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Abstract: Dead time estimation is important in the design process of quartz flexure accelerometers.
However, to the authors’ knowledge, the dead time existing in quartz flexure accelerometers is not
well investigated in conventional identification studies. In this paper, the dead time, together with
the open-loop transfer function of quartz flexure accelerometers, is identified from step excitation
experiments using two steps. Firstly, a monotonicity number was proposed to estimate the dead
time. Analysis showed that the monotonicity number was robust enough to measurement noise and
sensitive to step excitation. Secondly, parameters of the open-loop transfer function were identified
using the least mean squares algorithm. A simulation example was applied to demonstrate the
validity of the proposed method. The verified method was used to test a quartz flexure accelerometer.
The experimental result shows that the dead time was 500 µs.
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1. Introduction

Since their development in the 1990s, quartz flexure accelerometers (QFAs) have been widely used
in many fields, such as inertial navigation systems [1], the drilling industry [2,3], and microgravity
measurements [4–6]. Conventionally, QFAs output a current signal proportional to the input
acceleration. An analog-to-digital converter is required between the accelerometer and the digital
signal processor. This analog-to-digital converter is not included in the closed-loop of QFA, hence, the
drift of the converter directly degrades the accuracy of the acceleration measurements. To overcome
this drawback, a structure that involves the converter in a closed-loop QFA has been proposed and
developed in recent years [7,8]. Compared to conventional QFAs, the new structure digitalizes the
differential capacitance signal and uses a digital signal to drive the rebalance force, so a more advanced
control algorithm is able to be applied. Parameters of the control algorithm are able to be adjusted
according to the transfer function of a specific accelerometer. There are two ways to establish the
transfer function. One way is to use the differential equations and collect all the physical parameters
required. This method is not feasible in practice, because the mechanism part of the QFA is enclosed in
an airtight shell. The other way is to identify the transfer function based on experimental data. Many
studies have been conducted on identification methods for QFAs [9–11]. However, these studies have
neglected dead time in the identifying process. As is well known, dead time has a significant bearing
on the achievable performance for control systems [12–14]. Hence, this paper develops a method of
estimating the dead time and the transfer function of QFAs.

System identification requires an excitation signal and an identification algorithm. There are
various kinds of excitation signals used in the system identification process, such as pulse, sinusoidal,
pseudo-random binary sequence, and step [15]. Compared with other excitation signals, step signal is
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more widely used for two reasons: first, step signal is a sufficient excitation signal [16]; second, step
signal is simple for realization in embedded systems. For example, Rake [17] describes a graphical
identification method based on step response. Parameters and dead time are calculated from response
curvature. It is simple but sensitive to measurement noise. To solve this problem, Bi et al. [18]
developed a robust identification method for a first-order plus dead time model from step response.
It is a method derived from an integral equation approach, and it inherits the characteristic of being
robust to measurement noise. However, only a first-order model was considered in this study. Similar
work was done by Wang et al. [19]. The parameters and dead time were obtained from a set of linear
regression equations, and a second-order plus dead time model was studied as an example. All the
works mentioned above focused on a continuous system, while a discrete system is more common
in fields like embedded control systems. For a discrete system, the identification process is more
direct, since the regression matrix simply contains shifted samples of the stored input and output
data [20]. Elnaggar et al. [21] proposed a recursive method to estimate the discrete dead time and
parameters. This recursive method assumes an initial dead time value and identifies the parameters
using least mean squares (LMS), then minimizes the prediction error with respect to the dead time
value. The main drawback is that iterations of the dead time value increase the computation cost [22].
Besides, measurement noise has a significant effect on estimation accuracy in this method. A similar
method was applied to a thermodynamic process [23].

In this paper, step signal was used as the excitation signal. Dead time estimation and parameter
identification were completed in discrete time domain. The model to be identified was a second-order
plus dead time model [24]. A method based on monotonicity number was proposed to estimate the
dead time. The concept of monotonicity number is studied in the field of mathematics [25], but has
not found its application in the field of signal processing. Analysis shows that the position of the first
decrease in a sequence of continuous numbers generated by a random variable is the Euler number
e, independent of the distribution of the random variable. Consequently, the dead time estimation
method developed from monotonicity number is inherently robust to measurement noise. Furthermore,
it does not require iterations, which helps reduce computation load compared to the recursive method.
After the dead time is estimated, parameters are identified using the LMS method. The accuracy of
the parameter identification results is improved due to the fact that the dead time is removed from
the original response data. These high-quality estimation and identification results provide essential
information for dead time compensation algorithms, such as the Smith predictor [26,27], and promise
the performance of digital control algorithms applied in QFAs.

The rest of this paper is organized as follows: Section 2 describes the diagram of a QFA and
analyzes the transfer function of each part individually. Section 3 presents the dead time estimation
method and the system identification algorithm. Section 4 studies the validity of the proposed method
and algorithm through simulations. Section 5 develops a prototype circuit and gives the experimental
results. Section 6 presents related discussions. Finally, the main conclusions are drawn in Section 7.

2. System Description of Quartz Flexure Accelerometer Based on New Structure

The diagram of a QFA based on the new structure is shown in Figure 1. It is composed of two
parts: a mechanical structure and a servo circuit. The core of the mechanical structure is a pendulum
which is very thin at the joint part (down to 0.02 mm at the state of the art). When the proof mass
accelerates, an inertial force proportional to the acceleration causes a displacement at the end of the
pendulum. This displacement leads to a change of differential capacitance, which is detected by the
servo circuit. In closed-loop condition, an electromagnetic force driven by the differential capacitance
signal is applied to the pendulum to keep the pendulum at the balance position. In this paper, the
system works in an open-loop condition. The electromagnetic force is driven by a step signal that is
generated by a digital signal processor, rather than the differential capacitance signal. The acceleration
input axis is set to be perpendicular to the direction of gravity, hence, no inertial force is applied to the
pendulum at the balance position. The step response is measured through differential capacitance to
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the digital signal convertor. By repeating the step experiments, the step responses are averaged to
improve the measurement noise. Using the averaged step excitation signals and the step responses,
the dead time is estimated and the open-loop transfer function is identified.
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Figure 1. Diagram of the dead time test system. 
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From the signal generating process to the data receiving process, the open-loop system consists
of the following parts: digital-to-analog converter, driving circuit, torque, pendulum, differential
capacitor, capacitance measuring circuit, and capacitance transform module. Among these parts, the
digital-to-analog converter, driving circuit, capacitance measuring circuit, and capacitance transform
module form the servo circuit. Parameters of the serving circuit can be measured conveniently. Torque
and pendulum form the mechanism part. The parameters of the mechanical part vary from one
accelerometer to another, requiring to be identified through experiments.

In this paper, the experiments were driven by digital signals, Dd. A step signal was adopted as
the driving signal, and it was generated by a digital signal processor. The step signal starts from a level
where bias of the driving circuit is eliminated. To limit the movement of the pendulum, amplitude of
the step signal is set to be small because the pendulum is very sensitive in the open-loop condition.
Hence, the signal-to-noise ratio is very low for the response data of a single experiment. By repeating
the step experiments, the signal-to-noise ratio is improved, which helps raise the accuracy of the
parameter identification results.

The digital driving signal, Dd, is converted into a corresponding voltage, V, by a digital-to-analog
converter. Digital output 1 corresponds to 2.5 V, while −1 corresponds to −2.5 V. Hence, gain of the
digital-to-analog converter is given by:

Kv =
V
Dd

= 2.5. (1)

Following the digital-to-analog converter is a driving circuit, which transforms control voltage to
torque current. Figure 2 shows the schematic diagram of the driving circuit. Let V be the input voltage
and I be the output current. The transfer function of the driving function is expressed as:

Ki(s) =
I(s)
V(s)

=
A

Ls + RA + R + R0
, (2)
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where resistor R is a sample resistor of 50 Ω. R0 and L are coil resistance and inductance respectively,
A is the open-loop gain of the amplifier. s is the Laplace operator. Since common amplifiers can easily
achieve a gain bigger than 100 dB, the transfer function of the driving circuit is simplified as:

Ki(s) =
I(s)
V(s)

≈
1
R

. (3)

Hence, the gain of the driving circuit is approximately a factor of 0.02.Sensors 2019, 19, x  4 of 16 
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Figure 2. Schematic diagram of the driving circuit. 
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The current generated by the driving circuit produces an electromagnetic force, F, which is used
to balance the inertial force in closed-loop conditions. The relation of the electromagnetic force, F, and
the inertial acceleration, ai, in closed-loop conditions is given by:

FH
P

=
IKtH

P
= −ai, (4)

where H is the length from hinge point to the center of gravity of proof mass m. F is the inertial force F
along the input axis. Inertial force F is equivalent to the product of proof mass m and acceleration ai.
Pendulosity P is equivalent to the product of proof mass m and pendulum length H. At the balance
position, 1 g acceleration corresponds to 1 mA driving current. Hence, the product of Kt and H

P is
equivalent to 1000. Considering Equations (1) and (3), the ratio of at to Dd is 50.

Acceleration generated by the electromagnetic force, as well as the acceleration generated by
the inertial force, causes the movement of the pendulum. The pendulum is the core of QFAs. It is a
high-purity quartz disc connected to the rigid outer frame by two thin hinges. The dynamic equation
of the pendulum is derived from Newton’s law of motion. As a result, angular θ is the solution of the
following second-order differential equation:

J
..
θ+ C

.
θ+ Kθ = P(ai − at), (5)

where J is the moment of inertia. It is equivalent to the product of proof mass m and square of the
pendulum length H. C is the damping coefficient. It determines the torque needed for an angular
velocity about output axis. K is the rotational stiffness. It is the relation between an applied torque and
the corresponding angular. These three parameters cannot be measured directly, and vary from product
to product. These parameters need to be identified through experiments. In open-loop experiments,
the inertial acceleration ai is zero, and the transfer function of the pendulum is expressed as:

Kθ(s) =
θ(s)
at(s)

= P
1

Js2 + Cs + K
. (6)

When the pendulum rotates at an angle θ near the balance position, the moving plate is assumed
to be parallel with other fixed plates [28,29]. Consequently, the differential capacitance is expressed as:

∆C = C1 −C2 =
ε0εrS
d− ∆d

−
ε0εrS

d + ∆d
≈ 2C0

∆d
d

, (7)
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where ε0 and εr are vacuum permittivity and relative permittivity, respectively, S is the area of plates, d
is the distance between the moving plate and the fixed plate, ∆d is the movement of the pendulum, C0

is the initial capacitance of C1 and C2. As ∆d ≈ θz, the ratio of the change of differential capacitance
∆C to the angle θ is expressed as:

Kc =
∆C
θ
≈ 2C0

z
d

, (8)

where z is the distance between the joint point of the pendulum and the center of plates.
The differential capacitance is measured by a capacitance-to-digital converter. The converter gives

the ratio of C1 to C2. In the digital signal processor, the measurement Dr is processed by:

Dc =
1−Dr

1 + Dr
, (9)

which leads to the relation of differential ∆C and measurement Dc:

Dc =
∆C
C0

. (10)

Considering Equation (8), the relation of angle θ and measurement Dc is expressed as:

Dc = 2
z
d
θ. (11)

Let Ka = 100 z
d P, the open-loop transfer function Ko(s) is given by:

Ko(s) =
Ka

Js2 + Cs + K
. (12)

Corresponding to Equation (12), the block diagram of the open-loop transfer function is shown in
Figure 3.
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Adding on the dead time existing in the forward path of the open-loop, transfer function Kd(s) is
expressed as:

Kd(s) = e−τs Ka

Js2 + Cs + K
. (13)

The dead time of quartz flexure accelerometer τ is defined as the delay from when step excitation
command Dd is issued until when digital measurement result Dc first begins to respond. Using the
Tustin method [30], the discrete model of the open-loop transfer function is expressed as:

Kd(z) = z−
τ
T

KaT2(1 + z)2

(4J + 2CT + KT2)z2 + (2KT2 − 8J)z + (4J − 2CT + KT2)
, (14)

where T is the sampling interval. In this paper, the dead time was assumed to be an integer multiple of
sampling interval, and the fractional part was neglected. The reason was that the usual z-transform
theory cannot handle fraction powers.
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3. Dead Time Estimation and Parameter Identification

3.1. Dead Time Estimation Using Monotonicity Number

To obtain the open-loop transfer function presented in Equation (14), the dead time is firstly
estimated and the parameters are then identified. A monotonicity number (MN) is proposed to estimate
the dead time existing in the forward path of the open-loop. For a series of discrete data, the k-th
monotonicity number is defined as the number of data that keep monotonic following the current data
with index k. There are two kinds of monotonicity numbers. The increasing monotonicity number
(IMN) is defined as:

IMN(k) = nmax − k, nmax = max
{

n ∈ N|n ≥ k, ∀ j ∈ [k, n], i ∈ [k, n],
x j − xi

j− i
≥ 0

}
. (15)

In contrast, the decreasing monotonicity number (DMN) is defined as:

DMN(k) = nmax − k, nmax = max
{

n ∈ N|n ≥ k, ∀ j ∈ [k, n], i ∈ [k, n],
x j − xi

j− i
≤ 0

}
. (16)

For example, given a time series:
X = {2, 3, 1, 2, 3, 4, 5}, (17)

the increasing monotonicity number vector of X is:

IMN = {1, 0, 4, 3, 2, 1, 0}. (18)

According to Equation (15), the whole sample space of IMN is given by:

SIMN : {0, 1, 2, 3, 4, · · ·}. (19)

The probability of any sample is given by:

P(IMN = n− k) =
∫
∞

−∞

f (xk) · · ·

∫
∞

xn−2

f (xn−1)

∫
∞

xn−1

f (xn)

∫ xn

−∞

f (xn+1)dxn+1dxndxn−1 · · ·dxk, (20)

where xk denotes the randomized trial of the current data in the time series, and xk + 1 denotes the
randomized trial of the next data, etc. The function f (xn) denotes the probability density function
(PDF) of xn. Here, the measurement noise is assumed to obey normal distribution, which means:

f (xn) =
1

σ
√

2π
e−

(xn−µ)2

2σ2 . (21)

For normal distribution noise, the first seven probabilities of SIMN are calculated in Table 1.
When the increasing monotonicity number increases, the corresponding probability decreases rapidly.
It illustrates that the increasing monotonicity number of noise is mostly less than or equal to 6.
An interesting fact is that these probabilities are not influenced by the standard deviation and the
mean value.

When a step excitation occurs, the monotonicity number of output data rises right after the dead
time. The amplitude of monotonicity number excited by step signal is much bigger than that of the
noise because the open-loop system is very sensitive. Hence, the dead time is obtained by measuring
the delay between the index where step excitation occurs and the index where monotonicity number
rises suddenly.



Sensors 2019, 19, 3123 7 of 17

Table 1. First seven probabilities of the sample space of the increasing monotonicity number.

The Increasing Monotonicity Number Probability

0 1/2
1 1/3
2 1/8
3 1/30
4 1/144
5 1/840
6 1/5760

3.2. Parameter Identification Based on the LMS Method

After the dead time is calculated, the discrete transfer function given in Equation (14) is identified
by the least mean squares method. Let τ

T = q, the Equation (14) is rewritten as:

Dc(k) = (−Dc(k− 1), −Dc(k− 2), Dd(k− q) + 2Dd(k− q− 1)
+Dd(k− q− 2))(a1, a2, b0)

T + w(k),
(22)

where Dc and Dd are measurement data and excitation signal, respectively, w(k) is the measurement
noise. Parameters a1, a2, and b0 are given by:

a1 =
2KT2

− 8J
4J + 2CT + KT2 , (23)

a2 =
4J − 2CT + KT2

4J + 2CT + KT2 , (24)

b0 =
KaT2

4J + 2CT + KT2 , (25)

Let L denote the length of experimental data, then measurement data and excitation data
form equations:

Dc(q + 3)
Dc(q + 4)
· · ·

Dc(L)


=


−Dc(q + 2), −Dc(q + 1) Dd(3) + 2Dd(2) + Dd(1)
−Dc(q + 3), −Dc(q + 2) Dd(4) + 2Dd(3) + Dd(2)
· · · , · · · , · · · ,

−Dc(L− 1), −Dc(L− 2) Dd(L− q) + 2Dd(L− q− 1) + Dd(L− q− 2)




a1

a2

b0


+


w(q + 3)
w(q + 4)
· · ·

w(L)



(26)

In matrix form, let:
y = (Dc(q + 3), Dc(q + 4), · · · , Dc(L))

T, (27)

x = (a1, a2, b0)
T, (28)

A =


−Dc(q + 2), −Dc(q + 1) Dd(3) + 2Dd(2) + Dd(1)
−Dc(q + 3), −Dc(q + 2) Dd(4) + 2Dd(3) + Dd(2)
· · · , · · · , · · · ,

−Dc(L− 1), −Dc(L− 2) Dd(L− q) + 2Dd(L− q− 1) + Dd(L− q− 2)

, (29)
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w = (w(q + 3), w(q + 4), · · · , w(L))T. (30)

Equation (26) is expressed as:
y = Ax + w. (31)

According to the least-mean-square principle, the optimal estimation is given by:

x̂ =
(
ATA

)−1
ATy. (32)

The covariance matrix of the estimation is expressed as:

Σx =
(
ATA

)−1
Σy, (33)

where Σy is the covariance matrix of measurement noise. To improve the measurement noise, step
excitation experiments are repeated and measurement data are averaged.

4. Simulation

4.1. Monotonicity Numbers of Normal Distribution Noises

As illustrated in Table 1, the increasing monotonicity number of measurement noise is not
influenced by its standard deviation and mean value. This conclusion is demonstrated by a simulation,
which is shown in Figure 4. Three kinds of normal distribution noises are generated, and their
increasing monotonicity number is calculated for comparison.

The simulation result shows that the monotonicity numbers are kept in the same and limited
range, although the distributions of measurement noises are different. The monotonicity number is
usually smaller than seven. Hence, it is reasonable to set eight as the threshold of response to step
excitation when the measurement noise is Gaussian white noise. In practice, measurements may be
corrupted by 1/f noise and drift noise. An alternative way of replacing the constant threshold is by
judging from the ratio of the signal’s monotonicity number to the noise’s monotonicity number.

4.2. Dead Time and Parameter Identification Methods

A simulation w applied to verify the dead time estimation and parameter identification methods.
The parameters used in the simulation are listed in Table 2.

Using Equation (14), the discrete model under a 10 kHz sample frequency is given by:

Kd(z) = z−6 0.0226 + 0.0452z−1 + 0.0226z−2

1− 1.785z−1 + 0.785z−2
. (34)

This discrete model was excited by a step signal. The amplitude of the step signal was 5× 10−5.
This step signal drove the digital-to-analog converter to produce a stimulating force, which generated
an acceleration of 2.5 mg. This stimulating acceleration was very small, because the discrete model
represents an open-loop transfer function and it is validated in a small range otherwise non-linear
effects have to be included.

Firstly, given the simulation data, the dead time was estimated. Figure 5 shows the monotonicity
number response to the step excitation. The step signal occurred at 1 s, which corresponded to the
10,000th sample. The monotonicity number rose at the 10,007th sample, and the amplitude at the
10,007th sample was much bigger than eight. Hence, the dead time estimation is seven samples with
an error of one sample.
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Table 2. Mechanism parameters used in the simulation.

J (N·m·s2/rad) C (N·m·s/rad) K (N·m/rad) Ka (N·s2) τ (s)

5.73× 10−8 1.38× 10−4 3.68× 10−4 0.58 6× 10−4
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The measurement data were corrupted by the measurement noise. The simulation results, which
are shown in Table 3, illustrate that the dead time estimation method was robust to the measurement
noise. When the measurement noise became bigger, the estimation error of Elnaggar’s method [21]
became bigger, while that of the MN method proposed in this paper was not influenced.

Table 3. Effect of measurement noise on dead time estimation.

σ (aF) Monotonicity
Number Method

Elnaggar’s
Method

Error of Monotonicity
Number Method

Error of Elnaggar’s
Method

3 7 6 1 0
30 7 7 1 1

300 7 16 1 10

Secondly, parameters of the discrete model were identified using the LMS method after the dead
time was estimated. Using Equation (32), parameters a1, a2, and b0 were fitted. The fitted transfer
function is express as:

K′d(z) = z−7 0.0227 + 0.0454z−1 + 0.0227z−2

1− 1.782z−1 + 0.782z−2
. (35)

The fitting result is shown in Figure 6. Compared to the ideal model response, the root mean
square error (RMSE) of the fitting result was 4.941 fF. With the fitting results of a1, a2, and b0, the
mechanism parameters J, C, K, and Ka are given in Table 4.

Table 4. Identified mechanism parameters used in the simulation.

J (N·m·s2/rad) C (N·m·s/rad) K (N·m/rad) Ka (N·s2) τ (s)

5.56× 10−8 1.36× 10−4 3.61× 10−4 0.57 7× 10−4

In contrast to the dead time estimation method, the performance of the LMS method was affected
by the measurement noise. More simulation results are listed in Table 5. When the measurement
noise increased, the root mean square error increased proportionally. To improve the precision of the
identification results, the step excitation experiment needs to be repeated and the response data need
to be averaged.
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Table 5. Root mean square errors of fitting results under different measurement noise.

σ (aF) Root Mean Square Error (fF)

3 0.489
30 4.941
300 49.437

5. Experimental Results and Discussions

A quartz flexure accelerometer was tested using the dead time estimation and parameter
identification methods which were verified by simulation. The experimental setup is shown in
Figure 7. The quartz flexure accelerometer was made up of two parts: the mechanism and the
circuit. The mechanism part contains the quartz pendulum, coil skeleton, and magnetic cap, which are
described in Figure 1. This sensor was mounted on an iron cross whose bottom was perpendicular
to the mounting face. The iron cross was put on two height adjusting devices, hence, the bottom of
the iron cross could be horizontal by adjusting the height. The circuit mainly performs two functions:
driving the coil and measuring the capacitance. The coil was driven by the step signal repeatedly, and
the capacitance was measured and transmitted to the data-processing computer.

The experimental data are shown in Figure 8. Sample frequencies of the excitation signal Dd
and the response signal Dc were both 10 kHz. Sample time was set to be 3.9 s. The amplitude of the
step signal was 5× 10−5, and it occurred at 0.2 s. The response was corrupted by measurement noise.
To improve the dead time estimation and system identification results, 300 independent responses
were averaged. The averaged response is plotted in a solid line while a single response is plotted in a
dotted line.
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Using the excitation data and the averaged response data, the monotonicity number of the
experimental result is shown in Figure 9. The first peak of the monotonicity number appears at the
2005th sample. Since the step signal occurs at the 2000th sample, the dead time estimation is 5 samples.
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the scale of 5000 samples.

Considering that the sample frequency was 10 kHz, the dead time existing in the open-loop
was 500 µs. This dead time was composed of three parts: the dead time between step excitation
command Dd and actual step excitation current I, the dead time between actual step excitation current
I and differential capacitance output ∆C, the dead time between differential capacitance output ∆C
and digital measurement result Dc. Among these three parts, the first part and the third part, which
concern the electronic circuit, can be measured directly and individually. To measure the dead time
in the first part, step excitation command Dd was used to drive an extra I/O port of the digital signal
processor, and the driving circuit was connected to a resistor of 150 Ω. The dead time from when the
voltage of the I/O port sudden rises until when the voltage of the resistor first begins to respond was
measured using an oscilloscope (Tektronix TBS 1102). Experimental result showed that the dead time
of this part was 8 µs. To measure the dead time in the third part, a capacitor of 30 pF controlled by
a switch was connected to the capacitance measuring circuit. When the switch was on, the circuit
was connected to the capacitor; when the switch was off, the circuit was connected to the ground.
The dead time of this part was obtained by measuring the delay between the switching signal and
the sudden change of measurement Dc. Experimental results showed that the dead time between
differential capacitance output ∆C and digital measurement result Dc was 20 µs. Consequently, the
dead time between the actual step excitation current I and differential capacitance output ∆C, which
was 472 µs in this experiment, made the most effective contribution to the whole dead time existing in
the open-loop of the quartz flexure accelerometer.

After the dead time was estimated, the system parameters were identified using the LMS method.
The identification result is shown in Figure 10. The fitting result is plotted in the solid line while the
experimental data is in the dashed line. Compared to the averaged response data, the RMSE of the
fitting result was 18.906 fF.
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Combining the dead time estimation and parameter identification results, the discrete transfer
function of DQFA (open-loop) is expressed as:

K′′d (z) = z−5 0.0358 + 0.0716z−1 + 0.0358z−2

1− 1.310z−1 + 0.310z−2
. (36)

With the fitting result of discrete transfer function, the mechanism parameters are given in Table 6.

Table 6. Identified mechanism parameters of the tested accelerometer.

J (N·m·s2/rad) C (N·m·s/rad) K (N·m/rad) Ka (N·s2) τ (s)

1.9× 10−8 2.0× 10−4 3.0× 10−4 0.41 5.0× 10−4

6. Discussion

The quartz flexure accelerometer based on the new structure achieved a significant development,
because it overcame the precision loss inherently existing in the transforming process of analog quartz
flexure accelerometers. However, the quartz flexure accelerometer based on the new structure demands
more stringent modeling accuracy. Driven by this demand, researchers have developed methods
identifying the mechanism parameters of QFAs, such as the moment of inertia, the damping coefficient,
and the rotational stiffness. However, the dead time, which has a great effect on the control algorithm
design, is not mentioned in previous studies. This paper puts effort in on the dead time estimation and
parameter identification methods of QFAs to improve the modeling accuracy.

The dead time estimation method is mainly based on the monotonicity number, which means the
number of data that keeps monotonic following the current data. Analysis shows that the monotonicity
number was robust to measurement noise because the probability distribution of the monotonicity
number was not influenced by the statistic characteristics of the measurement noise. Here, the
measurement noise was assumed to be white noise (normal distribution noise). For other kinds of
noise, the robustness of the monotonicity number is still unclear, and it is worthy of future study.
Analysis also showed that the monotonicity number was sensitive to step excitation. In simulation,
the monotonicity number of the excitation signal reached 5909, while that of measurement noise was
kept in a limited range of eight. One drawback to this dead time estimation method is that it is only
applicable to a discrete system. The fractional part of dead time was not considered. A solution to
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this problem is increasing the sample frequency, then the fractional part of dead time becomes smaller.
Another solution presented in Reference [31] is increasing the order of the numerator by one and
calculating the equivalent model.

The parameter identification method was mainly based on the least mean squares principle.
In contrast to the dead time estimation method, the parameter identification method was affected by
the measurement noise. Analysis showed that the root mean square error of the fitting result was
proportional to the measurement noise. To overcome this problem, the step excitation experiment was
repeated and the step response data were averaged. This solution was direct and effective, but not
efficient. A more robust and efficient identification method, such as artificial neural networks [32,33],
will be used in future work.

A simulation example was presented to confirm the validity of the methods proposed in this paper.
Using the verified methods, a quartz flexure accelerometer was tested. The experimental result showed
that the dead time was 500 µs. This time may vary from one accelerometer to another, but it should
not be neglected. A compensation algorithm, such as the Smith predictor, requires prior knowledge
of the dead time to compensate. Hence, an accurate dead time estimation method is important to
the designing process of these algorithms. The experimental result also gives the open-loop transfer
function. Derived from the transfer function, the moment of inertia was 1.9 × 10−8 N·m·s/rad, the
damping coefficient was 2.0 × 10−4 N·m·s/rad, and the rotational stiffness was 3.0 × 10−4 N·m·s/rad.
With these identified parameters, it was able to design the servo control algorithm regrading to the
specific accelerometer.

7. Conclusions

This paper presented a study on the system identification of the quartz flexure accelerometer,
especially considering the dead time which was not focused on in conventional studies. The dead
time and mechanism parameters of the digital quartz flexure accelerometer were obtained through
step excitation experiments. A monotonicity number, which was robust enough to measurement noise
but sensitive to step excitation, was proposed to estimate the dead time. The mechanism parameters
were identified using the least mean squares method. The validity of the dead time estimation and
parameter identification methods was verified by simulation. A quartz flexure accelerometer was
tested using the verified methods.
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