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Abstract: One of the most significant challenges in Internet of Things (IoT) environments is the
protection of privacy. Failing to guarantee the privacy of sensitive data collected and shared over
IoT infrastructures is a critical barrier that delays the wide penetration of IoT technologies in several
user-centric application domains. Location information is the most common dynamic information
monitored and lies among the most sensitive ones from a privacy perspective. This article introduces
a novel mechanism that aims to protect the privacy of location information across Data Centric Sensor
Networks (DCSNs) that monitor the location of mobile objects in IoT systems. The respective data
dissemination protocols proposed enhance the security of DCSNs rendering them less vulnerable
to intruders interested in obtaining the location information monitored. In this respect, a dynamic
clustering algorithm is that clusters the DCSN nodes not only based on the network topology, but also
considering the current location of the objects monitored. The proposed techniques do not focus
on the prevention of attacks, but on enhancing the privacy of sensitive location information once
IoT nodes have been compromised. They have been extensively assessed via series of experiments
conducted over the IoT infrastructure of FIT IoT-LAB and the respective evaluation results indicate
that the dynamic clustering algorithm proposed significantly outperforms existing solutions focusing
on enhancing the privacy of location information in IoT.

Keywords: internet of things (IoT); data-centric sensor networks (DCSNs); wireless sensor networks;
location privacy protection; dynamic node clustering; FIT-IoT lab

1. Introduction

The Internet of Things (IoT) [1] is an emerging technology paradigm that is gaining momentum,
constantly attracts the attention of scientific and industrial communities and which has penetrated
the market in a plethora of domains. It has the potential to greatly impact people’s lives and to
enhance various aspects in several industries, such as health, transportation, energy, manufacturing,
smart cities, agrifood, etc. The IoT connected devices installed worldwide are expected to rapidly
increase in the coming years and exceed 75 billion by the year 2025 (https://www.statista.com/statistics/
471264/iot-number-of-connected-devices-worldwide/). Many manufacturers are currently investing in
the establishment of IoT infrastructures in order to improve monitoring of their resources, facilitate
their production processes and enhance the distribution of their products, aiming for cost reduction
and quality improvements. Moreover, data collected by IoT infrastructures are used by numerous
providers to increase the value of the services or applications they offer. In this respect, a wealth of
IoT-based applications is using location information tailoring their features to the location of the user or
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object they concern. However, there are various barriers that significantly delay the further promotion
and evolution of the IoT vision, such as matters regarding privacy, security and user acceptance.
Having been integrated in our everyday lives and being able to collect and distribute large volumes of
(often sensitive) data, IoT has attracted the interest of malicious intruders that frequently attack IoT
infrastructures to gain access to potentially valuable information.

Wireless sensor networks [1] are a critical component of the IoT and have been extensively used
for various purposes in IoT environments, such as the surveillance of specific areas. Wireless sensor
networks comprise spatially located sensor-equipped devices that are able to track their surroundings.
These sensors can monitor the physical conditions of the environment or mobile objects that enter the
network range. The collected data are aggregated and organized at a central location. Their widespread
usage has led to the collection of large volumes of sensed data, as well as requirements for enormous
amounts of energy. Thus, a new generation of data-centric sensor networks (DCSNs) [2,3] has been
developed. In these networks, the data originating from the detection nodes (usually sensor nodes
with limited resources) are stored in other nodes that are responsible for maintaining the respective
data and that can engage the required resources to support this. Most of the times, the sensor nodes are
scattered in random positions and that poses some difficulties when it comes to receive some queries.
This situation can impede the communication between legitimate users and a specific set of sensor
nodes or lead to major power consumption. That is exactly the reason why the DCSNs use data centric
routing. The queries are sent to specific regions of sensor nodes where the data is aggregated. In
this way, the latency of messages and the power consumption can be reduced by this aggregation
of data. Even though these networks are quite efficient with respect to data synchronization and
energy consumption matters, they are vulnerable to attacks by various aspiring intruders. Their goal
is either to obtain access over the data of a storage node or to cease its operation so that the data
it maintains are not available to the rest of the IoT infrastructure. In order to mitigate such attacks,
various cryptographic methods have been proposed to ensure the privacy and confidentiality of IoT
data. However, these techniques are not sufficient to guarantee full privacy protection, while they
introduce considerable complexity and increase the required computational resources [4,5]. Therefore,
a number of other techniques that are not based on cryptographic methods have been developed that
require low resources and aim to enhance the level of privacy ensured.

This article examines a privacy issue regarding the monitoring functionality of DCSNs. We deploy
a network of sensors which are able to detect each mobile node that passes through their monitoring
range. The detection range of sensor nodes constitutes a circle of specific radius whose centroid is the
position of sensor node itself. The localization of the position of the mobile node is achieved through
the intersection of their detection range. The network comprises of a specific number of storage
nodes which is responsible for calculating the intersection areas when receiving the corresponding
messages from sensor nodes. The narrower the intersection area is, the more precise we can locate the
mobile object. However, an emerging privacy issue of such networks is when an intruder manages to
compromise a storage node and gains access to its data.

To address the case where the area of the intersection that storage node maintains is narrow and
the location of the mobile object can be precisely extracted, we introduced an innovative mechanism
that aims to protect the privacy of location information across DCSNs that monitor the location of
mobile objects in IoT infrastructures. In this respect, two clustering algorithms are introduced that do
not focus on the prevention of attacks, but on enhancing the privacy of sensitive location information
once IoT nodes have been compromised. The algorithm introduced in this paper is designed to solve
“real-world” problems in real systems [4]. The orientation of our research is the preservation of users’
data and privacy rather than avoiding the compromise of the nodes themselves. If an intruder managed
to gain access to some storage nodes, it would be difficult for him to infer the precise location of the
user or acquire personal data. Popular applications of WSNs such as car tracking or baby monitoring
or even wild animal tracking can be exploited by malicious users to discover the locations of such
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targets. This second layer of privacy that this innovative algorithm achieves can ensure a higher level
of security regarding user’s valuable data.

The rest of this article is structured as follows: in Section 2, the related state of the art work is
reviewed and elaborated upon. In Section 3, the IoT sensor network model employed is described in
detail. Section 4 presents the location privacy protection problem to be addressed and introduces the
problem concepts, setting and formal statement, as well as the respective evaluation metrics to be used.
Section 5 introduces the proposed solution and presents the dynamic clustering algorithm designed
and implemented to address the respective problem. Section 6 elaborates on the series of experiments
conducted to assess the proposed mechanism and presents the respective evaluation findings. Finally,
in Section 7, conclusions are drawn and future plans are presented.

2. Related Work

2.1. Privacy of Location in IoT Environments

There are several emerging problems in the context of IoT that have attracted significant attention
across the research community. In this respect, privacy preservation and security protection of IoT
devices and users have become one of the most challenging topics over the last decades. Lopez et al. [6]
have studied the most common privacy issues and the most prominent countermeasures regarding
wireless sensor networks in IoT. They have conducted extensive research in various fields, such as user
privacy, content privacy and context privacy. More specifically, location information leakage can lead to
critical data privacy problems. In this framework, Chen et al. [7] have evaluated threats and concerns
for both Global Navigation Satellite Systems (GNSS) and non-GNSS solutions. Their research focuses
on cryptographic techniques regarding Location-based Services (LBS) and state-of-the-art regulations.
However, the existing techniques for LBSs in IoT cannot be implemented without inducing heavy
processing overheads. Lin et al. [8] have conducted a detailed survey studying the threats and existing
solutions for ensuring privacy in Smart Home applications and they propose gateway architectures
as the most prominent and appropriate way to guarantee this. Two important factors are identified
in [8] as the key elements to render a system more robust and secure: the automatic installation and
configuration. The former is the auto-configuration of IoT devices and systems that will improve the
level of privacy. The latter is the automatic update of system software and firmware to fix unpatched
bugs and vulnerabilities.

The provision of location-based services (LBSs) is frequently supported by suitable location
monitoring IoT infrastructures. The exposure of trajectory information and location data in such
services introduces critical privacy concerns. Peng et al. [9] have conducted extensive research to
address issues concerning continuous queries from which adversaries can extract private location
information. Two techniques are proposed in this paper to address this: the multi-hop caching-aware
cloaking algorithm (MCC) and the collaborative privacy-preserving querying algorithm (CPPQ). In
MCC, users exchange information, regarding their location, with multi-hop peers. CPPQ algorithm
seeks for information that has been stored in local caches and issues a fake query to confuse the location
service provider and the adversary. However, the proposed scheme cannot be implemented when
collaborative users are untrustworthy. Liao et al. [10] studied the problem of location and trajectory
privacy preservation in 5G-based vehicle social networks (VSNs). They proposed the Dynamic
Group and Division Algorithm (DGD) that exploits the Group Generating Protocol and Pseudonym
Exchanging Protocol. The vehicles of the network are dynamically divided into group regions based on
their location and via the Pseudonym Exchanging Protocol they employ, they exchange pseudonyms
instead of their real group identity. This approach increases the difficulty for the attackers to deduce the
real identity of the car within a group region and track its trajectory. However, this research is based on
simulations and is not tested in real-world scenarios and experiments over existing IoT infrastructures.

As already mentioned, major privacy preservation problems are caused by mobile applications
and LBSs in IoT environments that use the current location of the user in order to adapt the provided
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service accordingly. Intruders exploit such services and launch attacks based on continuous user
queries to infer their location. Ma et al. [11] introduced the EPPING algorithm to address such issues
employing an anonymous trusted LBS server to process KNN queries. Users are not obliged to transmit
their precise location but a cyclic region. EPPING performs depth first search algorithm to find the
KNN points of the region for specific confidence level thresholds. The drawbacks of the proposed
solution are the higher network traffic and the fact that it is hard to find a trusted anonymous server in
real-world scenarios. Hashem et al. [12] have also studied privacy preservation problems regarding
location based services that expose users’ exact location. They proposed a novel framework based
on k group nearest neighbor (kGNN) queries. The kGNN queries return a place that minimizes the
aggregated distance from a distributed group of users. This novel framework employs a location
service provider (LSP) that returns a set of candidate answers that includes the actual kGNN. The
selection of the appropriate place among the set of candidate answers is determined via the final
pruning private filter (FPPF) or incremental pruning private filter (IPPF), which do not expose private
data to attackers or third party services. However, the amount of candidate answers needs to be further
reduced, while privacy is not sufficiently preserved in road networks.

With the advent of IoT services and devices, the integration of location-based services was
inevitable. Sun et al. [13] proposed location-label based algorithm (LLB) to tackle the problem of
protecting the users’ identity when their location is exactly the same or similar in IoT environments.
The LLB algorithm attaches labels to users and comprises of 3 steps. The first is the request
aggregation protocol where user aggregates other users’ labels, the second is pseudo-ID exchanging
protocol in which users exchange their PIDs when they are in sensitive locations and third is the
implementation of improved-PALM protocol that Niu et al. [14] introduced. Additionally, Sun et
al. [15] studied the problem of untrusted or malicious LBSs that can expose personal data or affect
users’ privacy. They introduced the Dummy Location Privacy-Preserving (DLP) algorithm which
chooses the optimal dummy locations to prevent the attacker from extracting real users’ locations.
Finally, Gonzalez-Manzano et al. [16] designed PagIoT, a privacy-preserving aggregation protocol
that contributes to the aggregation of data and the correlation between the values. However, the
aforementioned protocols have not been tested to real-world operational environments that differ
greatly from simulation environments and strong limitations have been assumed to evaluate these.

2.2. User Anonymity and Authentication Privacy in IoT Systems

The preservation of user anonymity when accessing decentralized location based services such as
IoT environments constitutes a crucial privacy issue. Intruders that have access to IoT networks and
devices should not be able to extract user’s identity so as to breach personal data. Bettini et al. [17]
proposed a general framework based on already existing approaches. This general framework intends
to classify the attackers into groups based on the level of knowledge that is exposed to them in such
networks. This research does not provide preventive solutions to possible attacks for LBS servers but
is intended to model different scenarios aiming to partition them into classes. A proposed extension of
this framework constitutes the modeling of attacks with multiple requests. However, the conservation
of anonymity is not always feasible and not all proposed methods can fully guarantee users’ privacy.
Lin et al. [18] examined the fully decentralized anonymous authentication protocol that Alcaide et
al. [19] proposed and found that it can be insecure under certain circumstances. In specific, attackers
that impersonate legitimate users can steal personal data and breach privacy. Elkhodr et al. [20]
introduced a context-aware adaptive approach to enhance privacy when accessing location-based
protocol. This approach utilizes a Dynamic Location Disclosure Agent (DLDA) to protect users’
location. DLDA constitutes a system that takes as input the actual location of the user and performs
Dynamic Disclosure-Control Method (DCCM) to obfuscate it. However, this technique has not been
tested in a fully decentralized environment such as IoT systems. Another drawback of this method
is that the processing power of IoT devices is limited and that could impose risks to the demanding
computations of the attached agents.
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2.3. Storage System Architectures in IoT

A very important part of a wireless detection network [4,21] is its storage nodes and, in general, the
system according to which the data is stored. A very important study on this issue is Safestore, which
is a distributed storage system designed to maintain long-term data regardless of any network failure,
human error or malicious attack [22]. Thus, innovative 2-level architecture is proposed, consisting of a
local server that acts as intermediate storage and a remote system with multiple storage providers.
Advantages of this architecture are the efficient dissemination of data between different providers
as well as the effective edge-to-edge control of data for possible loss of data. It offers storage at cost,
performance, and availability compared to conventional storage systems. However, this architecture is
not resistant to resource consumption attack as an intruder could send to the server a large amount of
data leading to denial of service attack.

Nodes and storage systems on detection networks should keep the data and access it regardless
of the problems that may arise either on the server side or on the client side. That’s why PASIS
architecture [23] was developed to solve server problems, such as server connections, coding data
with threshold patterns, and making servers more secure. The self-securing systems proposed in this
study solve client-side problems by monitoring access to and processing data. It uses p-m-n threshold
schemes where data breaks into n parts, any m of them can generate the original data, and p does
not give any information. The PASIS architecture consists of a distributed storage system and some
client-side agents to the user side that collect the parts of the data shared in the storage system and
combine them using the threshold schemes. However, this architecture suffers from data recovery
problems as it can take a long time for the data to be restored from backup.

2.4. Traffic Monitoring and Analysis of Privacy Issues in IoT Environments

Monitoring and analyzing messages from a wireless network by aspiring intruders is a very
important problem as it can lead to a variety of attacks. This problem becomes even more pronounced
especially when the potential intruder is able to monitor the entire network. A study conducted on
this topic introduced the concept of false traffic within the network with two different methods of
proxy-based filtering scheme (PFS) and tree-based filtering scheme (TFS) [24], which is difficult and
expensive to be implemented. In the first method, some of the detection nodes are selected as proxy
nodes that have the ability to filter the packets. Messages on the network are sent at intervals that
follow the exponential distribution so that false traffic does not separate from actual events. When
a fake package reaches a proxy node then it is discarded. Instead, when a real event arrives, it is
re-encrypted and sent to the base station for storage. In the event that no real event comes, then an
encrypted fake message is sent. The second method is to solve the problem of a large number of proxy
nodes by organizing them in a tree form. So the message is filtered into multiple proxy nodes and
traffic is reduced. Of course, this method increases the time that a real event is reaching the base station.

An equally important problem that can be generated by monitoring the traffic of a network from
a node to a node is the export of the source location. A large field of research is the communication
protocols of the nodes within the network and many have been created for security purposes such
as phantom routing [25]. This study analyzes already existing protocols such as flooding routing, in
which a node that wishes to transmit a message promotes it to all its neighbors and they in turn to
theirs, creating a flood of messages on the network. It also examines single path routing in which
nodes forward messages to only a neighbor who decides through various techniques and routing with
fake sources to which various fake sources are generated that generate fake network traffic to confuse
the attacker. These techniques are either easily perceived by the attacker or consuming extra energy.
Thus, a new technique is proposed for phantom routing, in which a phantom source is introduced.
There are two steps: (1) the phase of the random walk to the ghost source and (2) the implementation
of flooding/single-path routing for the transmission of the message to the destination. However, this
technique has not yet been fully tested to more complex adversarial models.
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All of the above techniques may be quite vulnerable, especially when the intruder can monitor
and know the entire network. To avoid cases of information leakage and site exports, under these
circumstances, two techniques, periodic collection and source simulation [26] have been proposed. In
the first technique, each node independently, at regular intervals, sends data at a reasonable frequency
whether it is real events or false messages. However, despite the security it gives to the network, it
consumes large amounts of energy in real-time applications. In the second technique, a set of fake
mobile objects are entered and assimilated into the network as if they were true. In this way, an attacker
cannot distinguish true targets from false. However, this technique does not deal with the fact that an
eavesdropper is able to compromise nodes of the network and acquire sensitive data.

Another major issue faced by wireless detection networks is the traffic monitoring attacks by
aspiring intruders. Such networks consist of sensing sensors and base stations that collect the data.
Two types of attacks targeting these stations have been studied, as well as various methods to deal
with them [27]. The first family of attacks involves isolating and blocking communication between the
base station and the other nodes, which can be addressed by establishing multiple paths on multiple
base stations and using techniques such as one-way hash chains and echo-back algorithms. The base
stations generate a REQ message that floods the network and is received by the nearest nodes, which
in turn forward it to their child nodes, thus creating multiple paths to the base stations. To prevent an
attacker from creating a malicious REQ message, the one-way hash chain technique can be employed.
As far as the echo-back algorithm technique is concerned, whenever a detection node receives one
REQ from another, it simultaneously sends an echo message to the second waiting for its response.
In this way, he can safely recognize his neighbors. The second family of attacks involves analyzing
traffic to a base node to extract its location. Techniques to deal with such attacks are hop by hop
encryption/decryption and sending rate control. In the first method, each node also has a cluster key to
be able to encrypt the message it sends. In the second technique, the rate of sending of each node is
controlled. However, it does not constitute a scalable solution as there are overheads as the network is
constantly getting larger.

The need for efficient data transmission and secure access to network data have led to the creation
of data-centric sensor networks (DCSN). However, various security problems created by aspiring
intruders led to the creation of a new generation of pDCS networks, which offer different levels of
security, based on different cryptographic keys [28]. In addition to this study, two techniques for query
optimization, Euclidean Steiner Tree (EST) and Keyed Bloom Filter (KBF) are proposed. With regard
to query optimization in the first technique, EST, there are some cells called Steiner cells different
from the storage cells and are organized in the EST tree format with the top of the mobile sink that
generates the query. This node advances the message to his children, which build EST subtrees and
return the message until it reaches the storage nodes. In the second technique, KBF, we have a set of
S = s1, s2, ..., sn, k hash functions and a string of m bits initialized to 0. For each s ∈ S, we put it as an
input to each of k functions and obtain the values hi(s) (1 ≤ i ≤ k). The bits corresponding to these values
are set to value 1. In addition, the cell keys are used to encrypt the id of the storage nodes before they
enter the algorithm. However, this work is based on simulation results and not real world experiments.

2.5. Integration of IoT Devices with Cloud Systems

Cloud computing has gained great popularity over the last decades, especially for IoT
systems [29,30] due to the cost reduction, data security and scalability that it offers. However, aside
from the appealing features that it provides, it can cause a plethora of data privacy problems, especially
when it comes to outsourcing sensitive data to third-party cloud environments. The recommended
strategy is to transfer data in encrypted format yet this impedes searching function. Fu et al. [31]
proposed a similarity search method for encrypted documents based on simhash. In this new scheme,
the documents are transformed into fingerprints with simhash and hamming distance is used to
compare them. Furthermore, a tree-based approach is utilized so as to reduce the searching time.
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3. IoT Sensor Network Model

In this section, the IoT sensor network model used in the framework of this study is presented. It is
based on the model introduced by Miao Xu et al. [2] and is built around the concepts discussed hereafter.

Sensor Nodes: The network model consists of sensing nodes that are able to detect the presence of
moving objects within their vicinity. These are arranged in a flat space (2-dimensional problem) and
are denoted by x1, x2, ..., xn. All nodes are identical as they have the same detection radius rs. They
are responsible for monitoring their surrounding environment, detecting mobile objects and sending
messages to a storage node, once an object is detected. The detection process is as follows. The nodes
can detect the moving target if it moves at a distance within their detection radius. The information
about the message being sent only indicates that the mobile object is currently located within their
detection range. More specifically, the information sent from sensor nodes to storage nodes is when
the mobile object is detected encapsulates only a timestamp, an ID (uniquely identifying the mobile
object) and a Boolean parameter (set to TRUE if the mobile object is detected or to FALSE when the
mobile object is no longer detected). Nodes can store limited information due to a lack of memory
and they only know the relative positions of their neighbors. The sensors are used to localize the
mobile target without revealing its precise location. They do not support exact localization of objects
or distance estimation.

Storage Nodes: The network consists of storage nodes that are arranged in a flat space and are
denoted by y1, y2, ..., ym. It is assumed that the population m of storage nodes is much lower than
the population n of sensor nodes. The lower population m is, the strongest the location privacy
risks are. The storage nodes have sufficient memory, large battery stocks and are responsible for
receiving the messages sent by the sensor nodes and processing the respective information properly.
For this reason, despite the cryptographic methods used in the network, they should have access to
the non-encrypted text. Finally, they have the ability to do some kind of packet filtering to ensure
protection from malicious attacks.

I-state: At time t the I-state represents the set of all potential target object positions consistent with
the detection messages with timestamps prior to time t. The size of the area corresponding to an I-state
thus quantifies the level of uncertainty concerning the location of the target object. A larger value for
this area suggests that the target object can be located anywhere inside a larger area, corresponding to
a higher level of uncertainty regarding its location. Each storage node yj maintains its own I-state,
denoted by ISj(t), which corresponds to potential location area LAj(t) of the target mobile object and is
updated constantly, also based on the detection messages it receives. Of course, in case storage node j
does not store any information regarding the location of the target object at time t, then LAj(t) is equal
to the entire area monitored by the IoT infrastructure deployed.

Global Node: This is the only storage node that always receives the object detection messages of all
sensor nodes that detect the target mobile object. The Global node maintains its own I-state, denoted
by IS*(t), which aggregates the I-states of all storage nodes IS∗(t) = ∪

j
IS j(t) and corresponds to the

intersection of their potential location areas LA∗(t) = ∩
j
LA j(t). It is equipped with special hardware

to provide enhanced protection. It is assumed that the Global node is trustworthy and cannot be
tampered with by an aspiring intruder.

Message processing: The messages sent by sensor nodes are processed by the storage nodes upon
their reception. Each storage node maintains its own I-state which is the set of possible positions of the
target node based on the messages that were received prior to a specific time. The calculation of the
I-state is based on the following procedure:

• When no message is received within an interval t2 − t1 sec, then I-state of time t2 is computed
from the one of t1 by performing a Minkowski sum [32] between the I-state of time t1 and a
circle of radius (t2 − t1)·vmax, where vmax is the maximum velocity that the target object can reach.
Intuitively, the I-state expands itself to include the possibility that the target object may have
moved outside the detection range the respective storage node may cover.
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• When a storage node receives a message, its I-state is updated to the intersection of the previous
I-state with the coverage area of the sensor node posting the message. Thus, the storage node
always takes into account the region where the detection message is sent from.

Figure 1 briefly illustrates the proposed procedure of message processing:Sensors 2019, 19, x FOR PEER REVIEW 8 of 36 
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Figure 1. Computing the potential location area of the I-state: (a) LA of an initial information state; (b)
expansion to account for the passage of time and intersection with range of the sensor node posting the
detection message; (c) the resulting LA of the updated I-state [2].

All network nodes beyond the global node can be tampered with and considered unreliable.
The intruder can violate at least 1 node of the network. In this research we focus on the scenario
of compromising one storage node that is of higher interest due to the sensitive data it maintains.
Additionally, a trajectory of the target object is deemed to be valid if at least one sensor node of the
network is able to detect it. The intruders do not have a global view of the network, but are only
aware of a partial view that has been deduced based on the information they have intercepted from
the storage node they compromised.

The network introduced above is the basis of our research where our innovative algorithm is
applied. It constitutes a DCSN that comprises of multiple types of nodes such as sensor nodes, storage
nodes, Global node and mobile. The data collected by sensor nodes are aggregated to storage nodes.

4. Problem Concepts and Definition

4.1. Problem Concepts and Setting

Location detection refers to the ability of the IoT system to identify the location of the target object
that moves within its infrastructure. However, as already stated, the aggregation of location data
imposes a plethora of privacy problems that can be divided into two main categories. The former is the
unauthorized access to personal data and the latter is the granularity of location exposure. Depending
on what is the target object and how dense the sensing network is, the granularity of detection can
significantly differ. Revealing house addresses, military base station locations, etc., is unacceptable
and is treated as major privacy breach [4]. The positions of the sensor nodes on the flat space, the
distance between them, the sensing range and the employed data aggregation policies are some of the
parameters that should be considered to effectively ensure the protection of location information. The
research work presented herewith focuses on the second category and the basic problem addressed is
the definition of a location data transmission protocol between the detection sensor nodes and the
appointed storage nodes. The main goal is to specify a reliable mechanism based on which the sensor
nodes will decide on which storage node they will send the data of the object they detected within
their coverage area, aiming to maximize the location privacy ensured. Therefore, the primary objective
is the creation of a data dissemination protocol between sensor and storage nodes to increase the level
of location privacy. In this respect, it is essential to partition the sensor nodes into groups based on
certain criteria and constraints. A significant matter that supports such a decision is the determination
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of the privacy-endangering distance range between the sensor nodes that is caused by potentially
partially overlapping sensing areas. Therefore, if rd is the detection range of the sensor nodes of the
network we define as privacy-endangering distance range the distance range [2rd − α, 2rd] between
the sensor nodes, where α > 0 is a configurable privacy parameter that can be adapted based on the
privacy preservation requirements of the specific system and is determined before the beginning of the
monitoring phase. The concept behind this is that the smaller the intersection of the coverage areas of
two sensor nodes, the more accurately a potential intruder can identify the location of the targeted
object if the object detection messages of both these nodes are intercepted. For sensor node distance
higher than 2rd this intersection is null and there are no privacy concerns. But if their distance is equal
to 2rd − ε, the larger the positive quantity ε is, the larger the respective coverage area intersection is.
The difference between the privacy parameter α and variable ε is that α constitutes a configurable
parameter important for the privacy level of the network while ε refers to the relation between the
distance of sensor nodes and the overlapping area The detection nodes positioned within this distance
range should thus not send their detection data to the same storage node, as an intruder could exploit
the limited common sensing area to infer sensitive information concerning the location of the mobile
target. Therefore, the set Nbr of neighboring sensor node pairs is defined, which is actually the set of
any pair of sensor nodes (xi, xi’) that are positioned within range [2rd − α, 2rd]. The wider the area
of the I-state of a storage node is, the more difficult it is for an intruder to deduce accurate location
information. In this framework, the research work presented herewith aims to specify a mechanism
that will result in properly clustering all sensor nodes xi, where I = 1, 2, . . . , n, and allocating each
of them to a specific storage node yj, where j = 1, 2, . . . , m. The resulting function can be specified
as follows: C(xi, t) = yj, which suggests that under the conditions of the sensor network of the IoT
environment at time t, sensor node xi is allocated at storage node yj and will thus post only to this
specific storage node any object detection message generated.

4.2. Evaluation Metrics

Three evaluation metrics are defined to measure the effectiveness of the protocols that will be
proposed aiming to protect the privacy of location information across the IoT infrastructure. These
metrics are defined as follows:

Privacy: This metric is based on the respective performance criterion introduced in [2]. Assuming
an attacker has violated a storage node yj and managed to access any information available at this
node, the value of privacy Pr(t) at any given moment t is expressed by the percentage of data that is
still safe and has not been compromised. The attacker has access to location data corresponding to
LA j(t), the potential location area of storage node j that is compromised, while the location information
of the entire IoT infrastructure is expressed by the location area LA∗(t) identified by the global node.
Assuming the worst case scenario, where the intruder has obtained access to the data of the storage
node corresponding to the smallest possible potential location area, the value of privacy Pr(t) at a
given moment t is expressed as follows:

Pr(t) = 1−
LA∗(t)

min
j

{
LA j(t)

} , j = 1, 2, . . . , m (1)

As one may easily observe, as LA j(t) decreases and approaches the value of LA∗(t), the value of
Pr(t) decreases as well, while the case where Pr(t) = 0 corresponds to the situation where a single
storage node has access to the knowledge of the entire IoT infrastructure. On the other hand, Pr(t) = 1
corresponds to full privacy, but in the problem studied herewith a security breach to a single storage
node is assumed and thus, this value can never be achieved.

The research presented in this paper is based on the assumption that an intruder can compromise
up to 1 storage node. However, the proposed approach can be generalized to addressing the case
of multiple storage nodes being compromised [33]. To enable this, the metric of privacy should be



Sensors 2019, 19, 3022 10 of 37

modified to reflect the possibility of data breach from up to q storage nodes. The set j = 1, 2, . . . , m
should be replaced by set j′ =

{
(1), (2), (3), . . . (1, 2), (1, 3), . . . , (1, 2, 3), . . . , (1, 2, 3, . . . , q)

}
, where q < m.

Thus, the set j’ constitutes the power-set of set j with up to q storage nodes being comprimised. To
achieve this, the denominator of the privacy Pr(t) fraction needs to be adjusted, as min

j

{
LA j(t)

}
refers

to the minimum area of a state that a single storage node demonstrates. Thus, min
j

{
LA j(t)

}
should be

replaced by min{LA1(t),LA2(t),LA2(t), . . . , LA1(t)∩LA2(t),LA1(t)∩LA3(t), . . . , LA1(t)∩LA2(t)∩LA3(t), . . . ,
LA1(t)∩LA2(t)∩LA3(t)∩ . . . ∩LAq(t)}.

Conflict: As conflict in this research, we define a Boolean variable that indicated whether or not
two sensor nodes that are positioned within dangerous distance range [2rd − α, 2rd], are allocated to
the same cluster and thus send their data to the same storage node. The conflict metric at a given time
t that is estimated for any pair of sensor nodes xi and xi′ in the IoT infrastructure can be expressed
as follows:

Con f lict(xi, xi′ , t) =

1, C(xi, t) = C(xi′ , t) and (xi, xi′) ∈ Nbr

0, otherwise
, (2)

where C(xi, t) is the cluster where sensor node xi is assigned to at time t. Apparently, if the pair of
(xi, xi′) of sensor nodes is included in the set Nbr of neighboring sensor node pairs defined in Section 4.1,
then once these two nodes are assigned to the same cluster at a given time t, the following stands:
Con f lict(xi, xi′ , t) = 1. On the other hand, for any sensor node pair that is not included in set Nbr, the
value of this metric is always Con f lict(xi, xi′ , t) = 0. As one may easily observe, the smaller the value
of the sum of all these conflict indicators is, the higher the protection of the location privacy across the
IoT infrastructure is.

Average Privacy: This metric is denoted by Pr(T) and it reflects the level of location privacy
achieved throughout a given time period T, where the mobile target object moves within the range of
the IoT infrastructure. It can be expressed as follows:

Pr(T) =
1
T

∫
T

Pr(t)dt. (3)

Apparently, since Pr(t) ∈ [0, 1), ∀t, the same also stands for Pr(T), i.e., Pr(T) ∈ [0, 1), ∀T. Since a
single value for the average privacy metric is calculated for each entire experiment, this metric is a quite
reliable evaluation criterion that can be used to compare the performance of the various algorithms for
a given experiment.

4.3. Formal Problem Statement

Based on the problem concepts and setting presented, as well as the definition of the evaluation
metrics introduced in the previous subsections, the studied problem can formally be stated as follows.

Assume the case of a mobile object the location of which is monitored by an IoT infrastructure.
This infrastructure has n fixed sensor nodes denoted by x1, x2, . . . , xn, that are of equal object detection
range rd. Assume a malicious intruder that can intercept the location data of up to one storage nodes.

Given the above, (1) specify a sensor node clustering function C(xi, t) = Ck, k = 1, 2, . . . , K that
assigns each node xi to a specific cluster Ck, so that no conflicts exist for any pair of the given sensor
nodes x1, x2, . . . , xn, i.e.,:

C(xi, t) , C(xi′ t) ∀ (xi, xi′) ∈ Nbr, (4)

and so that the number K of the distinguished clusters is minimum, in the sense that there is no
clustering approach that can eliminate all conflicts distinguishing K − 1 clusters across the given sensor
nodes, and (2) also given the population m of the storage nodes in the IoT infrastructure denoted by
y1, y2, . . . , ym, specify a second sensor node clustering function C′(xi, t) = y j, j = 1, 2, . . . , m that assigns
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each node xi to a specific storage node y j, so that the overall number of conflicts
∑
i

∑
i′

Con f lict(xi, xi′ , t)

(∀i, i′ ∈ {1, 2, . . . , n}) that exist for all pairs of the given sensor nodes x1, x2, . . . , xn is minimum, i.e.,:

min
C′(xi,t)

∑
i

∑
i′

Con f lict(xi, xi′ , t)

, ∀i, i′ ∈ {1, 2, . . . , n}, (5)

aiming to minimize the amount of location information of a specific object stored to the same storage
node across the IoT sensor network.

Since a single value for the average privacy metric is calculated for each entire experiment, this
metric is a quite reliable evaluation criterion that can be used to compare the performance of the
various algorithms for a given experiment.

5. Proposed Solution

5.1. The Dynamic Clustering Algorithm (DCA)

The basic idea of Dynamic Clustering Algorithm (DCA) is the fact that the sensor nodes, which
have been classified in the same cluster as the ones that are positioned within dangerous distance
from one another, can dynamically change the cluster they belong to and send their data to a different
storage node depending on the location of the mobile target. This technique is based on fractional
coloring methods [34,35] which consequently improve the IoT sensor network security level with
respect to the traditional graph coloring [36,37]. In the remainder of this section the DCA is introduced
and described in detail.

5.1.1. DCA Phase 1: Initial Clustering

The first step of the method is the static network analysis and the initial cluster identification.
Three clustering algorithms are used (i.e., the constrained agglomerative hierarchical algorithm, the
PCk-means and the walkthrough algorithm [38]) to group the sensor nodes in k clusters. Number k
indicates the minimum population of clusters that ensures there are no conflicts between the sensor
nodes of the network. Number k is actually determined by the constrained clustering algorithms
used and is not one of the input parameters for these algorithms. However, since it is estimated prior
the execution of the DCA, it does not affect its performance. The main goal of the node clustering is
to ensure that all nodes xi will be assigned to different clusters than their neighbors xj, in case their
distance lies within interval range [2rd − α, 2rd], where α > 0 is a configurable privacy parameter and
rd is the detection range of the sensor nodes of the network, as defined in Section 4.1.

Additionally, the minimum number of conflicts for a given number of storage nodes is estimated
in this DCA phase and the results that can be achieved by the selected algorithms are aggregated. The
algorithms implemented and empirically matched to this type of networks are the walkthrough [2],
constrained hierarchical agglomerative algorithm [39,40], pck-means [39,40], which are described in
Appendix A. These algorithms have been selected among other popular algorithms, such as constrained
spectral clustering [39,40], cop kmeans [39,40], etc., once initial experimentation indicated that they are
more stable regarding the overall number of conflicts imposed. As depicted in Figure 2, constrained
spectral clustering is not even comparable with constrained hierarchical agglomerative algorithm and
that is why it was excluded from the selection of the algorithms. Cop kmeans constitutes a greedy
algorithm that does not allow even one of the constraints to be violated. For this reason, it does not
match with our concrete problem. The number of clusters is selected according to the IoT network
characteristics, the number of sensor nodes and the respective sensor network density. Once the initial
sensor node clustering is performed, each cluster is bound to a specific storage node.
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rs = 4.5, a = 2.6, ann = 22.6, (d) 123 nodes, rs = 9, a = 8.2, ann = 29.9.

In most cases however, the number m of storage nodes, is (much) smaller than the minimum
number of clusters K, for which there are zero conflicts, so either more than one clusters need to be
assigned to the same storage node, or there are clusters are not assigned to any storage node. Therefore,
in the case where m < K, then dynamic clustering of the sensor nodes is required to minimize the overall
number of conflicts. This step initiates by assigning each storage node to a specific cluster. All sensor
nodes are aware of the id of the nodes that are located at distance within the range of [2rd − α, 2rd]
from them, as well as of the cluster they have been assigned to. There are three ways based on which
the sensor nodes that will be reassigned to another cluster are dynamically selected:

Selective: The sensor nodes are grouped into m cluster, where m is equal to the number of storage
nodes. By examining one by one the pair of nodes, the distance of which lies within the range
[2rd − α, 2rd], the pairs of such neighboring nodes that belong to the same cluster are identified. Cluster
number m + 1 is assigned to one of the two nodes of each of these pairs.

Direct: The K clusters are sorted by sensor node population and the K −m smaller ones are selected.
The nodes of these K − m clusters are assigned to cluster m + 1, while the rest of the m clusters are
assigned to one storage node each.
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Hybrid: This approach of selecting the sensor nodes to be reassigned to another cluster is a
combination of the previous two. The clusters are sorted by sensor node population. There are
K − m + 1 ways to divide the nodes into valid clusters, where K is the minimum cluster population
where the sum of conflicts is equal to zero and m is the number of storage nodes. If K = m, this method
is identical to Selective. If K > m, the Direct method is used and the sensor nodes of the K − m smallest
clusters are merged to a single cluster identified as cluster m + 1.

5.1.2. DCA Phase 2: Preprocessing Stage

Irrespective of the method selected in Phase 1, we end up with m + 1 clusters, where only the
last cluster includes neighboring nodes that introduce conflicts. The sensor nodes of this cluster are
considered to be unclassified, initially not being assigned to any of the storage nodes. Ideally, each of
these will be dynamically allocated to another cluster, aiming to minimize the conflicts among the
sensing nodes able to detect the moving object at the same time t. The second phase of the DCA
corresponds to an intermediate preprocessing step, during which the sensor nodes of m + 1 cluster that
can be moved to one of the first m clusters are identified, without any conflicts being created, given the
location of the mobile object at the given time. As far as the communication cost of the algorithm in
this phase is concerned, each sensor node that moves from cluster m + 1 to another existing cluster,
broadcasts its new cluster number to its neighbors, some of which are assigned to cluster m + 1. Thus,
the overall number of the messages being exchanged depends on the population of sensors assigned to
m + 1 cluster and the average number of neighbors that they have.

5.1.3. DCA Phase 3: Dynamic Allocation

The final phase of the DCA is the core of the dynamic clustering, so if at a specific time t, the
number of neighboring sensors that are detecting the moving target is d, where d < m, then node xi that
is assigned to cluster m + 1 can be assigned to one of the m-d remaining clusters. If d > m, node xi selects
the cluster of the least used storage node by counting the number of currently positively detecting
sensor nodes that send their sensed location data to this storage node. DCA introduces the concepts
of “message of interest” and “message of no interest” in order to be more energy efficient. When a
sensor node detects the target object for the first time and does not belong to cluster m + 1, it sends a
message of interest to each sensor node that belongs to the newly created cluster that also lies among its
neighbors. Thus, the messages of interest inform the nodes of dynamic clustering that some nodes are
going to participate in the detection process. When this specific node does not detect the mobile target
anymore, it sends a message of no interest to its neighbors. In this way, the population of the messages
being exchanged is reduced as notifications are posted only when a sensor starts or stops detecting the
mobile node and not during the entire location detection process. Therefore, the respective population
of exchanged messages depends not only on the number of average neighbouring nodes in the IoT
infrastructure, but also on the velocity of the mobile object and its exact trajectory. The precise location
of the mobile node is always accessible via the Global node that aggregates the LAj(t) state of storage
nodes at any time t. The algorithm applies only to the distribution of data among sensor and storage
nodes and does not affect the information that maintains the Global node. Below are the steps of the
algorithm accompanied presented in the form of pseudocode.
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Dynamic Clustering Algorithm (DCA).

Input:
K: minimum number of clusters for which there are no conflicts
i: indicates the sensor node that executes the algorithm
size[k1, k2, . . . , kK]: the population of nodes that each cluster includes
Cluster[C1, C2, . . . , Cn]: for each of the n sensor nodes it indicates the number of clusters the respective sensor
belongs to
m: indicates the number of expected cluster population
DDist[(a, b), (a, c) . . . , (d, w)]: Pairs of nodes positioned in dangerous distance range
Output:
Clustering that is adapted according to the target position
1: sorting (size) //sorting clusters by size
#1st phase:
2: If strategy = ”direct”:
3: If Cluster[i] <= m: Continue
4: Else: Cluster[i] = m + 1
5: Else if strategy = ”selective”:
6: For each link ∈ DDist:
7: t1 = link[0]
8: t2 = link[1]
9: If Cluster[t1] = Cluster[t2]: Cluster[t1] = m + 1
10: Else:
11: Steps 6–9 //hybrid
12: Steps 3–4
#2nd phase:
13: If cluster[i] = m + 1:
14: d = 0
15: For each link ∈ Nbr: //each sensor knows its neighbors
16: If Cluster[link] is not used from neighbors:
17: d = d + 1
18: If d < m:
19: Choose an unused cluster number
#3rd phase:
#Input:
#target: position of mobile target at time t
#counters[q1, q2, . . . , qn]: counting how many sensor nodes send data to specific storage node
20: If |target-xi| <= rd:
21: If Cluster[i] < m+1:
22: Send message to corresponding server
23: For each xi ∈ Nd:{C(xi) = m+1}:
24: If it is the beginning of detection:
25: Send message of interest to xi
26: If it is the end of detection:
27: Send message of not interest to xi
28: Else:
29: For each xi ∈ Nd:
30: d = 0
31: If cluster number is unused:
32: d = d + 1
33: If d < n:
34: Choose one of the rest
35: Else:
36: index = min(counters) // server which is least used
37: Send message to corresponding server
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It is important to highlight at this point that DCA phases 2 and 3 are required for distributed
execution of the algorithm of the algorithm, which means that all nodes execute these phases
simultaneously. Each sensor node has its own sets Nbr and Nd and is aware of them before the
execution of the algorithm. As already stated, Nbr consists of all pairs of sensor nodes that are located
within distance that lies in the range of [2rd − α, 2rd], while Nd carries all pairs of sensor nodes that are
up to 2rd away. The position of the mobile target is assumed to be constantly changing, as respective
object is moving across the IoT sensor network. Each counter corresponds to an array that each
sensor node carries, capturing (per storage node) the population of its neighbors that send the location
data they monitor to the specific storage node, while xi refers to the position of the corresponding
sensor node.

The algorithm introduced above differs from the static clustering of conventional algorithms
such as constrained hierarchical clustering and PCk-means in a way that adapts its behavior based on
the trajectory of the target. It is more flexible than traditional clustering algorithms as it constantly
redirects the data between sensor and storage nodes to maximize privacy.

5.2. Advantages of the DCA

This subsection aims to illustrate the improvements that DCA can yield by elaborating on a
specific use-case over an existing deployed topology. The use-case assumes that the cluster numbers
correspond to colors and that there are three storage nodes in the IoT infrastructure, i.e., there are
three available colors to be assigned to the sensor nodes in place. It is assumed that there are 4 sensor
nodes that are positioned on the angles of a perfect square of known side length. Thus, there is no
free color for the fourth node, which is forced to choose one of the colors that are already used. If
the red color is used by the fourth node, privacy endangering area a(34,234,134,1234) (this area a
for example represents the union of region 34 (i.e., the region where the mobile object is detected
simultaneously only by sensor nodes 3 and 4), region 234, region 134 and region 1234.) is observed, if
the yellow color is selected, privacy endangering area β(14,134,124,1234) is observed, while in case the
brown color is selected, privacy endangering area γ(124,234,1234) is observed, thus imposing a privacy
problem in all alternatives. Subsequently, it is illustrated how the DCA outperforms the classical graph
coloring theory.

The first phase of the DCA is used to find the minimum number of colors K that results in zero
overall conflicts in the sensor network. In this use-case, the DCA identifies K = 4 and assigns the colors
of yellow, brown, red (m = 3) to sensor nodes 1, 2, 3 while node 4 is assigned to the non-existing color
m+1 = 4 that is white, as depicted in Figure 3a. Thus, the classical graph coloring theory has properly
been employed since no sensor node has the same color as a neighboring one. However, while the
first 3 nodes are assigned to an existing storage node, the fourth node cannot send its messages to an
existing storage node.

Based on the implementation of DCA, node 4 dynamically changes its color considering the
position of the moving target and on the neighboring sensor nodes that detect this at the same time.
Thus, it selects one of the available colors (and therefore one of the storage nodes), which are not used
at that specific time. For example, in area 4 because no sensor node detects the mobile object other
than node 4, the location information messages of node 4 can be directed to any storage node. In
region 134 the only node that does not detect the mobile object is node 2, in region 14 nodes 2 and 3,
and in region 34 nodes 1 and 2. In this case, where the mobile object is located in any of these three
regions, color 2 (brown) is assigned to node 4 by the DCA that is not used by any of the sensor nodes
detecting the mobile object at that time. Similarly, in region 124, color 3 (red) is assigned to node 4
(since node 3 does not detect the object), while in area 234, node 4 is assigned to color 1 (yellow) for
the same reason. Of particular interest is the blue area of the figure where all nodes simultaneously
detect the moving target and all colors are used. In this area, it is not possible to assign any color to
node 4 that will eliminate the conflicts, and thus, node 4 arbitrarily selects any of the m colors (and a
storage node respectively) to send the location data it senses. A slight improvement that is made here
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is that node 4, being aware of the exact positions of its neighboring sensor nodes, selects the color of
its closest neighbor because the intersection of their respective coverage areas is the largest possible,
thus disclosing location information of lower granularity. This is valid as for example if sensor node
4 is assigned to color 3 (red), a potential intruder that compromises storage node 3 can deduce that
the mobile object is located in area 34,134,234,1234, which is surely larger than area 124,234,1234, that
would be deduced by an intruder compromising storage node 2, in case sensor node 4 is assigned to
color 2 (brown).
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In a nutshell, as one may easily observe, even though there is a single area in the IoT sensor
network (region 1234), where the conflicts cannot be eliminated for any allocation of the three colors to
the four sensor nodes, in all other areas the DCA achieves in eliminating the overall conflicts, thus
outperforming the static color assignment, as presented in Figure 3b. In the first case, the problematic
areas include a(34,234,134,1234), or b(14,134,124,1234), or c(124,234,1234), which are all much larger
than the only problematic area resulting by the DCA (i.e., region 1234).

If we had a static clustering based only on the distances, the decision of the node regarding to
which storage node would send its data, would be affected by sensors that do not participate in the
monitoring procedure at this specific moment. However, with this technique, the sensor node that
detects the mobile target takes into consideration only those which detect the same moment t. Thus,
a sensor node can adapt its decision based on the trajectory that the mobile node follows instead of
sending its data always to the same storage node. In most cases, a storage node will be used less than
the others for a specific period allowing some sensor nodes to send the messages to it. In this way,
the area where there are no available storage nodes is narrowed down dramatically. However, if the
mobile object enters the problematic area, the improvement of DCA, which is the utilization of the
least used storage node, leads to the increase of privacy level of the network.

5.3. Generalisation to Address Multiple Mobile Objects

The DCA proposed in this paper can be extended to integrate multiple objects. When more than
one mobile target is monitored by the sensor network, independent and identical dynamic clustering
approaches can be employed for each one of them. In this case different instances of the studied
problem are addressed independently. The first phase of the DCA is the same for all mobile objects as
the initial clustering is executed to compute the number of conflicts of the network itself based on the
distances between the sensor nodes of the IoT infrastructure. The second and third phase of the DCA
that constitute the distributed parts of the algorithm, are executed for each mobile object independently.
Both storage nodes and Global node maintain distinguished values of LA jl(t) and LA∗l (t) states for
each mobile object l. Moreover, the sensor nodes are able to distinguish the messages that they send
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for every mobile object. The metrics of Privacy and Average Privacy are computed separately and
independently for each mobile target. However, it is expected that the power consumption of the
sensor nodes will increase as these will now be required to send a higher number of messages, while
the storage nodes should engage more memory resources to maintain the different LA jl(t) states.

6. Experiments and Evaluation

6.1. Experiments’ Setting

The Future Internet Testing—Internet of Things Laboratory (hereafter referred to as FIT IoT
LAB) is an infrastructure that is made available for researchers that wish to experiment over an IoT
infrastructure with wireless sensor nodes and various heterogeneous devices [41–43]. FIT IoT LAB
includes over 2000 presence detection devices that are deployed in six different locations in France.
More specifically, it consists of 2728 wireless sensors nodes deployed in Inria Grenoble (928), Inria Lille
(640), ICube Strasbourg (400), Inria Rocquencourt (344), Inria Rennes (256) and Institut Mines-Telecom
Paris (160) as shown in Figure 4a. It is essentially a scientific testbed that provides full control over
wireless devices and access to libraries that help researchers to extract various information about the
sensor nodes deployed, such as power consumption, end-to-end delays, and congestion. It facilitates
the network deployment as well as the process of collecting and analyzing data.Sensors 2019, 19, x FOR PEER REVIEW 49 of 68 
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But beyond the static detection nodes, FIT IoT LAB provides a number of mobile nodes. So far, it
has 15 mobile hubs in production in the following locations: Grenoble (2), Lille (3), Strasbourg (10).
These nodes have predetermined trajectories and move on the ground across the static sensor nodes.
The mobile target of the experiment was a turtlebot node provided by FIT IoT LAB. It consists of a
notebook, a Kinect, a FIT–IoT node and a gateway as depicted in Figure 4b. The notebook is used to
support communication with the FIT IoT LAB infrastructure via wifi and to control the robot through
the ROS operating system [44–46]. The mobile node is accessible in exactly the same way as the static
nodes of the IoT infrastructure through API.

As already mentioned, the mobile node trajectories are predetermined and are different for each
location (Strasbourg, Lille, Grenoble). The trajectory of the mobile node, when completed, is repeated
several times until the required time of the experiment is reached. It also has the ability to bypass the
obstacles. As far as the technical characteristics of the turtlebot are concerned, it has a maximum speed
of 0.7 m/s, which is represented by vmax and is used to configure the DCA in the experiment execution.
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It is equipped with two batteries, of up to three h lifetime when fully charged and can be recharged in
six h. The coordinates of the mobile track are recorded.

6.2. Experiments’ Execution

Three different topologies from the FIT IoT LAB have been used to for the needs of the evaluation
experiments conducted. These three topologies are depicted in Figure 5 and engage 37, 100, or 123
sensor nodes, respectively. To distinguish sensors from storage nodes they are displayed in different
color and using a different symbol. The sensor nodes are displayed as dark blue circles, while the storage
nodes are displayed as light blue crosses. These three topologies have been used to conduct eight
static clustering experiments to evaluate and compare the performance of the pck-means, walkthrough
and constrained hierarchical agglomerative algorithms for different populations of storage nodes
m. Different values have been used for the detection range of sensors rd, as well as for the privacy
parameter a to change the nodes that detect the mobile target for any possible position over the
area covered, as presented in Section 6.3. As a criterion for the density of the topology the average
population of neighbors is used, i.e., the population of sensor nodes that are positioned in dangerous
distance range. The higher the average number of neighbors (ann) for each sensor node is, the more
dense the topology is, as illustrated in Figure 6. For the experimental evaluation of the dynamic
clustering, the same topologies have been used, but also introducing moving targets, i.e., turtlebots
of 0.7 m/s maximum velocity, which followed the predetermined trajectories supported by the FIT
IoT LAB that are studied in Section 6.4. The performance of the DCA in dynamic settings has been
compared to the performance of the walkthrough algorithm via the privacy metric that is evaluated in
Section 6.4. Using the FIT IoT LAB facilities, we took a snapshot of the moving target track per 0.1 s
and recorded the corresponding x, y location coordinates. In this framework, 12 experiments have been
conducted where the sensor nodes have been dynamically clustered based on the current location of
the mobile object. In each experiment, the number of the storage nodes varied, along with the detection
radius rs and/or the privacy parameter α. These various configurations enabled us to explore how the
DCA behaves as the population of the network storage nodes increases and its density increases or
decreases. Thus, the performance of the proposed algorithm has been evaluated in different topologies,
under various conditions. The evaluation results obtained for both dynamic and static clustering of
the sensor nodes are presented hereafter by topology.
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6.3. Static Clustering Evaluation

In this section, the evaluation results obtained by the experiments regarding the static clustering
delivered based on the walkthrough, the constrained hierarchical agglomerative clustering and the
PCk-means algorithms before introducing the mobile target. The diagrams that follow depict the
overall number of conflicts that each algorithm achieves over varying populations of storage nodes
(and clusters respectively).

6.3.1. Experiments over 37 Node Topology

Given the above experiments, we can clearly deduce that pck-means achieves the lower number of
conflicts in all cases for K < 4. The first stage of pck-means takes into consideration the transitive closure
of the constraints and initializes the centroids appropriately. However, it is an unstable algorithm
as it cannot consistently achieve lower number of conflicts as the overall population of clusters K
increases. One can also easily observe in Figure 7a that refers to a medium dense topology that the
walkthrough algorithm performs far better than the constrained agglomerative hierarchical algorithm.
Figure 7b corresponds to a sparse topology where the algorithms achieve similar results, while Figure 7c
represents a very dense one where the walkthrough algorithm is outperformed in all cases except for
K = 2.



Sensors 2019, 19, 3022 21 of 37Sensors 2019, 19, x FOR PEER REVIEW 53 of 68 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Evaluation results for static clustering over the topology of 37 nodes (a) rs = 3, a = 2 and ann 
= 9.2, (b) rs = 1.5, a = 2 and ann = 5.7 (c) rs = 4.5, a = 4.7, and ann = 17.8. 

6.3.2. Experiments over 100 Node Topology 

Figure 7. Evaluation results for static clustering over the topology of 37 nodes (a) rs = 3, a = 2 and
ann = 9.2, (b) rs = 1.5, a = 2 and ann = 5.7 (c) rs = 4.5, a = 4.7, and ann = 17.8.



Sensors 2019, 19, 3022 22 of 37

6.3.2. Experiments over 100 Node Topology

The settings of the experiments herewith aim to enable the comparison between a sparse sensor
network topology (Figure 8a) and a quite dense one (Figure 8b). In Figure 8a, one may easily observe
that the walkthrough algorithm performs much better than the other two in sparse topologies, while
in Figure 8b the constrained hierarchical agglomerative algorithm appears to be more suitable for
dense topologies.

Sensors 2019, 19, x FOR PEER REVIEW 54 of 68 

 

The settings of the experiments herewith aim to enable the comparison between a sparse sensor 
network topology (Figure 8a) and a quite dense one (Figure 8b). In Figure 8a, one may easily observe 
that the walkthrough algorithm performs much better than the other two in sparse topologies, while 
in Figure 8b the constrained hierarchical agglomerative algorithm appears to be more suitable for 
dense topologies. 

  

(a) (b) 

Figure 8. Evaluation results for static clustering over the topology of 100 nodes for (a) rs = 3, a = 0 and 
ann = 1.4, (b) rs = 4.5, a = 2.6 and ann = 22.6. 

This is reasonable as hierarchical algorithms aggregate any two clusters based on some 
predetermined criteria, while walkthrough is a greedy and distributed algorithm that attaches cluster 
numbers to each node based on the clusters available. Thus, the more the constraints that need to be 
met are, the more difficult for the walkthrough is to find available clusters. The performance of pck-
means is less stable than those of the other two and particularly for the sparse topology it is greatly 
outperformed by the walkthrough algorithm for low cluster populations. 

6.3.3. Experiments over 123 Node Topology 

In Figure 9a,b, which correspond to quite sparse sensor network topologies, the walkthrough 
algorithm outperforms the other two for K > 4. In Figure 9c, where the experiments have been 
conducted over a very dense network topology, the constrained hierarchical agglomerative algorithm 
is more suitable for K > 5. On the other hand, one may easily observe the advantages of the pck-means 
regarding the initialization of centroids as it achieves the minimum number of conflicts for K < 6. 

 
(a) 

Figure 8. Evaluation results for static clustering over the topology of 100 nodes for (a) rs = 3, a = 0 and
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This is reasonable as hierarchical algorithms aggregate any two clusters based on some
predetermined criteria, while walkthrough is a greedy and distributed algorithm that attaches
cluster numbers to each node based on the clusters available. Thus, the more the constraints that need
to be met are, the more difficult for the walkthrough is to find available clusters. The performance
of pck-means is less stable than those of the other two and particularly for the sparse topology it is
greatly outperformed by the walkthrough algorithm for low cluster populations.

6.3.3. Experiments over 123 Node Topology

In Figure 9a,b, which correspond to quite sparse sensor network topologies, the walkthrough
algorithm outperforms the other two for K > 4. In Figure 9c, where the experiments have been
conducted over a very dense network topology, the constrained hierarchical agglomerative algorithm
is more suitable for K > 5. On the other hand, one may easily observe the advantages of the pck-means
regarding the initialization of centroids as it achieves the minimum number of conflicts for K < 6.
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6.3.4. Overall Evaluation Results

Each algorithm has advantages and disadvantages depending on the topology formation, the
density of the IoT sensor network (which is equivalent to the average number of neighbors of a sensor
node) and the number of storage nodes available. An important metric to be considered here is the
minimum cluster population where the algorithms eliminate all conflicts, as well as the population
of conflicts observed for lower populations of clusters. The fewer conflicts occur in the network, the
better the protection of privacy achieved is.

Based on the analysis of the algorithms carried out, we have come to some conclusions. Initially,
the pck-means algorithm performs, in almost all cases, better than the other two when the network
consists of a small number of storage nodes, and mainly for K < 5. This is particularly important in
terms of cost as the addition of new storage nodes will greatly increases the cost of the IoT infrastructure.
However, because of the randomness it uses in initializing its centers, it demonstrates high instability
for K > 4, rendering it unreliable as the overall number of storage nodes increases. For rather low
density sensor networks, where a relatively low average number of sensor node neighbors is observed
given the network size, the walkthrough algorithm convergences faster than the other two algorithms,
achieving fewer conflicts in the majority of cases. However, for cases where the average population of
sensor node neighbors increases leading to dense network topologies, the walkthrough algorithm is
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significantly outperformed by the other two algorithms. Moreover, its stability is questionable as the
number of conflicts it generates can vary considerably between sequential executions of the algorithm
for identical populations of storage nodes. The constrained agglomerative clustering algorithm does
seem to demonstrate a particular advantage over the other two, but it is a stable algorithm that even
when it is outperformed by the other two algorithms, the conflicts observed remain at acceptable levels.

Finally, in addition to the privacy implications introduced by high conflict populations, another
metric that one may wish to evaluate the algorithms’ performance against is the large impact of the
conflicts generated over the power consumption of the IoT sensor network. The lower the conflicts’
population is, the lower the population of sensor nodes assigned to cluster m + 1 is, and thus the lower
the overall number of “messages of interest” exchanged between them, therefore reducing the power
consumption required for posting such messages.

6.4. Dynamic Clustering Evaluation

In this section, the evaluation results obtained by the experiments regarding the dynamic clustering
are discussed. In this respect the performance of the DCA proposed is compared to the performance
of the walkthrough algorithm, which appeared to be the most dominant so far for static clustering
purposes. Several diagrams in this section present the level of privacy that each algorithm achieves
over time, where the DCA results are depicted by the red lines, while the results of the walkthrough
algorithm are depicted by the blue lines. The tables of this section present the average level of privacy
that each algorithm achieves in the different experiments. Three trajectories for the mobile objects
have been used that correspond to the ones specified and supported by FIT-IoT lab, i.e., trajectory
1 (mapped to the FIT-IoT square_1), trajectory 2 (mapped to the FIT-IoT h_line_2) and trajectory 3
(mapped to the FIT-IoT v_line_5). As stated in Section 6.1, the trajectories of the robots, which were
used for the experiments, were selected by a predetermined pool of tracks as provided by FIT-IoT
Lab. As illustrated in Figure 10, the locations of FIT-IoT Lab and the corridors, where the robot can
move, are constructed quite symmetrically. The vast majority of these predetermined trajectories are
square and linear tracks across the site. The most representatives of these tracks have been used in the
conducted experiments.
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6.4.1. Experiments over 37 Node Topology

In this section, the performance of the DCA is evaluated upon over a 37 node topology using
two or three storage nodes and the trajectories depicted in Figure 11. The obtained evaluation
results are presented in Figure 12. Moreover, Tables 1 and 2 present the average privacy achieved
by the two algorithms over the same experiments settings in the topology of 37 sensor nodes. Each
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row corresponds to a different population of storage nodes in the experiment, while each column
corresponds to a different trajectory of the moving target. The respective results presented in Tables 1
and 2 clearly indicate the advantages of the DCA over the walkthrough algorithm with respect to
the average privacy ensured for all experiment settings conducted over the 37 sensor nodes topology.
Overall, the DCA manages to increase the level of privacy ensured by the walkthrough algorithm
by 33%, which is considerable. The less the storage nodes available are, the more significantly the
walkthrough algorithm is outperformed by the DCA, which increases the average privacy it achieved
up to 133%. It is important that even in the worst case scenario of only two storage nodes, dense
sensing grid and quite distributed mobile object trajectory, the DCA manages to ensure average privacy
of about 38%, while the respective performance of the walkthrough is only about 16%.

Table 1. Average privacy achieved by the walkthrough algorithm for the topology of 37 nodes.

Average Privacy square_1 h_line_2

2 storage nodes 0.1643 0.5108
3 storage nodes 0.3489 0.7018

Table 2. Average privacy achieved by the DCA for the topology of 37 nodes.

Average Privacy square_1 h_line_2

2 storage nodes 0.3830 0.7180
3 storage nodes 0.4108 0.7898
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servers and h_line_2 trajectory.



Sensors 2019, 19, 3022 26 of 37
Sensors 2019, 19, x FOR PEER REVIEW 58 of 68 

 

 

(a) 

 

(b) 

 
(c) 

Figure 12. Cont.



Sensors 2019, 19, 3022 27 of 37
Sensors 2019, 19, x FOR PEER REVIEW 59 of 68 

 

 
(d) 

Figure 12. Evaluation results for dynamic clustering over the topology of 37 nodes for (a) 2 servers 
and square_1 trajectory, (b) 3 servers and square 1 trajectory, (c) 2 servers and h_line_2 trajectory, (d) 
3 servers and h_line_2 trajectory. 

Table 1. Average privacy achieved by the walkthrough algorithm for the topology of 37 nodes. 

Average Privacy square_1 h_line_2 
2 storage nodes 0.1643 0.5108 
3 storage nodes 0.3489 0.7018 

Table 2. Average privacy achieved by the DCA for the topology of 37 nodes. 

Average Privacy square_1 h_line_2 
2 storage nodes 0.3830 0.7180 
3 storage nodes 0.4108 0.7898 

6.4.2. Experiments over 100 Node Topology 

Tables 3 and 4 present the average privacy achieved by the two algorithms over the same 
experiments settings in the topology of 100 sensor nodes. Lack of specific figures in these tables 
indicates that no experiment has been conducted under the specific settings. The evaluation results 
presented in these tables clearly indicate that the DCA outperforms the walkthrough algorithm in all 
four series of experiments conducted over the 100 sensor nodes topology. 

  
(a) (b) 

Figure 12. Evaluation results for dynamic clustering over the topology of 37 nodes for (a) 2 servers
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6.4.2. Experiments over 100 Node Topology

In this section, the performance of the DCA is evaluated upon over a 100 node topology using
two, three or four storage nodes and the trajectories depicted in Figure 13. The obtained evaluation
results are presented in Figure 14. Moreover, Tables 3 and 4 present the average privacy achieved by
the two algorithms over the same experiments settings in the topology of 100 sensor nodes. Lack of
specific figures in these tables indicates that no experiment has been conducted under the specific
settings. The evaluation results presented in these tables clearly indicate that the DCA outperforms the
walkthrough algorithm in all four series of experiments conducted over the 100 sensor nodes topology.
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Table 3. Average privacy achieved by the walkthrough algorithm for the topology of 100 nodes.

Average Privacy square_1_plus h_line_2

2 storage nodes - 0.6088
3 storage nodes 0.8477 0.6084
4 storage nodes 0.7917 -

Table 4. Average privacy achieved by the DCA for the topology of 100 nodes.

Average Privacy square_1_plus h_line_2

2 storage nodes - 0.7707
3 storage nodes 0.9135 0.8817
4 storage nodes 0.9248 -

Overall, the DCA manages to increase the level of privacy ensured by the walkthrough algorithm
by over 22%, as it ensures 87.3% average privacy versus 71.4% ensured by the walkthrough (averages
across all 4 series of experiments). As previously observed, the fewer the storage nodes available
are, the more significantly the DCA outperforms the walkthrough algorithm increasing its average
privacy by up to 45%. Finally, it should be highlighted that over the experiments conducted for Square
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1 trajectory of the mobile object, even though the walkthrough algorithm manages to eliminate all
conflicts for two or more storage nodes available, it only ensures average privacy of about 60%. The
DCA on the other hand, for the same settings delivers average privacy of 77% or 88%, respectively.

6.4.3. Experiments over 123 Node Topology

In this section, the performance of the DCA is evaluated upon over a 123 node topology using
three or four storage nodes and the trajectories depicted in Figure 15. The obtained evaluation results
are presented in Figure 16. Moreover, Tables 5 and 6 above present the average privacy achieved by
the two algorithms over the same experiments settings in the topology of 123 sensor nodes. More
specifically, four families of experiments have been conducted for 3 or 4 storage nodes and for square_1
or v_line_5 trajectories of the mobile object. The improvement in the average privacy achieved by
DCA is evident, leading to an increase of the walkthrough average privacy (43.2%) of about 70% over
the entire experiment suite executed, as the respective average privacy ensured by the DCA across all
experiments is 73.4%.
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Table 5. Average privacy achieved by the walkthrough algorithm for the topology of 123 nodes.

Average Privacy square_1 v_line_5

3 storage nodes 0.5608 0.5708
4 storage nodes 0.5978 0. 6877

Table 6. Average privacy achieved by the DCA for the topology of 123 nodes.

Average Privacy square_1 v_line_5

3 storage nodes 0.7039 0.7289
4 storage nodes 0.7046 0.7989

Similar to the previous topologies, the fewer the storage nodes available are, the more considerable
the DCA outperforms the walkthrough algorithm, increasing its average privacy up to 28%. It should
also be highlighted that the average privacy ensured by the DCA is always 70%–80%, which is quite
appropriate for such dense networks and few storage nodes.

6.4.4. Overall Evaluation Results

Over all experiments conducted, the proposed DCA outperforms the walkthrough algorithm
ensuring higher average privacy in all circumstances. Based on the evaluation findings formerly
discussed, the DCA outperforms the walkthrough algorithm for all mobile trajectories, detection ranges,
sensor node populations and network topology densities tested. A very important observation is that
the way nodes are selected to dynamically change their cluster has a great effect on the efficiency of the
algorithm. Based on experience and experimental results, the selective method proved to be the most
appropriate because the nodes selected are more scattered over the network and not concentrated to a
specific part of the network. This is easier to manage as no neighborhoods with a large number of nodes
that dynamically change their cluster are created, leading to heavier synchronization problems, power
consumption and computational power needs as messages are constantly exchanged between them.

The choice of the method used in the first step of the DCA is critical to the outcome it achieved.
The randomness of the walkthrough algorithm can lead to unexpected changes over the privacy metric
values, and consequently to the average privacy ensured. While the DCA controls this randomness
and leads to an improved result, it has nevertheless been preferred to use constrained agglomerative
clustering, which in some cases may create more conflicts than the walkthrough, yet they are kept
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at acceptable levels. In addition, the conflicts created with this algorithm are consistent in every
successive execution, enabling the DCA to ensure a stable level of privacy.

As can be seen from the figures above, there are some limited intervals during the experiments’
execution, where the walkthrough algorithm delivers higher privacy than the DCA. This is due to
the fact that problems in the privacy level of the network may also be caused by nodes located in
distance less than 2rd − a, for which the privacy problems cannot be eliminated. The two algorithms
can cluster these nodes in a different way and in some cases the clustering of the walkthrough is
more efficient. Especially if the DCA does not assign to one of them the non-existent cluster m + 1,
this clustering will remain unchanged until the end of the experiment. However, in the proposed
algorithm, this improvement can be done at the preprocessing stage so that this problem is managed
in node neighborhoods that are very close to each other and have been clustered in a way that
creates problematic issues after the completion of the first cluster layer. However, even without this
improvement, the DCA achieves better privacy than the walkthrough in the overwhelming part of the
duration of all experiments.

Finally, as expected the DCA achieves higher privacy as the number of storage nodes increases.
This is reasonable if we take into consideration that a node, which changes its group in a dynamic way,
is able to choose from a larger population of storage nodes. On the other hand, walkthrough is not a
stable algorithm regarding the increase of storage nodes. This instability is caused by the fact that
walkthrough includes random functions that may initially formulate fully inappropriate sensor nodes
clusters. However, in DCA the sensor nodes, which in time t cannot be assigned to an available cluster,
select to be assigned to the least used storage node. This criterion resolves the respective problem
imposed by the walkthrough algorithm. After the static and dynamic analysis of the algorithms, it
is evident that DCA leads to better privacy level regardless of the conditions of the topology or the
trajectory of the mobile node.

7. Conclusions

In the context of this article, a new data transmission protocol has been designed and implemented
in order to protect sensitive location data from aspiring intruders. The proposed techniques do
not focus on the prevention of malicious attacks, but on enhancing the privacy of sensitive location
information once IoT nodes have been compromised. In this respect, a new two-level constrained
clustering algorithm is introduced that improves the privacy ensured across IoT environments. This is
the Dynamic Clustering Algorithm (DCA) that specifies three phases: the initial one corresponds to the
employment of existing algorithms that deliver an initial sensor node clustering and to the selection of
the sensor nodes to be attached to an extra cluster (not assigned to a specific storage node), the second
phase that aims to further process and improve this initial clustering and the third phase manages the
nodes on the fly, dynamically reformulating the sensor node clusters based on the current location of
the mobile object. Some of the most common and efficient constrained clustering algorithms such as
pck-means, constrained agglomerative clustering and walkthrough have been used for the first step
of DCA and the static network clustering, while the rest of the DCA has been specified so that the
number of conflicts induced by sensor nodes that co-detect the mobile object at the same time, while
being assigned to the same storage node is minimised.

To evaluate the performance of the DCA, series of experiments have been conducted over the
IoT infrastructure of FIT IoT-LAB based on various topologies and trajectories of mobile object. Thus,
no simulations have been used for the DCA assessment purposes, as all experiments have been
executed over IoT testbeds deployed by FIT-IoT Lab. The evaluation results obtained indicate that the
level of privacy that can be achieved by the DCA is always higher (often significantly) than that of
conventional constrained clustering algorithms regardless of the experiment settings and respective
configurations, i.e., for varying sensor node populations, storage node populations, sensor network
density and topology formations, sensing range and mobile object trajectories. Thus, it is concluded
that the dynamic clustering algorithm proposed considerably outperforms existing solutions focusing
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on enhancing the privacy of location information in IoT, increasing the respective performance of the
most suitable clustering algorithm by up to 133%.

The authors plan to proceed with the research work presented in this article. Their future plans
include the following: evaluating the scalability of the DCA testing its performance over much larger
topologies of thousands of sensor nodes; evaluate the impact of the DCA on sensor node power
consumption especially when multiple mobile targets enter the network; and design an enhanced
DCA that will jointly increase the average privacy protection ensured and reduce the respective power
consumption induced. Finally, as it is not straight forward to find a reliable and fully secure Global
node in real-world scenarios, it lies among the authors plans to adapt and evaluate the designed
mechanisms in a setting where the Global node is replaced by a secure mobile node that will periodically
and selectively aggregate the location information originally collected by the storage nodes of the
IoT infrastructure.
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Appendix A

Walkthrough: It constitutes a distributed clustering algorithm that is applied to each and every
node of the network aiming at partitioning them into groups under certain distance constraints. For
this reason, it employs a Spatial Privacy Graph [2] that connects with an edge the pairs of sensor nodes
(xi, xj) whose distance belong within a certain distance interval. The algorithm starts with the nodes
assigned in different clusters whose number is greater than the expected. The objective of the algorithm
is to reduce the number of clusters by assigning the nodes in valid and feasible clusters based on the
one that their neighbors in SPG belong.

Constrained Hierarchical Agglomerative: It constitutes a hierarchical clustering algorithm [39,40]
that belongs in the family of semi-supervised clustering algorithms. It utilizes data that have known
and predetermined constraints that can be classified into two categories. The first is “must-link”
constraints which consist of pair of data that have to be grouped into the same cluster and the second is
“cannot-link” constraints which include observations that have to be classified into different clusters. It
starts with each observation classified into different cluster and performs an aggregation of clusters in
each step. If a pair of data is affected by a “must-link” then the distance of the corresponding clusters
is set to 0. In the opposite case that the pair of data belongs to “cannot-link” constraints, the distance is
set to the maximum possible distance value.

PCk-means: It constitutes an expansion of traditional kmeans algorithm [39,40] to include
predetermined constraints between the observations. It takes as input a set of “must-link” and
“cannot-link” constraints that have to respect. Its first stage is to take the transitive closure of these
constraints and initialize the centroids of the clusters based on the centroids of the largest neighborhoods
or random perturbations of the global centroid of the data. For each constraint that does not respect
adds a penalty to an objective function. Its aim is to minimize this objective function so as to violate
the least possible number of constraints.
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