance (accuracy) of the model improved. Based on those experiments, it can be seen that
using the predefined pruning and quantization parameters, even previously optimized, does not
guarantee a good starting point for the retraining.

3.3.5. Data Bucketization

We also ran the experiments for flow D, using the recursive_adaptive data bucketization algorithm.
It maps the input space to a fixed number of bins in such a way that all the resulting, uneven bins
have similar cardinality if possible. For more details, please see Section 2.1 and Appendix A of [17],
and Section 4.2 of [16]. The tested model structure was the same (two LSTM layers, with 64 and 32 cells,
respectively, and a two-unit dense layer), which allowed us to focus on the differences caused by the
data bucketization itself. The training on bucketized data yielded results on par with the original
dataset (see Table 4). Also, in this case, for optimization, a test subset of ≈8 % original size was used.
Optimization was run for 3600 steps, and resulted in 42 unique Pareto optimal solutions, eight of
which retained the required accuracy (Figure 13a).

The best results, presented in Table 6, show that data bucketization can be beneficial—the latency
of the model is in a similar range as in Table 5 with quite low resources consumption.

Applying individualized pruning and quantization, with optimization running for 16,200 steps,
yielded 12 results meeting the accuracy criterion (Figure 13b). The best results are shown in Table A8
(Appendix E). It is worth noting that individualized pruning and quantization (flow B) along with
data bucketization, in this case, yield better results in terms model size after compression.
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Table 6. [LHC] Results for a pruned and quantized model trained on bucketized data. Pauses indicate results, for which the resources consumption exceeded the
XCZU15EG Field-programmable gate array (FPGA) capacity. Percentages in the ‘#LUT’ and ‘#DSP’ refer to the overall resources available on the chip.

Pruning Quantization Quality Score
Sparsity (%)

% of Original Size;
#LUT #DSP Latency (ns)

Method Fraction Method Bits Optimization Full Equation (15)

hist_amount 0.2266 linear 11 −0.3735 −0.2932 22.50 26.51 243,216 (71.27 %) 1693 (47.99 %) 443

hist_amount 0.1984 linear 10 −0.2856 −0.2058 19.42 25.08 199,905 (58.58 %) 292 (8.28 %) 376

hist_amount 0.2318 log_minmax 22 −0.2344 −0.1918 22.64 52.77 – – –

hist_amount 0.0909 thq 7 −0.2173 −0.1132 9.01 19.89 68,903 (20.19 %) 6 (0.17 %) 354

hist_amount 0.2314 linear 16 −0.2051 −0.1788 22.55 38.49 – – –

hist_amount 0.1665 linear 7 −0.0854 −0.0663 16.63 18.23 66,714 (19.55 %) 6 (0.17 %) 344

hist_amount 0.2090 linear 9 −0.0781 −0.0419 21.30 22.20 140,061 (41.40 %) 298 (8.45 %) 376

simple 0.0429 minmax 4 0.3394 0.3401 31.42 9.95 9067 (2.66 %) 9299 (1.36 %) 210
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Figure 13. [LHC] Unique first Pareto front results for model trained on bucketized data. (a) Flow D-A:
per-model pruning and quantization. trendline(x) = 6.16− 1.19 ln x; (b) Flow D-B: individualized
pruning and quantization. trendline(x) = −1.42− 2.01 ln x.

3.4. DL2HDL Comparison with Other Frameworks

To our best knowledge, the only high-level tool that can achieve comparable latency for neural
network inference in FPGA is hls4ml [10]. This tool was designed to work in particle physics
experiments, where response time is crucial. It provides similar functionality using a different approach.
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The main difference between our flow and the hls4ml processing architecture is the number
of procedure’s stages. In hls4ml, in the first stage, the model is created in one of the high-level DL
frameworks, such as Keras or PyTorch, then it is mapped to Vivado HLS, and in the last step, the FPGA
RTL structure is generated by the synthesis and implementation tool. Our DL2HDL tool skips the
middle step and provides mapping directly from Python to HDL. It is worth noting that the number of
conversion steps affects the flexibility of the tool and may a source of potential mapping challenges.
Thus, we decided to simplify the flow when designing the DL2HDL.

Since at the time of this article submission the hls4ml support for recurrent neural networks was
not yet available, we were not able to test it on network architectures examined in this work. However,
it was possible to test the DL2HDL using the very similar network to the one presented in [10].

The tested architecture was a four-layer fully connected network, with ReLU as activation of
the first three layers and softmax as output activation. Although we believe that softmax activation
can be omitted in this application, we included it for a fair comparison. We used the same 16 bit
wide fixed-point representation and pruned the network to the same number of parameters (1338).
After HDL generation, the implementation was performed using Vivado software, for Xilinx Kintex
Ultrascale xcku115-flvb2104-2-i with a target frequency of 200 MHz, as in the original experiment.
Weights were randomly generated with uniform distribution.

Implementation results are summarized in Table 7. DPS usage and latency are on a similar level,
although our implementation is slightly faster. Logic utilization, however, is significantly lower when
using DL2HDL.

Table 7. Comparison with hls4ml framework, with percentage difference to original experiment [10].

hls4ml [10] DL2HDL

#DSP48E 954 1069 (112.05 %)
#LUT + #FF 88,797 38,146 (42.96 %)
latency (ns) 75 70 (93.33 %)

We also compared our flow with the LeFlow [8] tool-kit. In the setup, we used the results for
dense_a and dense_b reported in the paper. They are single dense layers including bias and ReLU
activation with a single input and 8 and 64 outputs respectively. Using DL2HDL, we have generated
layers with the same parameters. Results are summarized in Table 8. Resources utilization is not fully
comparable as authors in [8] performed tests on Altera Stratix IV EP4SGX290NF45C3, while our tests
were done on Xilinx xczu15egffvc900-1. However, thanks to the full unroll of operations and weights
hardcoded in logic, DL2HDL required significantly less time to infer through the layers.

Table 8. Comparison with the LeFlow framework.

LeFlow [8] DL2HDL

#LE MemB Latency (ns) #LUT #FF #DSP Latency (ns)

dense_a 1743 1056 1421 110 300 16 4.83
dense_b 1749 8224 10,343 4848 2154 124 5.15

4. Discussion

This paper proposes both methodology and its implementation tools. We did experiments to
validate them, which revealed a series of application aspects related to the effectiveness of the steps
and their recommended execution. We showed that the presented methodology and the tool could
be successfully applied to IoT mapping scenarios for latency and resources consumption estimation
and validation.
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We proposed a method to estimate model size in Equation (15), which assumes that linear
quantization is employed. Despite its simplicity, the method allows picking candidate results among
the Pareto front solutions for further processing e.g., mapping to hardware.

Figures 10–13 present the optimization results as a function of the estimated model size. Moving
towards the origin of the coordinate system leads to a growth of the quality score (degradation of
the model performance). In every model, there exist a core amount of resources which captures the
essence of the underlying processed modeled by the neural network [37]. Once the critical resources
are removed by pruning and quantization, the performance of the model starts to decline very fast.
This degradation usually occurs around 5 % to 10 % of the original model size. We have tested several
trendline models and discovered that, in general, the logarithmic trendline yielded good results in
terms of R2 metric.

The per-model scheme (flow A) seems to yield satisfactory results in most of the tested cases.
The solutions yielded by flow B seem to be inferior to the per-model approach while reaching them
required more computation time. We believe, however, that the limiting factor was the selected
number of optimization steps, calculated according to Equation (13). The individualized optimization,
running for a sufficient number of steps, should be able to reach at least the same performance as the
per-model one [37]. Also, when distributed implementation is at the premium, it may turn out that the
individualized approach may allow for better optimization from the perspective of each computing
node in the IoT network.

In the presented experiments, we limited our retraining setup to a single epoch of training,
which does not take a full adventure of this procedure. Training for multiple epochs, especially taking
into account loss function change to adjust learning rate, may lead to better results. It is also expected
that applying regularization techniques (such as weight decay) during training or retraining process
may lead to even better compression results [13,14]. While our setup accounts for this option in general,
it should be extended with a series of meta-parameters to use retraining for multiple epochs properly.
Careful selection of parameters, such as the number of epochs, learning rate adjustment schedule and
dataset size, is vital because retraining, especially with a full dataset is very time consuming and may
be counter-productive if not carefully implemented. Using a reduced dataset, possibly newly selected
in each epoch, and introduction of sensitivity list for the model’s layers may significantly boost the
effects of retraining procedure.

One of the possible compression flows for big models, not discussed in this work, is based on
the idea of incremental pruning and quantization. In this flow, introducing the sensitivity list allows
picking fragments of the model, which are pruning prone and should be addressed as first. Especially
in conjunction with retraining, the sensitivity list should be updated quite often, since the profile of the
model changes as the training progress. The process of refreshing of the sensitivity list by itself is also
computationally demanding. Therefore, it should also be deliberately adjusted and implemented [38].

We applied bucketization in one of the experiments and achieved comparable results to
using continuous data. Though, we noticed that the individualized scheme yielded better results
with bucketization. Additionally, in sensors networks with stringent energy and latency budget,
data transmission cost plays a critical role in the system. Bucketization considered as a form of
a compression scheme, enables dynamic data stream modulation with graceful performance degradation.

Comparison of unstructured pruning applied to FPGA and GPGPU/CPU is quite challenging,
since the latter platforms cannot directly benefit from DL models compression unless a dedicated
data structuring scheme is implemented [39–42]. This scheme is essential to take advantage of sparse
vector-matrix and matrix-matrix multiplication operations, which are much more efficient than their
dense counterparts, provided the data is prepared properly. In contrast, FPGA-based solutions
directly benefit from unstructured pruning and quantization as the underlying internal structure of
the platforms is adaptable and reconfigurable. For illustrative purposes, in Table 9, we presented the
comparison between inference times on different platforms.
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Table 9. Inference times for a single sample on various devices. The general-purpose graphics
processing unit (GPGPU) and central processing unit (CPU) experiments were done with uncompressed
models, since unstructured pruning and quantization does not significantly affect the performance.
For FPGA, the best per-model pruning and quantization results were used.

GPGPU (ns) CPU (ns) FPGA (ns)
Nvidia GeForce GT 730M Intel i5-4210M Xilinx Zynq UltraScale+ MPSoC XCZU15EG

[IAP] 0.72× 106 0.81× 106 27
[PM2.5] 5.33× 106 7.22× 106 54
[LHC] 39.5× 106 42.19× 106 210

There is a range of modifications which may be introduced to the proposed optimization routine
based on MO-CMA-ES. One of the most impactful can be the improvement of the loss function,
which reformulated may affect the performance of the optimization process. At the early stage of our
experiments we made a simple, unsuccessful attempt to merge the sparsity score and used bits score
into a single score; however, we believe that a more sophisticated combination may yield better results.

Multi-objective optimization is a quite complex operation; thus it is not easy to come up with
a stopping criterion which on hand would allow the process to converge, and on the other hand,
would not unnecessarily prolong the process. In this work, we chose to run the optimization for the
arbitrary number of steps, which, as mentioned, turned out to be a limiting factor. Using another form
of the stopping criterion could potentially lead to better results. An alternative could be developing
a different way calculating the maximum number of steps.

An interesting observation in terms of FPGA resources consumption is irregularity of its
distribution. For instance, in the course of the experiments, we found out that there is a component
in the model, which contributed vastly to the overall resources consumption. Because of the
non-hierarchical structure of the generated HDL code using MyHDL, it was hard to determine which
section it was. Fortunately, after some examination we determined tanh activation function as the
culprit (see Appendix D). As the next step, the module was re-implemented with tanh as a linear
approximation of the original function rather than Taylor function expansion. This change significantly
reduced the overall resources consumption (see Table A1). Not only it decreased the number of DPS
blocks within FPGA, but also changed a profile of available resources to the other submodules within
the implemented model, making it more balanced.

DL2HDL allows mapping DL models with arbitrary precision and sparsity to FPGA. It is
a part of the whole presented flow. The design choices we made during the tool development have
allowed reducing recurrent network inference latency to the scale of tens to hundreds of nanoseconds.
The standard interface between individual elements facilitates future development and refactoring of
network layers.

As future work, we plan to investigate all the described improvements of the optimization flow,
as well as to conduct an in-depth analysis of basic neural operators such as exp and tanh in the context
of model pruning and quantization.

5. Conclusions

The proposed mapping methodology and tools may be used in FPGA-based IoT devices for
model compression. It can also be employed for distributed systems since its application in every
node is independent and also can be ported across processing elements within the sensors network.
The methodology also proposes steps to be taken in order to assess potential resources consumption of
the system. It may be incorporated as a backbone element in a larger environment for a generation or
ad-hoc reconfiguration of a network infrastructure.

Our DL2HDL tool matches or supersedes the state-of-the-art solutions in terms of the achieved
latency, but the architecture is more uniform and allows mapping directly from Python to HDL.
Our solution generates HDL models with three orders of magnitude lower than LeFlow [8] and
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comparable to hls4ml [10]. For the LSTM network composed of four cells, it reached as low latency
as 27 ns with only 143 LUTs consumed of Xilinx Zynq UltraScale+ MPSoC XCZU15EG while for
a three-layer network with 32 and 16 LSTM cells and a two-unit dense layer on top it achieved the
latency of 210 ns.

Supplementary Materials: The developed time series analysis software ‘analysta’ is available online at https://
bitbucket.org/maciekwielgosz/anomaly_detection. The DL2HDL mapping tool is available at https://bitbucket.
org/maciekwielgoszteam/dl2hdl.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC analog-to-digital converter
API application programming interface
ASIC application-specific integrated circuit
CERN European Organization for Nuclear Research
CMA-ES covariance matrix adaptation evolution strategy
CNN convolutional neural network
CPU central processing unit
DL deep learning
ES evolution strategy
FPGA field-programmable gate array
GA genetic algorithm
GPGPU general-purpose graphics processing unit
HDL hardware description language
HL high-luminosity
HLL high-level language
IoT internet of things
LHC Large Hadron Collider
LSTM long short-term memory
MO-CMA-ES multi-objective covariance matrix adaptation evolution strategy
p.p. percentage point
PM post mortem
RMSE root-mean-square error
RNN recurrent neural network
TSA time series analysis

Appendix A. Pruning Methods

In experiments, three pruning methods were considered: simple, hist, and hist_amount. In the
following equations, w ∈W is used to denote the original value from the layer’s weights W.

The ‘simple’ pruning method sets all weights with an absolute value lower than a fraction fsimple
of maximal absolute weights’ value to zero:

simple(w) =

{
0 if |w| < fsimple ·max (|min(W)|, |max(W)|) ,

w otherwise.
(A1)

https://bitbucket.org/maciekwielgosz/anomaly_detection
https://bitbucket.org/maciekwielgosz/anomaly_detection
https://bitbucket.org/maciekwielgoszteam/dl2hdl
https://bitbucket.org/maciekwielgoszteam/dl2hdl
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In the ‘hist’ method, the weights’ values are divided into 212 equal bins. For each bin B with
cardinality size(B) and lower bin edge value vB (see Figure A1), the score sB is calculated:

sB =
3
√
(size(B) · vB)

8. (A2)

Then, the average score value s̄ is found and used to calculate a threshold, expressed as a fraction
fhist of the average score. The threshold is then compared with each bin’s individual score sB. Finally,
all the weights falling into the bins with scores below the threshold are set to zero:

hist(w) =

{
0 if w ∈ B : sB < fhist · s̄,

w otherwise.
(A3)

size(B)

bin B

vB
Figure A1. The ‘hist’ method concepts visualized using a histogram fragment.

The ‘hist_amount’ method zeroes weights until a target fraction fhist_amount of layer weights W is
changed (see Algorithm A1). The weights are divided into equal 210 bins. The procedure starts with
bins containing weights with the lowest absolute value, i.e., the absolute value of lower edge of bin B0

is smaller than the absolute value of the lower edge of bin B1, etc.

Algorithm A1 hist_amount pruning method

pruned← 0 . set the number of pruned weights to 0
i← 0 . used for bins indexing
while pruned < fhist_amount · size (W) do . pruned is lower than the threshold

for all w ∈ Bi do . set all the weights in the bin Bi to 0
w← 0

end for
pruned← pruned + size (Bi) . update the pruned weights amount
i← i + 1

end while

As can be seen in Figure A2, the effect of specific pruning method application depends on the
weights distribution. For normally-distributed data, ‘hist’ and ‘hist_amount’ yield similar results,
while for uniformly-distributed the similarities exist between ‘simple’ and ‘hist_amount’.
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(d) tU histogram after ‘simple’ pruning
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(f) tU histogram after ‘hist’ pruning
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(g) tN histogram after ‘hist_amount’ pruning
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(h) tU histogram after ‘hist_amount’ pruning

Figure A2. Application of different pruning methods for two tensors: tN—sampled from normal
distribution, and tU—sampled from uniform distribution and scaled to (−1,1) range. The tensors
length was 104. For each method, the pruning fraction = 0.2.
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Appendix B. Quantization Methods

For the presented experiments, we adopted common quantization methods. In the following
equations, w ∈W is used to denote the original value from layer’s weights W, and bits is the target
number of bits. In the implementation, when taking the logarithm, a tiny constant is added to prevent
errors related to taking the logarithm of zero.

It is worth emphasizing that using non-linear quantization procedures, such as presented in
Equations (A10)–(A12), requires in-hardware mapping schemes. These schemes are supposed to
encode unequally distributed quantized values to equally-spaced memory locations. The mapping is
a LUT operation, which outputs quantized values for corresponding input data. In hardware FPGA
implementation, it can be implemented by using BRAM or distributed RAM to store the mapping.
Access to the memory should be fast with low latency since the mapping procedure will be used for
all the operations which involve using quantized values. Fast access is essential since the internal
arithmetic modules such as MACs units of multipliers work with evenly-distributed fixed-point
numbers. Consequently, from a performance perspective, it is not recommended to keep the maps in
an external memory such as SDRAM for which as access time is extended.

The linear quantization can be defined as follows:

linear(w) = slinear · clip
(⌊

w
slinear

+
1
2

⌋
,−2bits−1, 2bits−1 − 1

)
, (A4)

where scaling factor slinear, the number of bits needed to store the integral part int_bits, and the
clipping function clip(a, min, max) are defined as:

slinear =
1

2bits−1−int_bits , (A5)

int_bits = dlog2 max(W)e , (A6)

clip(a, min, max) =


min if a < min,

a if min ≤ a ≤ max,

max otherwise.

(A7)

Another quantization method is based on finding the extreme values in the set:

minmax(w) = sminmax ·
⌊

w−min(W)

sminmax
+

1
2

⌋
+ min(W), (A8)

with scaling factor sminmax:

sminmax =
max(W)−min(W)

2total − 1
. (A9)

The ‘log’ versions of the above quantization methods can be described as:

log_linear(w) = sgn(w) · elinear(ln |w|), and (A10)

log_minmax(w) = sgn(w) · eminmax(ln |w|). (A11)

The last tested method is based on the hyperbolic tangent:

thq(w) = arctanh

(
sthq ·

⌊
tanh(w) + 1

sthq
+

1
2

⌋
− 1

)
, (A12)

where scaling factor sthq:

sthq =
2

2total − 1
. (A13)
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Appendix C. Quality Measures

The root-mean-square error used during experiments was calculated according to the formula:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi

r − yi
p

)2
(A14)

where yi
r and yi

p are a time series and its predicted counterpart, respectively, and N is
a dataset cardinality.

Given the values t and f representing, respectively, an amount of correctly and incorrectly
classified samples, the accuracy can be defined as in (A15):

accuracy =
t

t + f
. (A15)

An F score is calculated using two helper metrics, a recall (A16), also called sensitivity,
and a precision (A17):

recall =
tp

tp + fn
, (A16)

precision =
tp

tp + fp
, (A17)

where:

• tp—true positive—item correctly classified as an anomaly,
• fp—false positive—item incorrectly classified as an anomaly,
• fn—false negative—item incorrectly classified as a part of normal operation.

The β parameter controls the recall importance in relevance to the precision when calculating
an F score:

Fβ = (1 + β2) · recall · precision
recall + β2 · precision

. (A18)

During the experiments, two β values were used, 1 and 2, to show the impact of the recall on the
final score.

For the trendline models in Figures 10–13, the R2 (coefficient of determination) score was
calculated according to the following formula:

R2 = 1−

N
∑

i=1

∣∣yi
r − ŷr

∣∣2
N
∑

i=1

∣∣∣yi
r − yi

p

∣∣∣2 (A19)

Appendix D. Tanh Error

Figure A3 presents an error introduced by tanh polynomial approximation using Taylor series
according to Equation (A20). The result is clipped to range −1 to 1. Additionally, to ensure that the
function is monotonous, the result is set to the closest limit value after the point where monotonicity is
broken, this effect is visible for even number of polynomial degree.

tanh(x) = x− x3

3
+

2x5

15
− 17x7

315
+

62x9

2835
− . . . (A20)

It may be noticed that an increase of polynomial degree leads to more accurate approximation
for higher values. It is worth noting that for normalized model weights, the values are close to
zero. Therefore, using lower polynomial degree may be enough to obtain an accurate result. On the
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other hand, incorporating more complex approximation leads to the massive growth of the resources
consumption, as presented in Table A1.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Absolute value range

10 5

10 4

10 3

10 2

10 1

100

Er
ro
r

0
1
2
3
4
5
linear

Figure A3. Tanh error as function of x. Polynomial degree is indicated with different colors.

Table A1. Resources consumption for various tanh(x) approximation setups.

Implementation Bits
LUT FF DSP

# % # % # %

linear 32 6862 2.01 2062 0.30 0 0.00
series 369,210 108.18 34,117 5.00 3273 92.77

linear 16 2948 0.86 1038 0.15 0 0.00
series 26,765 7.84 9716 1.42 2080 58.96

linear 12 2212 0.65 782 0.11 0 0.00
series 16,818 4.93 7283 1.07 1088 30.84

linear 10 548 0.16 622 0.09 0 0.00
series 10,372 3.04 6067 0.89 672 19.05

linear 8 324 0.09 494 0.07 0 0.00
series 4516 1.32 2834 0.42 256 7.26

linear 6 147 0.04 398 0.06 0 0.00
series 1764 0.52 1362 0.20 256 7.26

As polynomial approximation requires a significant amount of resources, linear approximation
was also implemented (Equation (A21)). Its accuracy is lower, however maximal error lies around
4–5 bit 0.5 LSB and resource requirements are substantially smaller.

tanh(x) =



−1 x ≤ −1.5
0.25 ∗ x− 0.25 −1.5 ≤ x ≤ −0.5
x −0.5 ≤ x ≤ 0.5
0.25 ∗ x + 0.25 0.5 ≤ x ≤ 1.5
1 1.5 ≤ x

(A21)

Appendix E. Detailed Optimization Results

This Appendix contains the detailed results for International Airline Passengers [IAP] (Tables A2
and A3), Beijing PM2.5 Pollution [PM2.5] (Tables A4–A6) and Superconducting Magnets [LHC]
experiments (Tables A7 and A8).
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Table A2. [IAP] Results for individualized pruning and quantization.

Pruning Method

Pruning Fraction
Quantization

Method

Quantization Bits

Quality Score Sparsity
(%)

% of Original Size;
Equation (15)

LSTM Dense LSTM Dense

W U b W b W U b W b

hist_amount 0.4574 0.4644 0.6099 0.1076 0.9933 thq 20 1 2 4 2 −36.91 47.60 7.55
hist_amount 0.5720 0.8892 0.9388 0.2296 1 thq 2 9 1 4 9 −33.2 77.16 4.27
hist_amount 0.5410 0.958 1 0.1226 1 thq 2 10 1 4 8 −31.93 78.13 3.03

hist 0.4683 0 0.1861 0.8444 0.9846 thq 1 1 2 6 5 −31.45 11.54 13.46
hist_amount 0.5025 0.9349 1 0.2032 0.9981 thq 2 4 1 4 5 −30.46 77.64 2.32

simple 0 0.3598 0.8899 0 1 thq 1 1 1 4 4 −28.93 58.65 5.69
simple 0.0397 0.4340 0.8363 0 1 thq 1 1 1 4 5 −28.84 59.86 5.79

hist_amount 0.7180 0.9531 1 0.2103 0.9678 thq 2 10 1 5 9 −27.73 78.85 3.03
hist_amount 0.6365 1 0.9794 0.0655 1 thq 2 10 1 4 11 −27.02 79.33 2.04
hist_amount 0.5945 1 0.995 0.1000 1 thq 2 10 1 4 10 −27.01 79.09 2.17
hist_amount 0.6474 1 1 0.1369 1 thq 2 9 1 4 12 −26.98 79.33 1.92
hist_amount 0.5797 1 1 0.0952 1 thq 2 9 1 4 9 −26.95 79.09 2.04
hist_amount 0.5621 0.9864 1 0.1044 0.9983 thq 2 9 1 4 8 −26.91 78.85 2.17
hist_amount 0.5374 1 1 0.0651 1 thq 2 8 1 4 9 −26.85 78.85 2.04
hist_amount 0.7021 0.9906 1 0.2020 1 thq 2 16 1 5 10 −26.79 79.81 2.66

simple 0.0157 0.8750 0.9071 0.0746 0.0917 thq 2 1 1 4 4 −26.02 68.75 2.51
simple 0.0179 0.0046 1 0.0803 1 thq 1 1 1 4 3 −21.58 57.93 8.01
simple 0 0.0158 1 0.0010 0.9925 thq 1 1 1 4 3 −21.55 58.41 7.83

hist 0.5016 0.0239 0 0.0648 1 log_linear 1 1 1 3 4 −16.52 0.96 9.56
simple 0 0 1 0.0388 1 thq 1 1 1 4 2 −16.07 57.69 6.13
simple 0 0.0175 1 0.0586 1 thq 1 1 1 4 2 −16.05 58.41 5.94
simple 0 0.4841 1 0 0.9919 thq 5 1 1 4 5 −15.32 69.23 4.76

hist_amount 0.7693 1 1 0.1815 0.9834 thq 3 9 2 5 9 −11.00 79.81 1.83
simple 0 0.7829 1 0 0.0960 thq 2 1 1 7 4 −7.84 71.88 4.30

hist_amount 0.5649 1 1 0.1079 0.8284 thq 2 5 2 1 11 −5.77 79.09 0.90
simple 0 0.8756 1 0.0230 0.0249 thq 1 1 1 7 4 −5.66 72.60 3.90
simple 0 1 1 0.0150 0.0955 thq 1 1 1 5 3 −4.31 72.84 2.75
simple 0.0080 0.4509 0.8997 0 1 thq 1 1 1 4 4 −3.79 64.18 4.80
simple 0 0.6847 1 0.2721 0 thq 1 1 1 5 2 −3.06 71.63 3.03
simple 0 0.8897 1 0 0.1217 thq 1 1 1 5 2 −2.98 72.60 2.78
simple 0 0.9967 1 0 0.1295 thq 1 1 1 5 2 −1.98 72.84 2.72

hist_amount 0.5499 1 0.9980 0.1203 0.8135 thq 2 3 1 1 10 −1.29 78.85 0.68
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Table A2. Cont.

Pruning Method

Pruning Fraction
Quantization

Method

Quantization Bits

Quality Score Sparsity
(%)

% of Original Size;
Equation (15)

LSTM Dense LSTM Dense

W U b W b W U b W b

simple 0 0.9372 1 0.0065 0.0953 thq 1 1 1 4 2 −0.71 72.84 2.23
hist_amount 0.3104 0 0.0604 0.0677 1 log_linear 1 1 1 3 1 −0.37 20.19 1.73

simple 0 0.9291 0.9753 0.0493 0 thq 1 1 1 4 1 −0.35 72.60 2.23
simple 0 1 1 0.0371 0.046 thq 1 1 1 4 1 0.43 72.84 2.20
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Table A3. [IAP] Results for pruned and quantized model with single retraining epoch added.

Pruning Quantization
Quality Score Sparsity

(%)
% of Original Size;

Equation (15)Method Fraction Method Bits

simple 0.3143 thq 4 −32.61 37.26 6.31
simple 0.3276 thq 4 −31.24 41.11 6.19
simple 0.3488 thq 4 −29.72 41.35 6.06
simple 0.3611 thq 4 −20.52 45.43 5.82
simple 0.4671 thq 4 −18.23 47.60 4.70
simple 0.4682 thq 4 −16.35 48.08 4.46
simple 0.4770 thq 4 −1.44 48.32 4.33

Table A4. [PM2.5] Results for pruned and quantized model.

Pruning Quantization
Quality Score Sparsity

(%)
% of Original Size;

Equation (15)Method Fraction Method Bits

simple 0.0116 linear 10 −0.02 4.63 30.07
simple 0.0346 linear 31 −0.02 13.63 86.79
simple 0.0312 linear 15 −0.01 13.46 42.30
simple 0.0378 thq 31 −0.01 14.75 86.01
simple 0.0380 log_linear 21 −0.01 14.75 58.27
simple 0 thq 9 −0.01 0 28.13
simple 0.0422 linear 31 −0.01 15.91 85.08
simple 0.0405 linear 14 −0.01 14.95 38.52

hist_amount 0.0744 linear 8 0.01 7.38 23.17
simple 0.0204 linear 13 0.01 9.83 38.04

hist 0 log_linear 7 0.01 0 21.88
hist 0.0144 thq 13 0.02 10.56 36.94

simple 0.0294 linear 10 0.04 11.48 28.40
simple 0.0218 linear 8 0.07 9.95 23.30
simple 0.0216 linear 7 0.12 9.95 20.39

hist 0.0526 linear 11 0.23 14.66 29.47
hist 0.0667 linear 9 0.33 15.90 23.77

hist_amount 0.1135 thq 7 0.34 11.18 19.39
simple 0 linear 6 0.34 0 18.75
simple 0.0237 linear 6 0.34 10.03 17.42

hist 0.0924 linear 11 0.37 19.22 28.26
hist 0.1153 linear 16 0.46 19.62 40.36
hist 0.1121 log_linear 13 0.47 19.60 32.84
hist 0.1145 linear 8 0.52 19.62 20.18

simple 0.0596 linear 31 0.53 20.73 80.74
simple 0.0675 log_linear 17 0.55 21.33 43.08
simple 0.0652 linear 13 0.56 21.13 33.25
simple 0.0862 linear 19 0.56 26.30 45.14
simple 0.0863 log_linear 18 0.56 26.30 42.77
simple 0.0625 linear 10 0.61 20.91 25.83
simple 0.0874 log_linear 16 0.63 26.40 37.83

hist 0.2085 thq 9 0.65 22.65 21.43
hist 0.1185 linear 5 0.65 19.70 12.57
hist 0.2323 linear 14 0.73 22.91 32.91
hist 0.2074 linear 8 0.80 22.65 19.05

simple 0.0786 linear 7 0.83 24.93 17.00
simple 0.0879 linear 18 0.85 27.37 42.44
simple 0.0908 linear 18 0.99 28.50 41.95
simple 0.0811 linear 13 0.99 25.13 31.30
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Table A5. [PM2.5] Results for individualized pruning and quantization.

Pruning Method

Pruning Fraction
Quantization

Method

Quantization Bits

Quality Score Sparsity
(%)

% of Original Size;
Equation (15)

LSTM Dense LSTM Dense

W U b W b W U b W b

simple 0 0 0 0 1 log_linear 21 27 31 31 24 0 0 77.22
simple 0 0 0 0.0384 0.9334 thq 23 15 13 15 31 0 0 56.94

hist 0 0 0.4037 0.1777 0.5768 thq 10 9 10 18 20 0.13 17.43 29.45
hist 0.0167 0 0.1239 0.1858 1 thq 15 21 6 10 11 0.13 15.58 54.29
hist 0 0.0197 0.5189 0 0.4907 thq 8 5 9 7 18 0.24 20.81 18.76
hist 0.1092 0.2250 0.3793 0.1891 0.7621 thq 14 7 7 10 26 0.39 23.15 24.44
hist 0.1013 0 0.7607 0.0542 1 thq 8 7 4 18 29 0.65 22.99 21.25
hist 0.1233 0.2404 0.5094 0.2301 1 thq 8 14 5 8 21 0.70 25.22 26.54
hist 0.1545 0.2266 1 0.5053 0.9034 thq 9 9 4 21 30 0.72 28.05 21.46
hist 0 0 0.6568 0.2933 0.8720 thq 8 13 4 10 29 0.78 21.10 33.05
hist 0.0277 021 0.7045 0.0977 0.9789 thq 5 9 4 11 18 0.99 22.78 21.08
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Table A6. [PM2.5] Results for pruned and quantized model with single retraining epoch added.

Pruning Quantization
Quality Score Sparsity

(%)
% of Original Size;

Equation (15)Method Fraction Method Bits

simple 0.0115 linear 15 −0.04 4.63 45.10
simple 0.0118 log_linear 13 −0.03 4.64 39.06

hist_amount 0.0734 linear 31 −0.03 7.37 89.84
hist_amount 0.0732 thq 19 −0.03 7.37 55.06
hist_amount 0.0503 thq 9 −0.03 1.45 27.55
hist_amount 0.0722 log_linear 12 −0.03 7.34 34.82
hist_amount 0.0767 linear 13 −0.03 7.48 37.50
hist_amount 0.0527 thq 9 −0.03 1.69 27.30
hist_amount 0.0831 linear 31 −0.02 9.43 88.91
hist_amount 0.0396 thq 9 −0.02 2.77 28.06

simple 0.0369 log_linear 22 −0.02 14.68 61.23
simple 0.0177 log_linear 19 −0.01 7.76 56.20
simple 0.0159 linear 9 −0.01 6.72 26.76
simple 0 log_linear 7 0.01 0.00 21.88
simple 0 linear 8 0.02 1.43 24.51

hist_amount 0.1189 log_linear 11 0.02 11.30 30.32
hist_amount 0.0080 linear 8 0.02 2.35 24.49

hist 0.0405 log_linear 21 0.05 14.25 57.29
hist_amount 0.1085 thq 8 0.12 4.57 22.42

hist 0.0523 thq 16 0.13 14.79 42.63
hist 0.0522 log_linear 18 0.14 14.94 47.66

hist_amount 0.0104 thq 7 0.17 0.92 21.86
hist 0.1171 log_linear 22 0.18 19.80 55.06
hist 0.1020 log_linear 21 0.20 19.47 53.36

hist_amount 0.0134 linear 7 0.20 5.55 21.03
hist 0.2323 thq 27 0.24 23.11 62.84

simple 0.0430 thq 15 0.25 17.79 41.04
hist 0.2298 log_linear 26 0.27 23.08 60.60
hist 0.2331 log_linear 26 0.27 23.19 60.25
hist 0.2140 log_linear 18 0.30 23.52 41.02

simple 0 linear 6 0.32 10.13 17.35
simple 0.0491 thq 10 0.37 18.18 26.91
simple 0.0838 linear 31 0.43 26.18 74.12
simple 0.0676 linear 9 0.43 22.41 22.63

hist_amount 0.0318 thq 5 0.53 1.83 15.61
simple 0.0911 linear 22 0.68 28.56 51.13
simple 0.0917 linear 27 0.69 28.58 62.66
simple 0.0779 linear 16 0.80 24.00 38.95
simple 0.0943 linear 26 0.87 28.78 59.73
simple 0.0953 linear 31 0.98 28.83 71.07

Table A7. [LHC] Results for model trained on continuous data with individualized pruning and
quantization applied.

Tensor
Pruning Quantization Accuracy

Drop (p.p.)
Sparsity (%) % of Original Size;

Equation (15)Method Fraction Method Bits Tensor Model

W1

hist

0.3399

log_minmax

31

0.7813

31.93

18.16 20.73

U1 0.9195 5 39.48
b1 0 3 0
W2 0.4597 22 26.43
U2 0.1232 16 16.36
b2 0.4078 7 40.63

WD 0.7452 13 15.63
bD 0.9012 31 0
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Table A7. Cont.

Tensor
Pruning Quantization Accuracy

Drop (p.p.)
Sparsity (%) % of Original Size;

Equation (15)Method Fraction Method Bits Tensor Model

W1

hist

0.3428

linear

31

0.3198

32.03

22.94 21.88

U1 0.9289 4 39.52
b1 0.0007 4 10.55
W2 0.5587 20 29.76
U2 0.0572 17 12.18
b2 0.4647 7 40.63

WD 0.8108 13 15.63
bD 0.8357 31 0

Table A8. [LHC] Results for model trained on bucketized data with individualized pruning and
quantization applied.

Tensor
Pruning Quantization Accuracy

Drop (p.p.)
Sparsity (%) % of Original Size;

Equation (15)Method Fraction Method Bits Tensor Model

W1

simple

0.6777

linear

16

−0.6860

2.15

82.62 9.69

U1 0.0060 28 0
b1 0 31 99.61
W2 0.9868 22 63.00
U2 0.1782 27 90.41
b2 0.2978 1 98.44

WD 0.9626 23 95.31
bD 0.2765 28 0

W1

simple

0.7577

linear

18

−0.6787

0

81.44 11.71

U1 0 26 0
b1 0 29 99.61
W2 0.9601 24 57.53
U2 0.1576 30 91.14
b2 0.3075 1 95.31

WD 0.9011 23 96.88
bD 0.3396 25 0

W1

simple

0.6342

linear

19

−0.4858

0

80.64 10.40

U1 0 27 0
b1 0 28 99.61
W2 1 26 72.47
U2 0.2178 31 82.57
b2 0.2371 1 86.72

WD 0.8318 22 95.31
bD 0.4590 21 0

W1

simple

0.7174

linear

21

−0.2026

18.85

77.68 8.96

U1 0.0498 29 0
b1 0 28 86.72
W2 0.7847 21 68.87
U2 0.2014 30 88.28
b2 0.2786 1 98.44

WD 0.9675 22 96.88
bD 0.3493 21 0
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Table A8. Cont.

Tensor
Pruning Quantization Accuracy

Drop (p.p.)
Sparsity (%) % of Original Size;

Equation (15)Method Fraction Method Bits Tensor Model

W1

simple

0.5817

linear

27

0

31.93

73.84 14.33

U1 0.0861 26 5.98
b1 0.0117 22 87.11
W2 0.7933 24 48.36
U2 0.1279 31 86.57
b2 0.2644 1 88.28

WD 0.8437 25 93.75
bD 0.4712 20 0

W1

simple

0.4912

linear

26

0.3418 73.59 14.14

U1 0.0046 28 1.66
b1 0 26 0
W2 0.7674 15 83.98
U2 0.2006 31 68.66
b2 0.0967 1 44.58

WD 1 28 99.22
bD 0.1240 27 87.50

W1

hist

0.7914

thq

31

0.4004

0

51.74 35.14

U1 0 31 17.44
b1 0.1983 10 71.48
W2 0.9911 31 6.18
U2 0.0115 30 45.43
b2 1 1 64.84

WD 1 22 17.19
bD 0.9685 1 0

W1

hist

0.8226

thq

31

0.5737

0

51.74 35.43

U1 0 29 17.61
b1 0.2031 10 71.48
W2 0.9073 31 6.01
U2 0.0106 31 45.29
b2 0.9923 1 64.84

WD 1 20 17.19
bD 0.9956 1 0

W1

hist

0.8290

thq

31

0.6885

17.77

51.23 35.39

U1 0.0652 29 18.06
b1 0.2188 10 71.48
W2 0.9167 30 0
U2 0 30 44.97
b2 0.9700 1 64.84

WD 1 21 17.19
bD 0.9788 1 0

W1

hist

1

log_linear

31

0.7007

0

48.41 30.85

U1 0 31 10.40
b1 0.0634 3 69.53
W2 0.7504 26 15.26
U2 0.1147 31 33.79
b2 0.4999 1 55.47

WD 0.5476 19 17.19
bD 0.4978 1 0
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Table A8. Cont.

Tensor
Pruning Quantization Accuracy

Drop (p.p.)
Sparsity (%) % of Original Size;

Equation (15)Method Fraction Method Bits Tensor Model

W1

hist

0.8802

thq

28

0.8643

0

48.33 37.87

U1 0 31 8.03
b1 0.0369 1 71.48
W2 0.8672 30 0
U2 0 30 26.93
b2 0.3251 1 61.72

WD 0.9057 18 17.19
bD 0.5734 1 0

W1

hist

1

thq

31

0.8643

0

46.89 39.88

U1 0 31 0
b1 0 1 71.48
W2 1 31 0
U2 0 31 23.07
b2 0.2392 1 60.16

WD 0.7507 23 17.19
bD 0.5214 1 0
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