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Abstract: Multi-sensor fusion for unmanned surface vehicles (USVs) is an important issue for
autonomous navigation of USVs. In this paper, an improved particle swarm optimization (PSO) is
proposed for real-time autonomous navigation of a USV in real maritime environment. To overcome
the conventional PSO’s inherent shortcomings, such as easy occurrence of premature convergence and
human experience-determined parameters, and to enhance the precision and algorithm robustness of
the solution, this work proposes three optimization strategies: linearly descending inertia weight,
adaptively controlled acceleration coefficients, and random grouping inversion. Their respective
or combinational effects on the effectiveness of path planning are investigated by Monte Carlo
simulations for five TSPLIB instances and application tests for the navigation of a self-developed
unmanned surface vehicle on the basis of multi-sensor data. Comparative results show that the
adaptively controlled acceleration coefficients play a substantial role in reducing the path length
and the linearly descending inertia weight help improve the algorithm robustness. Meanwhile, the
random grouping inversion optimizes the capacity of local search and maintains the population
diversity by stochastically dividing the single swarm into several subgroups. Moreover, the PSO
combined with all three strategies shows the best performance with the shortest trajectory and the
superior robustness, although retaining solution precision and avoiding being trapped in local optima
require more time consumption. The experimental results of our USV demonstrate the effectiveness
and efficiency of the proposed method for real-time navigation based on multi-sensor fusion.

Keywords: travelling salesman problem; particle swarm optimization; parameter setting; random
grouping inversion; unmanned surface vehicle; multi-sensor data

1. Introduction

It is well known that multi-sensor fusion is an important issue for autonomous navigation of
unmanned vehicles, especially when operating in real environments with unanticipated changes. With
the aid of various types of sensors, such as temperature and humidity sensors, collision sensors, flow
velocity and flow rate sensors, and displacement sensor, unmanned vehicles have been effectively
applied to the fields of sounding survey [1], environment monitoring [2], underwater acoustics [3],
marine rescue [4], target tracking [5], and water monitoring [6]. In these cases, all of the sensory
information from multiple sensors is combined and effectively utilized to generate desirable trajectories
for unmanned vehicles to follow, which is always formulated as a travelling salesman problem (TSP).

The TSP was proved to be a typical non-deterministically polynomially hard combination
optimization problem in 1979 [7]. Its goal is to design the shortest route for a traveler to visit each city
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without repetition and ultimately return to the departure city. With the search-space tending to infinity
and complexity, traditional exact algorithms, such as the enumeration method, fail to approach an
exact solution within a reasonable computation time. Hence, novel algorithms with the capability of
self-organization and self-adaption need to be developed to discover an adequate solution, sacrificing
optimality, accuracy, and completeness for running speed. Inspired by natural evolution models and
adaptive population evolution, collective intelligence methods, including genetic algorithm [8], particle
swam optimization (PSO) [9], ant colony optimization (ACO) [10], artificial fish swarm algorithm [11],
and artificial bee colony algorithm [12], have entered into a stage of rapid development for the TSP.

Particle swarm optimization, proposed by Eberhart and Kennedy in 1995, is an evolutionary
metaheuristic technique [13]. It solves the optimization problem by having a population of candidate
solutions, called particles, and moving these particles around in multi-dimensional search-space with
a certain velocity. With a fitness function to assess each solution, the movements of all of the particles
are dynamically guided by their own experience, as well as the entire swarm’s experience. Finally, it is
expected that the swarm will move toward the most satisfactory solution. Due to advantages of fast
convergence speed, simple parameter settings, and easy implementation, the PSO algorithm has been
widely used in various fields, including functions optimization [14], training of neutral networks [15],
and fuzzy system control [16].

Additionally, in order to improve the performance of PSO in solving the discrete-space-based TSP,
valuable research has been conducted in recent times on the hybridization of heuristic methods. B.
Shuang et al. proposed a hybrid algorithm that combined the respective advantages of PSO and ACO.
The search mechanism of PSO was effectively utilized in which the particle’s experience helped to
expand the search space, while the swarm experience pushed the global convergence [17]. X. Zhang et
al. improved PSO by using a priority coding method to code the solution, dynamically setting the
velocity range to remove the side effect due to the discrete search-space, and introducing the k-centers
method to avoid the local optimum. The improved algorithm performed well in reserving the swarm
diversity [18]. A hybrid fuzzy learning algorithm was proposed by H. M. Feng et al. in a large-scale
search-space. The adaptive fuzzy C-mean algorithm was first used to divide the large-scale cities into
subsets, following by the transform-based particle swarm optimization and the simulated annealing
method acquiring the local optimal solution. Then the complete optimal route was rebuilt by the
powerful MAX-MIN merging algorithm [19]. In the work by M. Mahi et al., the authors introduced the
PSO into the ACO to help to optimize the city selection parameters, and the 3-opt algorithm was used
for the purpose of jumping out of the local optimum [20]. In addition, the combination of PSO with
genetic algorithm by W. Deng et al. [21], and the method combining PSO with artificial fish swarm
algorithm [22] also show admirable improvement.

It is well known that the PSO performance depends heavily on the proper balance between
exploration, namely searching a broader space, and exploitation, namely, moving to the local optimum.
It contends that tuning the PSO parameters has a significant impact on the optimization performance.
Hence, choosing proper parameters to improve the algorithm effectiveness has been a hot spot for
many works. In the work by Y. Zhang et al., the raw fitness value was adjusted by the power-rank
scaling method, the acceleration coefficients and the inertia weight were changed with iteration, and
the random numbers were modified to be generated by a chaotic operator. Simulation results showed
that the novel method succeeded elite genetic algorithms with migration, simulated algorithm, chaotic
artificial bee colony, and PSO in both success rate and time cost [23]. To solve the vehicle routing
problem with time windows, a variant of PSO with three adaptive strategies was used, in which all
parameters started with random values, but gradually tended to be applicable during iterations based
on some limitations [24]. K. R. Harrison et al. analyzed the results of PSO using 3036 configurations
of control parameters for 22 benchmark problems and found the time-dependence of optimal values.
Meanwhile, the optimal range of acceleration coefficients and inertia weight were recommended [25].

Moreover, with the fast development of intelligent algorithms and autonomous navigation
technology, PSO has also been successfully applied to the vehicle path planning problem. R. J. Kenefic
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combined a heading constraint heuristic with PSO to solve the turn rate limited TSP for an unmanned
aerial vehicle. Permutations of the tour vertices’ orders were considered to eliminate the self-crossing
phenomenon in the planned path. Results revealed that PSO performed better than a standard algorithm
in MATLAB because of the discontinuous and multimodal nature of the objective function [26]. To plan
the shortest and smoothest route for the robot, a novel algorithm was presented with the PSO component
used as a global planner and the modified probabilistic road map method used as a local planner.
Results showed that this PSO-based algorithm was advantageous in runtime and path length [27].
M. D. Phung et al. improved the PSO by integrating deterministic initialization, random mutation, and
edge exchange. Experimental tests with real-world datasets from unmanned aerial vehicle inspection
showed the proposed algorithm could enhance the performance in both computing time and travelling
cost [28]. To plan a multi-objective optimization path for an autonomous underwater vehicle in
dynamic environments, the PSO was used to find suitable temporary waypoints, combined with the
waypoint guidance to generate an optimal path [29].

In order to avoid premature convergence, route self-crossing, and to enhance the robustness,
this work proposes three improved algorithms on the basis of the PSO method by combining one
or two optimization strategies as follows: linearly descending inertia weight, adaptively controlled
acceleration coefficients, and random grouping inversion. First, a hundred Monte Carlo simulations are
conducted for five TSPLIB instances in order to compare the effectiveness of each improved algorithm
in terms of route length, computing efficiency and algorithm robustness. Furthermore, improved PSO
algorithms are applied to the navigation, guidance and control system (NGC) of a self-developed USV
with multi-sensor data in a real sea environment.

The main contributions of this work are as follows: (1) The important parameters, including
the acceleration coefficients and inertia weight, are adjusted iteratively, with the aim of effectively
reducing the path length and enhancing the robustness; (2) The strategy of random grouping inversion
maintains the swarm diversity and accelerates the global convergence, which can avoid premature
convergence and retain solution precision; (3) Path planning for a USV is conducted by combining
the conventional PSO with the three optimization strategies, which generates feasible routes with
satisfactory length and no self-crossing.

The rest of the paper is structured as follows. PSO algorithms with different optimization
strategies are introduced concisely in Section 2. Results and discussions of Monte Carlo simulations
and applications to a USV are presented in Section 3. Additionally, conclusions and future research
directions are drawn in Section 4.

2. Proposed Algorithms

2.1. Particle Swarm Optimization

As mentioned in Section 1, the conventional PSO is a population-based stochastic optimization
method. At the beginning of the evolutionary process, the PSO method generates N candidate solutions
(namely N particles) randomly within an S-dimensional search space. For the i-th particle, its position
can be represented by a vector Xi = (xi1, xi2, ..., xiS)T. Meanwhile, its velocity can be defined by a
vector Vi = (vi1, vi2, ..., viS)T. A fitness function is used to evaluate the quality of each solution. For
the TSP and path planning problem in this work, the fitness function is defined as 1/D (D stands for
the route length). For every iteration, all the particles depend on two kinds of experience for guiding
their movement: the best position (Pis) an individual has known so far, and the best position (Pgs) the
entire swarm has known so far. Correspondingly, the velocity and position of each particle are updated
following Equations (1) and (2) [30].

vm+1
is = wvm

is + c1rm
1

(
Pm

is − xm
is

)
+ c2rm

2

(
Pm

gs − xm
is

)
, (1)

xm+1
is = xm

is + vm+1
is , (2)
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where m and s stand for the current number of iterations and the s-th dimension, respectively. r1 and r2

are random and iteratively updated numbers uniformly distributed between 0 and 1. c1, c2, and w are
PSO control parameters called personal cognition coefficient, social cognition coefficient, and inertia
weight, respectively.

It should be noted that there are three terms of velocity on the right side of Equation (1). The
first term wvm

is is the inertia component, which makes the particle move in its original direction of last
iteration. The inertia weight w, first proposed by Y. Shi and R. C. Eberhart in 1998, affects the capability
of global search and algorithm convergence, and it is typically set between 0.8 and 1.2 [30]. The second
item c1rm

1

(
Pm

is − xm
is

)
is called the personal cognition component, which causes the particle to move

according to its memory of individual best-known position. Meanwhile, the third item c2rm
2

(
Pm

gs − xm
is

)
is the social cognition component, which will guide the particle to move towards the swarm’s best
known position based on communication with other particles. The acceleration coefficients c1 and c2

play an important role in balancing the effects of personal cognition and social cognition on guiding
the particle towards the target optimal solution. The values of c1 and c2 are usually suggested to be
2. In addition, it is reported that the stochastic characteristics of r1 and r2 can weaken the effects of
the individual best known position and the swarm best known position on the velocity update. The
diversity of population could be maintained, and the phenomenon of premature convergence could be
avoided to some degree [31].

Figure 1 shows a schematic diagram of position change of a particle for two successive iterations.
The algorithm procedure will be terminated when the maximum number of iterations (M) or a minimum
error threshold is achieved. The pseudo code of conventional PSO is presented in Algorithm 1.

Algorithm 1. Conventional Particle Swarm Optimization for TSP

select swarm size and maximum iterations
define fitness function
preset acceleration coefficients (c1, c2) and inertia weight (w)
for each particle do

initialize velocity and position
evaluate initial fitness value
record initial Pis and Pgs

end
while maximum iterations or minimum error criteria is not achieved do

for each particle do
calculate the new velocity using Equation (1)
update the new position using Equation (2)
evaluate new fitness function
update Pis and Pgs

end
end
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Algorithm 1. Conventional Particle Swarm Optimization for TSP 
select swarm size and maximum iterations 
define fitness function 
preset acceleration coefficients (c1, c2) and inertia weight (w) 
for each particle do 
        initialize velocity and position 
        evaluate initial fitness value 
        record initial Pis and Pgs 
end  
while maximum iterations or minimum error criteria is not achieved do 
        for each particle do 
              calculate the new velocity using Equation (1) 
              update the new position using Equation (2) 
              evaluate new fitness function 

Figure 1. Shematic diagram of a particle’s position update in PSO.
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2.2. Linearly Descending Inertia Weight

Note that the inertia weight w reflects the effect of historical velocity on current velocity for
each particle. It could balance the capacities of local and global searching. When w = 0, it could be
found based on Equation (1) that the particle velocity only depends on its current cognition of the
personal best-known position (Pis) and the swarm’s best known position (Pgs). If one particle is in its
current Pgs, it will remain stationary, while others will fly at a weighted speed of Pis and Pgs. Given
this circumstance, the entire swarm will be pulled towards the current Pgs and converge to the local
optimum. On the contrary, with the aid of the inertia component, all the particles have a tendency
to explore a larger space. Hence, when faced with various optimization problems such as functions
optimization, training of neutral network, and Fuzzy system control, it is necessary to adjust the value
of w to balance the algorithm capability of local and global searching.

In addition, the inertia weight w also affects the global search behavior, especially the convergence
behavior. Generally, a lower value of w would help speed up the convergence of global optimum,
while a larger value of w would contribute to the exploration of the entire search space. To obtain a
better global search capability during early iterations, and enhance the local exploitation during later
iterations to avoid being trapped into local optimum, the inertia weight w is adjusted dynamically
with the form of linearly descending over the iterations according to Equation (3).

w = wmax −m× (wmax −wmin)/M (3)

where wmax and wmin represent the maximum and minimum value of inertia weight w, respectively.

2.3. Adaptively Controlled Acceleration Coefficients

The acceleration coefficients c1 and c2 reflect the information exchange among particles, and
determine the distance a particle will move towards target solution under the guidance of personal
cognition and social cognition in a single iteration. Small values of acceleration coefficients would make
the particle wander far from the target region, while large values of acceleration coefficients would urge
the particle to move quickly towards the target region but ultimately deviate from this region. When c1

and c2 are both equal to zero, the particle will fly at its current velocity until it hits the border of the
search space. As a result, the satisfactory solution is hard to find within the restricted search space. If c1

is zero, the particle will lose cognitive function. Although the search space could be enlarged by taking
into account the particle interactions, it is more likely to be trapped in the local optimum when faced
with a complex optimization problem. In addition, when c2 is zero, no information exchanges exist in
the swarm; each particle will work independently. It is almost impossible to find the optimal solution.

As mentioned in Section 2.1, the values of c1 and c2 keep constant during the whole evolutionary
procedure for the conventional PSO. However, the fixed settings have inherent limitations: large
values make each particle rapidly converge towards the local optimum, while low values cause each
particle to wander far from target regions. Hence, a concept of iteratively linearly changing acceleration
coefficients was employed by A. Ratnaweera et al. [32], Y. Zhang et al. [23], and Z. Yan et al. [29].
A relatively larger c1 and a relatively lower c2 were used during the early stage of iterations. With
the increasing iterations, the value of c1 was linearly reduced, while the value of c2 was linearly
increased, as formulated by Equations (4) and (5). It was reported that the linear-changing acceleration
coefficients could help to reduce the probability of premature convergence during early iterations, and
also enhance the convergence performance during later iterations.

c1 = (c1min − c1max)
m
M

+ c1max, (4)

c2 = (c2max − c2min)
m
M

+ c2min, (5)
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where the subscripts max and min stand for the maximum and minimum values of acceleration
coefficients c1 and c2.

However, it is thought that the effects of acceleration coefficients on algorithm convergence are
restricted when their values are changing linearly during the whole evolutionary procedure. For
instance, a larger influence of social information is of great significance in later stage of algorithm to
improve the searching efficiency, which could not be realized timely by the simple linear variations
of acceleration coefficients. Consequently, an evaluation parameter (K) is introduced in this work
according to the degree of swarm convergence. Its value is defined as the radio of the number of
successfully converged particles (called advantageous particles) in a single iteration to the initial swarm
size, as represented in Equation (6). Then the evaluation parameter (K) is employed to adaptively
control the changing rate of acceleration coefficients by using Equations (7) and (8).

K = P/N, (6)

c1 = (c1max − c1min)K + c1min, (7)

c2 = (c2max − c2min)K + c2min, (8)

where P stands for the number of particles that could successfully converge in a single iteration.
The strategy of adaptively controlled acceleration coefficients associates the values of acceleration
coefficients with the optimization status by use of the evaluation parameter (K). With the increase
of iterations, the number of advantageous particles in a swarm is increasing; this will enlarge the
influence of advantageous particles on the entire swarm. Hence, it is supposed that excellent solutions
would be protected as much as possible to help avoid local optima.

2.4. Random Grouping Inversion

It should be noted that the CPSO uses a single swarm consisting of all the particles for evolution.
Hence, it is likely to result in a phenomenon in which all the particles cluster around a certain position
and stop exploring the other area of the search-space. To avoid the easy occurrence of premature
convergence, the concept of random grouping inversion is proposed and added before the update
of Pis and Pgs during every iteration. The single swarm is divided into several subgroups, in which
independent evolution is in process. As a result, the diversity of the swarm can be strengthened and
the global convergence for the entire swarm is accelerated.

As to the number of particles in a subgroup, preliminary research indicated that a larger number
would decrease the inherent capability of merit-based selection, while a lower number would weaken
the role of grouping mechanism. Finally, the number was set as four; in other words, four particles
were randomly sorted to form a subgroup.

On the basis of the random grouping strategy, a further operation is proposed, simulating the
inversion operation during the process of biologic evolution. After evaluating the fitness of each
particle, all four particles clustered around the local optimum discovered by each subgroup. Then the
inversion was carried out to generate new particles and replace two original particles of the subgroup,
in which the TSP tour orders for two randomly selected inversion points were inversed.

Indeed, the strategy of random grouping inversion is based on Darwin’s theory of evolution:
internal competition of population and uncertain mutation. In theory, the internal competition of the
population is a process of merit-based selection, namely, only the fittest one survives. The inversion is
a type of uncertain mutation which could help to maintain the swarm diversity. Ultimately, the pool of
swarm particles reserves not only the fittest individual of each subgroup, but also the inversion-based
variant. Hence, it is supposed that this strategy would help to enhance the population diversity and
improve the effectiveness of swarm optimization. The pseudo code of random grouping inversion is
shown in Algorithm 2.



Sensors 2019, 19, 3096 7 of 21

Algorithm 2. Random Grouping Inverion

Randperm swarm size
for each subgroup

find the fittest particle among four particles
randomly select inversion points
inversion
update Pgs

end

3. Simulations and Experimental Results

3.1. Monte Carlo Simulations

Three algorithms with progressively improved strategies are proposed based on the conventional
particle swarm optimization (CPSO): the algorithm with adaptively controlled acceleration coefficients
(APSO), the algorithm with both adaptively controlled acceleration coefficients and linearly descending
inertia weight (AWPSO), and the algorithm combining the advantages of adaptively controlled
acceleration coefficients, linearly descending inertia weight, and random grouping inversion (AWIPSO).
To eliminate the stochastic property of PSO in MATLAB operation environment, this section employs
Monte Carlo simulations to compare the performance of each algorithm for TSP from three points of
view: the number of planned points, the swarm size, and the computing efficiency. All the simulations
are performed on the same computer (Intel (R) Core (TM) i7-7700HQ CPU @ 2.80 GHz) with 8.0
GB memory so as to avoid the effects of computer models on the running capacity of algorithms.
In addition, all the sample instances are taken from TSPLIB (Website: https://wwwproxy.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/tsp/#opennewwindow).

3.1.1. Comparative Study with Different Numbers of Planned Points

Five considered instances from TSPLIB are burma14, ulysses22, eil51, eil76, and rat99.
Correspondingly, the numbers of planned points (Q) are 14, 22, 51, 76, and 99, and the maximum
numbers of iterations (M) are set as 100, 200, 1600, 2000, and 2000, respectively. The swarm size (R) is
set as 500 for each algorithm. For the CPSO, acceleration coefficients c1 and c2 are constant at a value of
2, and w is also unchanged with the value of 0.9. For the improved algorithms, the varying range of
the personal cognition coefficient c1 is set as 0.9–1.2, and the social cognition coefficient c2 varies from
0.2 to 1.0 during evolutionary procedure. As to the linearly descending inertia weight w, the value is
changing from 0.9 to 0.4. Detailed information of parameter settings for each algorithm is listed in
Table 1.

Table 1. Parameter settings for each algorithm.

Algorithm Parameter Setting

CPSO
personal cognition coefficient c1 constant, 2

social cognition coefficient c2 constant, 2
inertia weight w constant, 0.9

APSO
personal cognition coefficient c1 adaptively controlled by Equation (7), 0.9–1.2

social cognition coefficient c2 adaptively controlled by Equation (8), 0.2–1.0
inertia weight w constant, 0.9

AWPSO
personal cognition coefficient c1 adaptively controlled by Equation (7), 0.9–1.2

social cognition coefficient c2 adaptively controlled by Equation (8), 0.2–1.0
inertia weight w linearly descending by Equation (3), 0.9–0.4

AWIPSO
personal cognition coefficient c1 adaptively controlled by Equation (7), 0.9–1.2

social cognition coefficient c2 adaptively controlled by Equation (8), 0.2–1.0
inertia weight w linearly descending by Equation (3), 0.9–0.4

https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/#opennewwindow
https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/tsp/#opennewwindow
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Monte Carlo simulations are conducted one hundred times to obtain the data set of optimal path
distance (D) with four algorithms for each TSP instance. The comparative results are presented in
box-and-whisker plots (see Figure 2). The legend and explanation of the box-and-whisker plots refer
to the work by M. E. Spear [33]. In every box plot, a range bar represents the interquartile range of the
data set, which indicates the degree of data dispersion and the algorithm robustness to some extent.
The median value and the average value are identified with a red line and a plus symbol in the bar.
Meanwhile, the whiskers are drawn extending on both sides of the bar, with the ends standing for
the best and worst values, respectively. Furthermore, Table 2 lists the detailed statistics of the data
set for each algorithm and each number of planned points, including the known optimal solution of
TSPLIB, the worst, the best and the average values of optimal path distance. Additionally, the standard
deviation is calculated to show how far the set of data is spread out from the average value, and it
stands for the robustness of the algorithm.
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Table 2. Statistical results of optimal path distance in 100 runs with five numbers of planned points.

Q Known Optimal Solution Algorithm Worst (m) Best (m) Mean (m) Std. Dev. (m)

14 30.88 m

CPSO 36.61 30.88 31.90 1.00
APSO 32.21 30.88 31.14 0.36

AWPSO 32.42 30.88 31.16 0.38
AWIPSO 32.15 30.88 31.03 0.29

22 74 m

CPSO 99.78 76.49 85.45 6.22
APSO 80.22 75.50 77.26 1.13

AWPSO 80.05 75.30 77.11 1.10
AWIPSO 77.10 75.30 75.97 0.46

51 426 m

CPSO 935.06 684.73 825.02 45.67
APSO 759.91 594.27 665.87 38.96

AWPSO 775.86 597.08 668.68 38.72
AWIPSO 480.14 436.06 455.91 9.37

76 538 m

CPSO 1459.78 1156.23 1315.03 62.90
APSO 1247.22 948.52 1082.12 58.75

AWPSO 1231.88 966.33 1071.70 52.48
AWIPSO 625.39 564.86 590.11 12.40

99 1211 m

CPSO 4555.13 3602.25 4136.63 194.64
APSO 3772.27 2912.69 3359.80 178.09

AWPSO 3819.77 2998.28 3379.08 173.14
AWIPSO 1394.07 1248.12 1332.97 27.62

Std. Dev. is the abbreviation for standard deviation.

In the instance of burma14 in Figure 2a, it is observed that the proposed optimization strategies
help reduce the average values of D, and make the data set cluster more closely. However, a minor
difference less than 0.4% is found in terms of path distance and algorithm robustness for the three
improved algorithms.

When the number of planned points (Q) increases (see Figure 2b–e), the respective advantages
of the adaptively controlled acceleration coefficients, the linearly descending inertia weight, and the
random grouping inversion emerge gradually. For Q = 76 in Figure 2d, the strategy of adaptively
controlled acceleration coefficients plays a substantial role in reducing the path length by approximate
17.7% when comparing the APSO with CPSO. Meanwhile, the linearly descending inertial weight
mainly affects the degree of data dispersion. The AWPSO has a standard deviation of 52.48 m, which
is 10.7% lower than the APSO. By contrast, the AWIPSO is superior, with the shortest average path
distance of 590.1 m and the lowest standard deviation of 12.4 m. It can be concluded that the strategy of
random grouping inversion has considerable effects on both reducing the path length and improving
the algorithm robustness. In addition, the best value of AWIPSO is 1248 m for Q = 99, which is only 3%
larger than the known optimal solution of TSPLIB.

3.1.2. Comparative Study with Different Swarm Sizes

In this section, the TSP instance of eil51 with 51 planned points is selected as the working condition.
Five swarm sizes (R) of 300, 400, 500, 600, and 700 are considered. Furthermore, the maximum number
of iterations (M) for each algorithm is set as 500. The other parameter settings of each algorithm, such
as c1, c2, and w, are the same as those in Section 3.1.1.

The Monte Carlo simulations of one hundred times are conducted for each algorithm and each
swarm size. Comparative results are shown in the form of five box-and-whisker plots in Figure 3.
Detailed statistics of optimal path distance, including the four-number summary of data sets, are listed
in Table 3.

When the swarm size is 300, as shown in Figure 3a, the respective advantages of the three
optimization strategies could be concluded similarly as in Figure 2. The adaptively controlled
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acceleration coefficients contribute to shortening the path distance. The linearly descending inertia
weight has a certain effect on reducing the degree of data dispersion by 2.1% when comparing the
AWPSO with APSO. The AWIPSO performs best with an average optimal path length of 457.0 m and a
standard deviation of 9.9 m. Compared with the AWPSO, the effects of random grouping inversion are
clear in both shortening the path distance and improving the algorithm robustness. In addition, the
median value is almost coincided with the mean value in each bar; this means all the algorithms could
produce uniformly distributed data for the condition of eil51.
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Table 3. Statistical results of optimal path distance in 100 runs with five swarm sizes.

R Algorithm Worst (m) Best (m) Mean (m) Std. Dev. (m)

300

CPSO 974.27 776.77 872.24 43.50
APSO 781.48 601.64 696.70 40.75

AWPSO 829.51 583.85 700.67 39.90
AWIPSO 487.43 434.33 457.03 9.85

400

CPSO 992.82 699.91 849.28 51.74
APSO 770.40 566.11 682.41 37.41

AWPSO 792.31 568.42 676.16 41.31
AWIPSO 495.28 434.84 456.84 10.69

500

CPSO 930.74 719.46 825.04 40.90
APSO 765.91 582.15 663.66 35.23

AWPSO 755.14 584.22 666.19 37.57
AWIPSO 485.47 434.60 457.57 9.75

600

CPSO 933.20 690.43 793.78 49.21
APSO 744.87 557.78 655.20 32.53

AWPSO 746.03 568.09 659.74 38.71
AWIPSO 480.44 434.9 456.19 9.11

700

CPSO 941.57 684.87 784.95 42.51
APSO 728.26 564.87 639.80 34.03

AWPSO 755.14 559.05 650.16 37.26
AWIPSO 489.62 435.14 456.05 9.23

Std. Dev. is the abbreviation for standard deviation.

In general, the effects of the swarm size on algorithm performance are that the overall optimal
distance can be further reduced for each algorithm with the increase of swarm size. For instance,
the average value of D for the CPSO is 785.0 m for R = 700, which is 10% reduced compared with
the case of R = 300. For the AWIPSO, the average D is 456.1 m when R = 700, and is only reduced
by 0.2% with respect to the case of R = 300. It could be concluded that the effects of swarm size on
algorithm performance are not evident for the AWIPSO. Furthermore, although the robustness of every
algorithm changes a little due to the swarm size, no regular tendency could be found. By contrast, the
AWIPSO is always the most advantageous algorithm. Both the optimal path length and the algorithm
robustness are almost unaffected by the swarm size. In the case of R = 700, the mean distance and the
standard deviation of AWIPSO are 456.1 m and 9.2 m, which are 42.0% and 78.3% smaller than that of
CPSO, respectively.

3.1.3. Comparative Results of Computing Efficiency

This section presents the evolution curves of five TSPLIB instances with different planned points
(see in Section 3.1.1) to compare the computing efficiency of each algorithm. Two main criteria are
selected for efficiency evaluation: the time consumption and the convergence speed. The former means
the time consumption of completing the maximum number of iterations, and the latter refers to the
critical number of iterations (mcri) at which the solution converges to the best value. Figure 4 shows
the evolution history of optimal path distance (D) against iteration (m) for each algorithm within five
hundred iterations. Meanwhile, all of the detailed information regarding computing efficiency for
each algorithm is listed in Table 4.
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Table 4. Simulating results of computing efficiency for each algorithm.

Q M Algorithm mcri Time Cost

14 100

CPSO 57 0.3
APSO 48 0.4

AWPSO 32 0.3
AWIPSO 28 1.3

22 200

CPSO 32 0.4
APSO 70 0.8

AWPSO 75 0.9
AWIPSO 51 2.9

51 1600

CPSO 57 1.5
APSO 153 11.0

AWPSO 186 4.2
AWIPSO 264 13.7

76 2000

CPSO 61 3.0
APSO 202 8.3

AWPSO 266 10.6
AWIPSO 378 23.6

99 2000

CPSO 67 5.0
APSO 210 14.0

AWPSO 222 14.1
AWIPSO 275 33.7

Generally, it can be observed that the evolution curve of optimal path distance for each algorithm
declines sharply with the increase of iteration during the initial stage, then the declining trend becomes
a little milder, and finally reaches to a horizontal level at a critical number (mcri). The development
of the evolution curve and the value of global optimum distance are completely dependent on the
number of planned points and the utilized algorithm. With the increase of planned point numbers (Q),
both the critical number and the optimal distance have an increasing tendency for each algorithm.

By contrast, the AWIPSO converges to the shortest path distance when compared with the
other algorithms for five numbers of planned points considered in this section; this was described
in Section 3.1.1. In addition, when P is less than 22, the critical number for AWIPSO has no evident
difference compared with the others. However, with the increase of Q, the largest number of iterations
is needed by the AWIPSO for convergence. When Q = 76, for instance, the mcri of AWIPSO is 378, which
is 6, 1.9 and 1.4 times larger than that of CPSO, APSO, AWPSO, respectively. The cause behind this
may be that the condition with more planned points would increase the complexity of route, and has a
stronger demand for the algorithm performance, especially in avoiding the premature convergence.
To put it another way, the CPSO, the APSO and the AWPSO are likely to be trapped in the local
optimum during the evolution process which results in a relatively smaller mcri, while the AWIPSO
could maintain the precision of solution which needs more iterations before convergence. As to the
computing time, it is evident that the AWIPSO spends 6.7, 2.4 and 2.4 times more time than the CPSO,
the APSO and the AWPSO to complete the same number of iterations when Q = 99. To reduce the path
distance, it is necessary to extend the computation time cost to a certain degree.

Furthermore, Figure 5 presents the best trajectories of the five TSPLIB instances (burma14,
ulysses22, eil51, eil76, rat99) using the AWIPSO. The abscissa and ordinate stand for the values of
latitude and longitude, respectively. The start point is enclosed in the red rectangle, and the arrows
represent the heading of the planned path. It can be observed that the trajectories become more
complex in the path shape and distance as Q increases.
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3.2. Multi-Sensor-Based Application to Unmanned Surface Vehicle

Recently, USVs have been utilized worldwide in both civil and military fields, such as spot cruises
in ocean ranching and multi-point water quality monitoring and sampling in vast water, due to the
benefits of reduced casualty risk and increased mission efficiency [34–36]. A USV is typically equipped
with a motion control unit, a sensor unit, a communications unit and an arming system. The motion
control unit consists of the navigation positioning subsystem, the path planning subsystem and the
trajectory tracking subsystem. As a core technology, the path planning is of great significance in
realizing the autonomous navigation and control of the USV.

Generally, path planning can be reduced to the TSP if the prior environmental information is
inaccessible and the collision-free restriction is not taken into account. Hence, the aforementioned
algorithms can also be used to solve the USV path planning problem. In this section, the effectiveness
of the improved algorithms is proved again by the application to the NGC system of a self-developed
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USV in real sea environment. As a preliminary study, the present work neglects the factors of wind,
current and waves in the algorithms.

3.2.1. Unmanned Surface Vehicle Model and Multi-Sensors

Figure 6 presents a 3D model and physical photo of the USV model, which is self-designed and
constructed by the Sea Wolf group of Qingdao University of Science and Technology. The length and
width of the USV model are 1.8 m and 0.9 m, respectively. It has five side bodies submerged in the
water. Meanwhile, the electrical motors require a 48 V 45 A battery to provide power for the propeller.
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Then, all the information is transferred to the path planning subsystem, where the PSOs are used
to generate a desirable trajectory for the USV to follow. The autopilot employs a closed-loop controller
to determine the heading and speed of the USV. In addition, a graphical user interface program is
compiled based on the Spring model view controller framework to process and record all the data in a
personal computer. The GPRS wireless network is established as the communication unit with the
effective distance of 5 km. The transmission speed is 1–100 Mbps [37].

The NGC system, as shown in Figure 7, involves three module subsystems: the navigation data
processing subsystem, the path planning subsystem, and the autopilot subsystem. In addition,
multi-sensors such as electronic compass and GPS are employed for gathering the navigation
information of the direction of the bow and the location data of the USV. A WeatherStation® PB200
ultrasonic weather sensor, produced by AIRMAR® Technology Corporation, is used to collect the
real-time, site-specific weather and location information. The navigation data are acquired by a
navigation data acquisition system in real-time, along with the ship’s log and the status information.
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3.2.2. Application Tests in Real Maritime Environment

This section applies the four aforementioned PSO methods to the NGC system of a USV model in
real sea environment near the Qingdao Olympic Sailing Center in Fushan Bay. Two working conditions
are used with different numbers of planned points: Q = 35 and Q = 45. The condition of Q = 35 has the
start point of (N 36◦03′45.71”, E 120◦25′57.18”) in latitude and longitude, and the condition of Q = 45
starts from the point of (N 36◦03′45.78”, E 120◦25′56.66”). The location coordinates of other planned
points refer to Tables A1 and A2. Then, comparative studies are conducted to assess the effectiveness
of path planning for each algorithm. The swarm size (R) is set as 500. The maximum numbers of
iterations (M) are 350 and 450, respectively, which are dependent on the numbers of planned points.

Figures 8 and 9 present the optimal trajectory of each algorithm under each working condition
with the detailed information listed in Table 5. When Q = 35 in Figure 8, it is clear that the CPSO
provides the worst route with serious level of path-crossing phenomenon, as marked in black circles,
when compared with the other algorithms. This would be the reason the longest route distance is
generated by the CPSO under the same condition. By using the three optimization strategies, it is
possible to remove the self-crossing in the path to different degrees. Moreover, the AWIPSO performs
best, with the shortest path of 1229.88 m and a relatively lower mcri of 99. Using pair-wise comparison,
it is discovered that the path length has been optimized by 21.4%, 14.7%, and 5.6% for strategies
of adaptively controlled acceleration coefficients, linearly descending inertial weight, and random
grouping inversion, respectively.

When Q = 45, it could be found that the trajectories generated by the CPSO, APSO, and AWPSO
have different levels of self-crossing in Figure 9a–c; this results in the evident increase of path length.
However, at the same time, the advantages of the AWIPSO reflect more obviously in avoiding the
intersection of route effectively and simplifying the path shape, especially when more planned points
are considered. The optimal path length generated by the AWIPSO is 1380.84 m, which is 48.0%, 38.9%,
and 27.5% shorter than that of the CPSO, APSO, and AWPSO, respectively. Pair-wise comparison
indicates that the optimization with three rates of 14.8%, 15.7%, and 27.5% were made by the respective
effect of adaptively controlled acceleration coefficients, linearly descending inertial weight, and random
grouping inversion.

In addition, all the improved algorithms require more time for computation than the CPSO under
the same maximum number of iterations. As mentioned in Section 3.1.3, it is necessary to extend the
time-cost to a certain degree for the purposes of improving the precision of solution and avoiding
being trapped into local optima.

Table 5. Simulation results of each algorithm with two numbers of planned points.

Q M Algorithm mcri Time Cost (s) D (m)

35 350

CPSO 56 1.66 1942.50
APSO 147 2.97 1527.36

AWPSO 165 3.41 1303.14
AWIPSO 99 6.55 1229.88

45 450

CPSO 60 2.45 2654.01
APSO 155 4.11 2261.07

AWPSO 217 5.17 1904.76
AWIPSO 118 10.64 1380.84
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4. Conclusions

Multi-sensor fusion is an important issue for autonomous navigation of USVs. This work proposes
three optimization strategies based on the conventional particle swarm optimization for real-time
autonomous navigation of a USV in real maritime environment: the linearly descending inertia
weight, the adaptively controlled acceleration coefficients, and the random grouping inversion. Monte
Carlo simulations for five TSPLIB instances and application tests to an unmanned surface vehicle are
conducted to reveal their respective or combinational advantages. Results can be concluded as follows:

(1) The adaptively controlled acceleration coefficients employ the influence of advantageous particles
on the swarm, enhancing the capacity of the global search during early iterations and the local
search during later stages. The strategy plays a substantial role in reducing the path length.

(2) The linearly descending inertia weight mainly helps to improve the algorithm robustness.
(3) The random grouping inversion optimizes the capacity of local search and maintains the

population diversity; this can avoid premature convergence and keep the solution precision.
(4) The PSO combined with all the three strategies is superior to generate routes with the most

satisfactory length and no self-crossing. However, more time consumption is required before
global convergence.

(5) With more planned points, a more complex trajectory would be generated, would have a strong
demand in terms of algorithm performance. However, the effects of swarm size on path planning
for each algorithm are irregular, which could be neglected to some extent.

Since this work carries out the preliminary studies in optimizing the conventional PSO, more efforts
are needed especially in further reducing the algorithm time cost. In the future, more comparative
studies with different optimization algorithms for TSP will be conducted.

Author Contributions: J.X. and J.S. developed the idea and designed the exploration framework. S.L. developed
the algorithms. Y.Z. performed the experiments. Y.C. drafted the manuscript.

Funding: This work is supported by the Key R & D project of Shandong Province (Grant No. 2018YFJH0704),
the Natural Science Foundation of China (Grant No.51609120), the Science and Technology Plan for Shandong
University (Grant No. J16LB7), the Scientific Research Foundation of Chongqing Education Commission (Grant
No. KJ1600509), and the Foundation and Frontier Projects of Chongqing Science and Technology Commission
(Grant No. cstc2016jcyjA0561).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

c1, c2 personal cognition coefficient, social cognition coefficient
c1max, c2max maximum values of acceleration coefficients
c1min, c2min minimum values of acceleration coefficients
D optimal route length
i i-th particle
K evaluation parameter
M maximum number of iterations
m current number of iterations
mcri critical number of iterations
N number of particles
P number of successfully converged particles in a single iteration
Pis individual best known position
Pgs swarm best known position
Q number of planned points
r1, r2 random numbers
R swarm size
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s s-th dimension
vis velocity value for s-th dimension and i-th particle
Vi velocity vector
w inertia weight
wmax, wmin maximum and minimum value of inertia weight
Xi position vector
xis position value for s-th dimension and i-th particle

Abbreviations

ACO ant colony optimization
APSO particle swarm optimization with adaptively controlled acceleration coefficients
AWIPSO particle swarm optimization with adaptively controlled acceleration coefficients, linearly

descending inertia weight, and random grouping inversion
AWPSO particle swarm optimization with adaptively controlled acceleration coefficients and linearly

descending inertia weight
CPSO conventional particle swarm optimization
NGC navigation, guidance and control system
PSO particle swam optimization
TSP traveling salesman problem
USV unmanned surface vehicle

Appendix A Location Coordinates of Planned Points

Table A1. Location coordinates of 35 planned points.

No. Latitude Longitude No. Latitude Longitude

1 N 36◦03′45.71” E 120◦25′57.18” 19 N 36◦03′41.88” E 120◦26′00.90”
2 N 36◦03′45.03” E 120◦25′57.03” 20 N 36◦03′41.64” E 120◦26′00.83”
3 N 36◦03′44.31” E 120◦25′56.55” 21 N 36◦03′45.32” E 120◦26′03.27”
4 N 36◦03′43.83” E 120◦25′57.55” 22 N 36◦03′44.23” E 120◦26′04.89”
5 N 36◦03′43.32” E 120◦25′56.43” 23 N 36◦03′42.81” E 120◦26′05.73”
6 N 36◦03′42.63” E 120◦25′56.34” 24 N 36◦03′42.16” E 120◦26′03.27”
7 N 36◦03′42.26” E 120◦25′57.29” 25 N 36◦03′41.56” E 120◦26′05.67”
8 N 36◦03′41.29” E 120◦25′56.55” 26 N 36◦03′43.36” E 120◦25′59.69”
9 N 36◦03′45.74” E 120◦25′59.06” 27 N 36◦03′45.40” E 120◦26′05.28”
10 N 36◦03′44.76” E 120◦25′58.60” 28 N 36◦03′43.78” E 120◦26′03.55”
11 N 36◦03′43.60” E 120◦25′58.34” 29 N 36◦03′43.73” E 120◦25′59.02”
12 N 36◦03′42.71” E 120◦25′58.97” 30 N 36◦03′42.30” E 120◦25′59.46”
13 N 36◦03′41.42” E 120◦25′57.73” 31 N 36◦03′41.86” E 120◦26′01.96”
14 N 36◦03′41.50” E 120◦25′59.07” 32 N 36◦03′45.74” E 120◦26′05.88”
15 N 36◦03′45.78” E 120◦26′01.85” 33 N 36◦03′44.78” E 120◦25′59.13”
16 N 36◦03′44.72” E 120◦26′01.85” 34 N 36◦03′42.34” E 120◦26′02.87”
17 N 36◦03′44.19” E 120◦25′59.94” 35 N 36◦03′44.32” E 120◦25′57.03”
18 N 36◦03′42.97” E 120◦26′00.98”

Table A2. Location coordinates of 45 planned points.

No. Latitude Longitude No. Latitude Longitude

1 N 36◦03′45.78” E 120◦25′56.66” 24 N 36◦03′43.78” E 120◦26′02.24”
2 N 36◦03′45.41” E 120◦25′56.73” 25 N 36◦03′45.70” E 120◦26′04.23”
3 N 36◦03′44.28” E 120◦25′57.31” 26 N 36◦03′45.08” E 120◦26′04.55”
4 N 36◦03′44.40” E 120◦25′56.55” 27 N 36◦03′42.80” E 120◦26′03.96”
5 N 36◦03′43.60” E 120◦25′56.21” 28 N 36◦03′42.17” E 120◦26′04.79”
6 N 36◦03′43.23” E 120◦25′56.32” 29 N 36◦03′45.74” E 120◦26′06.14”
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Table A2. Cont.

No. Latitude Longitude No. Latitude Longitude

7 N 36◦03′43.30” E 120◦25′57.12” 30 N 36◦03′43.93” E 120◦26′06.27”
8 N 36◦03′42.02” E 120◦25′56.03” 31 N 36◦03′41.19” E 120◦26′06.18”
9 N 36◦03′41.56” E 120◦25′57.55” 32 N 36◦03′43.72” E 120◦26′00.75”
10 N 36◦03′41.55” E 120◦25′56.71” 33 N 36◦03′42.89” E 120◦25′57.28”
11 N 36◦03′45.83” E 120◦25′58.33” 34 N 36◦03′44.16” E 120◦26′02.94”
12 N 36◦03′45.04” E 120◦25′58.05” 35 N 36◦03′42.73” E 120◦25′56.68”
13 N 36◦03′43.38” E 120◦25′58.67” 36 N 36◦03′43.22” E 120◦26′03.89”
14 N 36◦03′44.50” E 120◦25′59.82” 37 N 36◦03′43.87” E 120◦26′05.49”
15 N36◦03′41.96” E 120◦25′58.65” 38 N 36◦03′45.78” E 120◦26′01.41”
16 N 36◦03′41.43” E 120◦25′59.13” 39 N 36◦03′41.98” E 120◦25′57.65”
17 N 36◦03′45.69” E 120◦26′01.27” 40 N 36◦03′43.77” E 120◦26′04.44”
18 N 36◦03′44.41” E 120◦26′01.50” 41 N 36◦03′43.70” E 120◦26′06.07”
19 N 36◦03′43.82” E 120◦26′00.91” 42 N 36◦03′44.82” E 120◦25′59.54”
20 N 36◦03′43.53” E 120◦26′01.14” 43 N 36◦03′41.45” E 120◦26′03.60”
21 N 36◦03′43.15” E 120◦26′00.93” 44 N 36◦03′42.84” E 120◦25′58.28”
22 N 36◦03′42.92” E 120◦26′01.00” 45 N 36◦03′45.91” E 120◦26′02.97”
23 N 36◦03′41.97” E 120◦26′01.45”
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