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Abstract: Interpolation from a Color Filter Array (CFA) is the most common method for obtaining
full color image data. Its success relies on the smart combination of a CFA and a demosaicing
algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development
in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN)
approaches that encode the prior knowledge of millions of training images to fill in missing data in
an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized
to strongly impact demosaicing performance. This is because demosaicing algorithms are typically
limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting
to change with newer classes of demosaicing that may be considered generic or CFA-agnostic.
In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the
potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of
NN-based demosaicing, the influence of optimal CFA design on system performance decreases.
This hypothesis is supported with the experimental results. Such a finding would herald the
possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and
producing high-quality cameras.

Keywords: demosaicing; debayering; color filter array; image interpolation; image reconstruction

1. Introduction

Since Bayer’s original patent [1], (Bayer) Color Filter Array (CFA) demosaicing has established
itself as the de facto standard method of acquiring multi-dimensional color images. General
demosaicing in this sense would be defined as the reconstruction of a (multi-dimensional) color signal
from an inherently single-dimensional array of (e.g., Charge-Coupled Device (CCD) or Complementary
Metal-Oxide Semiconductor (CMOS)) sensors. The mosaiced image is obtained by using a planar
sensor that is covered by an interleaved pattern of different color filters, resulting in sensor output
that is an interleaved pattern of signal components that represent different parts of the color spectrum.
A demosaicing algorithm reconstructs this into a (three-dimensional) full color signal. An optimal
demosaicing system design would be constituted of the creation of an optimal interleaving pattern
(the color filter array or CFA) and an optimal demosaicing algorithm that achieves the highest color
reconstruction quality.

1.1. CFA Pattern Design

A good CFA pattern design satisfies the criteria presented in [2]: cost-effective image reconstruction,
robustness to color aliasing, robustness to image sensor imperfections and robustness to optical or
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electrical influence between the neighboring pixels. The Bayer CFA exploits the fact that the human
eye is more sensitive to wavelengths corresponding to the green colors, rather than to the blue and the
red colors, i.e., the Bayer CFA consists of a repeating 2 x 2 pattern of one red, one blue and two green
color filters. Given the analysis for the spectra of different CFA patterns, performed by Hirakawa et
al. and presented in [3], it can be concluded that the Bayer CFA pattern is susceptible to introducing
aliasing artifacts in both vertical and horizontal high spatial frequencies. Therefore, other solutions
for CFA design that will overcome the problems with aliasing artifacts introduction for horizontal
and/or vertical edges, were proposed. The idea for these designs is either based on the assumption
that the physical world is rather horizontally than vertically oriented, or on the opposite assumption.
Examples for more oriented patterns are: the Yamanaka CFA pattern [4], the Lukac CFA pattern [2],
the Vertical CFA pattern, the Modified Bayer CFA pattern, the Diagonal CFA pattern, etc. With a
purpose to increase the quality of the low-light photography, Sony introduced the Quad Bayer CFA
sensor. In order to reduce the sensitivity to noise, many camera systems use multi-frame photography,
which leads to ghosting artifacts introduction that affects the quality of the captured video. To deal
with the problem of ghosting artifacts introduction, Sony introduced the IMX586 smartphone sensor
with the Quad Bayer design and 48 MP resolution [5], with which Sony succeeds to obtain high
performance and quality gain (as explained in [6]) when used in the high dynamic range (HDR) mode
in low-light conditions. According to Sony, in normal light conditions, the camera achieves a similar
quality of the captured images, when these are compared with the images captured with a sensor
of 12 MP sensor with the Bayer design. Furthermore, to deal with the problem of low sensitivity in
low-light conditions, many panchromatic CFA designs were introduced, e.g., Sony 4-Color [7], Kodak
Ver.1-3 [8], etc. There also exist works on the multispectral filter array design [9,10] that find application
in different fields of multispectral imaging.

In our analysis, we will only test the influence of Bayer-like CFA patterns (with the same sampling
ratio as the Bayer CFA), considering them to be sufficient to show that the difference in quality performance
between different CFA designs decreases with the increasing power of demosaicing algorithms.

1.2. Demosaicing

Since demosaicing has been an extensively studied research area, it abounds with algorithms that
may be classified into different groups. The earliest works are based on using simple interpolation
techniques (bilinear, bicubic, spline interpolation, etc.). These reconstruction techniques are prone to
artifacts introduction (aliasing) in the regions with high spatial frequencies, i.e., regions with edges and
details. Consequently, the research in this field progressed further towards designing algorithms based
on more sophisticated reconstruction techniques. For that purpose, numerous survey studies have
been proposed [11-13]. In [14], the demosaicing algorithms were roughly classified into five categories,
depending on the used techniques and on the reconstruction domain (spatial, frequency, wavelet, etc.).
According to this classification, classical demosaicing includes: frequency-domain algorithms (good
representatives are [15,16]), algorithms based on directional interpolations (among which residual
interpolation (RI) algorithms, specifically [14] show superior performance), wavelet-based algorithms
(among which good representatives are the algorithms presented in [17-19]), and reconstruction-based
(with the algorithms presented in [20,21] as good representatives of this group). Another group of
algorithms are the learning-based algorithms: dictionary-learning-based [22], regression-based [23],
reconstruction-based with machine learning procedures for multispectral demosaicing (with [24] being
a good representative algorithm) and neural-network-based algorithms, which we will refer to as
modern learning-based demosaicing algorithms (with [25] as a representative).

A good overview of the performance of the classical demosaicing algorithms (that are not
deep-learning-based) is given in the graph from [14], shown in Figure 1. As it can be seen, ARI [14]
outperforms all previous algorithms. Its good performance is due to the fact that it is an iterative
approach based on the assumption of color consistency along the edges and smooth areas. Additionally,
the algorithm considers the color differences in creating the final demosaiced image. However, this
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method, despite its good performance in the way it was designed, is not generic and is applicable
only to Bayer pattern CFA and the multispectral filter array (MSFA) that was presented earlier in [10].
Classical demosaicing techniques have an advantage of being applicable to any type of image without
requiring training data, while, on the other hand, the modern learning-based algorithms show superior
performance and can be modified to be applied on different CFA patterns, which makes them generic.
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Figure 1. Performance of the demosaicing algorithms over the years (from the analysis presented
in [14]). Image source: [14].

1.3. CFA-Demosaicing Co-Design

The co-design of CFA and demosaicing has received little attention. A reason for this is that
many classical demosaicing techniques are intricate interpolation schemes that are finely tuned to a
particular CFA pattern, typically the ubiquitous Bayer pattern. The intricacy of this design precludes
the possibility of applying a demosaicing algorithm to a different CFA pattern and therefore inhibits the
application of well-performing demosaicing techniques to CFA patterns that they were not designed
for. There exist approaches in which a particular CFA design is introduced and a matching demosaicing
algorithm is proposed (e.g., Pseudo-randomized CFA pattern [26] design and a demosaicing algorithm
presented in [20]). Similarly, in [2], a Bayer-like CFA design is proposed and a generic algorithm is
devised [27]. Demosaicing algorithms that are generic, in a sense that may be applied successfully
to any CFA, do exist, but are much less common and are typically outperformed by CFA-specific
demosaicing. Examples of such algorithms are [20,21], which belong to an earlier generation of
demosaicing algorithms. These algorithms were outperformed by ARI (for the Bayer CFA pattern)
and by another state-of-the-art algorithm, known as ACUDe [28] that belongs to the group of classical
demosaicing methods and is also generic.

Another generic algorithm that belongs to the group of newer generation of classical demosaicing
algorithms is the algorithm presented in [29], where the authors for reconstruction use the linear
minimum mean square error (LMMSE) model. The LMMSE approach was tested on different periodic
RGB CFA patterns and the experimental analysis has shown that, for some random CFA patterns,
it achieves better performance than for the Bayer CFA pattern. Furthermore, with this analysis,
it was shown that, for all analyzed CFA patterns, the reconstruction quality increases as a bigger
neighborhood around the pixel to be estimated is taken into consideration.

More advanced generic algorithms are the learning based algorithms, among which neural
network based algorithms are superior. Such an algorithm is presented in [30]. Here, authors propose
a demosaicing algorithm based on a simple neural-network architecture. In this algorithm, the authors
rely on the previously proposed concept of using a superpixel (neighboring area) for estimating the
unknown pixel values. This technique was tested on different CFAs and the MSFA presented in [10].
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Convolutional neural networks (CNNs) have shown great success in many image processing and
computer vision tasks. One of the main strengths of CNNs is that they allow learning features specific
for a given domain, compared to earlier approaches where the features were predefined based on
domain knowledge. For example, for the problem of demosaicing, the same CNN can be applied for
different CFAs by retraining it with different input data, without any structure modifications [25,31-36].
Moreover, some CNN-based algorithms learn an optimal color filter layout jointly with a model for
demosaicing of images obtained with the learned pattern [37,38].

1.4. Structure

This paper studies the effect of the CFA design choice on the overall CFA-demosaicing
reconstruction quality. Specifically, we test the hypothesis that the impact of the CFA layout choice on
the quality performance decreases with the emergence of more sophisticated, modern learning-based
demosaicing algorithms.

It is structured as follows: in Section 2, we provide a description of demosaicing that is
state-of-the-art with respect to quality performance and that lends itself well to adaptation and
improvement towards generic CFA. In Section 3, we describe adaptations we made to these methods in
an effort to allow evaluation of different CFAs and to achieve better results in terms of reconstruction
quality. In Section 4, by starting with the motivation for the performed analysis, we proceed with
explanation about the performed experiments, about the used image data-sets and the used CFA
patterns. In Section 5, we present the qualitative and the quantitative results from the performed
analysis, while in Section 6 we give a summary of the obtained conclusions.

2. State-of-the-Art Demosaicing

In order to demonstrate a trend of state-of-the-art demosaicing becoming less sensitive to the CFA
pattern (i.e., to show that the performance of modern learning-based demosaicing is less affected by the
CFA design), we selected two algorithms, as representatives of two different groups of demosaicing
algorithms: in the first group, we consider classical demosaicing techniques that are not based on
machine learning and in the second group we consider modern learning-based techniques. In this section,
we describe the two representatives of each group separately. Specifically, the first algorithm, known as
ACUDe, belongs to the group of directional interpolation demosaicing algorithms. For reconstructing
the full color image, it exploits the color consistency in real images, by using the interchrominance
dependency. The second algorithm is a neural network based algorithm called CDMNet [25], chosen
as a representative method with a publicly available code.

2.1. Universal Demosaicing of CFA (ACUDe)

The method proposed by Zhang et al. [28], known as ACUDe, is devised to be applied on different
designs of CFA. Considered to be a state-of-the-art generic algorithm among the algorithms that are
based on directional interpolations, it has similar performance to the state-of-the-art ARI algorithm
proposed by Monno et al. [14], which outperforms all demosaicing algorithms that were previously
proposed. Furthermore, as ARI was implemented, it is only applicable to the Bayer CFA pattern and
the five-band multispectral filter array described in [10,14]. Therefore, we will consider only ACUDe
for our analysis. Although the main idea and theory of ACUDe can be applied on multispectral filter
arrays, the algorithm was tested and implemented for the three primary color system. Considered to
be an adaptive generic method, it exploits the inter-chrominance dependence and the measured CFA
response, to estimate the chrominance components. It is implemented in three steps: estimation of the
color/demosaicing transform matrix (only dependent from the CFA pattern) and the chrominance
direction; distance dependent per-pixel weight generation based on inter-pixel chrominance capture
and edge sensitivity; chrominance components estimation by weighting over the CFA image and
demosaicing transformation to the three primary colors. The method was evaluated on the KODAK
data-set [39] (because it abounds with images with both high and low spatial frequency content) and
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the IMAX data-set [40] (considered to be more challenging for demosaicing methods because of its
high color diversity and also because many images from the data-set contain high spatial frequencies
in the chrominance components). In [28], the authors compared their algorithm with two other
generic demosaicing algorithms for RGB CFA patterns (Condat’s generic method [20] and Menon and
Galvagno’s regularization approach to demosaicing (RAD) [21]). The obtained results (in terms of
measured color peak signal-to-noise ratio (CPSNR) and CIE LAB error) indeed show that ACUDe
outperforms the two mentioned algorithms for six different CFA patterns.

2.2. Demosaicing Using a CNN (CDMNet)

The baseline neural-network-based algorithm in this work is CDMNet [25]. In our analysis,
we use this algorithm because of its high-quality performance and reconstruction power among the
algorithms that belong to the group of modern learning-based demosaicing techniques and because
our experiments show that it outperforms the state-of-the-art algorithms that belong to the group of
classical demosaicing. Furthermore, this algorithm with the publicly available code and the retrainable
neural-network is suitable for performing modifications towards making it generic (adaptive to any
repetitive CFA pattern). In its original design, CDMNet is a three-stage neural network that is among
the state-of-the-art, according to evaluations on different datasets. CDMNet relies on the inter-channel
correlation for interpolation of the missing values. The problem of RGB demosaicing is split into
three stages: (1) reconstruction of the green channel, (2) separate reconstructions of the red and blue
channels jointly with the high-quality green channel and (3) joint fine-tuning of all three channels.

3. Modifying State-of-the-Art Demosaicing Algorithms

Here, we present the modifications we made on ACUDe and CDMNet. Since ACUDe is designed
to be generic, with our modifications, we achieved slight improvement in the reconstruction quality.
The adaptations made on CDMNet apply to the generalisation of this algorithm towards repetitive
RGB CFA patterns.

3.1. Modifying ACUDe

The flowchart of the modified ACUDe is presented in Figure 2. The input data that is considered is:
the CFA pattern and the CFA filtered image (CFA input). The green arrows represent the CFA pattern
dependent data-flow, and the blue arrows represent the CFA filtered image dependent data-flow.
For more details about the algorithm and each procedure, we refer to the explanation given in [28].
The modifications that were made consist of inserting the original values of the CFA filtered image to
the corresponding locations in the output image. This procedure is applied after obtaining the rough
estimate of the demosaiced image (non-adaptive demosaicing). For the main source-code used in our
implementation and the obtained results for Bayer pattern, of the originally designed (as explained
in [28]), and unmodified ACUDe, we direct the reader to the following web-site [41].
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Figure 2. Flowchart of ACUDe and our modifications. Modifications are represented with the
procedure in the orange block. Green arrows represent the data-flow between procedures (given
with blocks) where only the color filter array (CFA)pattern is used. Blue arrows represent the data-flow
between procedures (given with blocks) where also a CFA input image is used.

3.2. Making CDMNet Generic

For this study, we need to compare the performance of the same demosaicing algorithm
using different CFA patterns. To make the CDMNet algorithm agnostic of the pattern, we made
several modifications of the original version of CDMNet, shown in Figure 3 and explained in more

details below:
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1.  We do not rely on an initial estimate obtained by bilinear interpolation. Any interpolation
technique cannot guarantee equal reconstruction quality when applied on different CFA patterns.
Since our goal is to compare the influence of the patterns on the reconstruction quality, it is
necessary that all other conditions are equal when training the neural networks. Instead
of initial interpolation, the network operates on the original, sub-sampled color channels
provided at the input. To compensate for the lower spatial resolution of the input and
reconstruct a high-resolution output, the idea of periodic shuffling is applied as explained
in the next paragraph.

2. We integrated the idea of periodic shuffling in the CDMNet. Periodic shuffling was proposed
for the problem of image super-resolution [42], in order to substitute the deconvolution
layer for up-sampling. The effect of this operation is that the network operates on a lower
spatial resolution, and interpolates the missing values in the feature channels. The number of
channels is proportional to the sub-sampling factor. To obtain the final high-resolution output,
the elements of the tensors of low spatial resolution and high dimensionality are re-arranged into
a high-resolution RGB image.

3. All patterns used in these experiments were assumed to have the same size. Patterns that
are smaller (e.g., 2 X 2 Bayer pattern or 4 x 2 Lukac pattern) can be considered as replicated
in the appropriate dimension to achieve the largest size of all compared patterns, 4 x 4.
The down-sampling factor 7 in the periodic shuffling is determined by the size of the pattern, and
in this case we have fixed it to 4 in both the horizontal and vertical directions.

These adaptations allow for providing the same conditions when training the neural network
for different patterns. Any difference in the reconstruction quality will only be a consequence of the
pattern that was used. To train the neural network, we relied on the Waterloo Exploration Dataset
(WED) [43] following the same practice as the original CDMNet method. Initially, we randomly select
4644 images to create the training dataset, and the remaining 100 images from WED are used as a
validation set. We have then fixed the selected training and validation sets and used the same ones
during re-training for all of the patterns.

Approximately 360,000 patches were extracted from the training images. Instead of the originally
proposed patch size of 50 x 50, we extracted patches of size 48 x 48 to keep the dimensions divisible by
the downscaling factor. For each pattern, the neural network was randomly initialized and re-trained
for 81 epochs using batches of 64 patches. As in the original version [25], the learning rate was
decreased five times every 20 epochs, ranging from 10~2 to 10~°. Applying the modified CDMNet
model to any camera with a three-color, a repetitive (periodic) CFA pattern would require only one
offline re-training and applying a scaling factor proportional to the pattern size.

4. Experimental Analysis

The objective of the performed analysis is to show that, as the performance quality increases with
the more sophisticated reconstruction techniques being introduced, it becomes less affected by the
CFA design.

4.1. Experiments and Materials

In our study, we tested the two modified generic state-of-the art algorithms (that belong to
different classes of algorithms) on Bayer-like patterns (where the sampling ratio between the green,
red and blue channel is 2:1:1). We limit our analysis only to Bayer-like patterns, with a purpose of
achieving fair comparison and to obtain unbiased (towards more sophisticated and novel CFA patterns)
and uninfluenced (by different designs of demosaicing algorithms) conclusions. According to the
performed analysis presented in [29], some random patterns perform better than Bayer for the specific
LMMSE demosaicing methods. Our assumption is that the worst-performing CFAs (like Quad Bayer)
will present the largest differences with respect to output quality as a function of the demosaicing
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algorithm used. Our experiments show that when neural networks are applied for demosaicing, the
choice of the CFA pattern does not significantly influence the quality of the results. Based on our
finding and the results of generic algorithms presented in [28] (which are similar for Bayer CFA and for
Pseudo Randomized CFA), we expect that this trend will be true for random patterns as well. For this
reason, the paper focuses on showing how the performance for the worst-performing CFAs, as these
are the ones with the largest differences in performance, changes as a function of chosen demosaicing
algorithm. Therefore, we test the hypothesis that if the exact CFA pattern becomes irrelevant or less
relevant, this largest difference would diminish with it.

The patterns (see Figure 4) on which the modified state-of-the-art algorithms were tested are:
Bayer pattern, Lukac pattern, Yamanaka pattern, Modified Bayer pattern and Quad Bayer pattern.

Following the common practice for quality performance evaluation, in the performed analysis for
the two modified state-of-the-art generic algorithms, we used the two well-known image data-sets:
KODAK [39] (abounding with highly diverse in content and with plenty of details images) consisted
of 24 images in total (18 images with resolution of 768 x 512 pixels and six images with a resolution
of 512 x 768 pixels) and IMAX [40] (abounding with highly diverse in content and colors and with
plenty of details images) consisted of 18 images with resolution of 500 x 500 pixels. The second image
data-set, IMAX, is more challenging for quality performance evaluation of the demosaicing algorithms.
These image data-sets do not coincide with WED and are therefore new, previously unseen data for
the modified CDMNet. For testing the quality performance of the modified CDMNet, each of the five
trained neural network models (one model for every CFA design presented on Figure 4), was applied
on the input mosaic images obtained with the appropriate CFA pattern.

“n 8 8

Bayer Lukac Yamanaka

Modified Bayer Quad Bayer

Figure 4. Bayer-like CFA patterns used in the experimental analysis: Bayer, Lukac, Yamanaka, Modified
Bayer and Quad Bayer.

In order to test our hypothesis that a generic (in terms of CFA pattern) modern learning-based
demosaicing technique (such as the modified CDMNet) is more advantageous for reconstruction and
less affected by the quality of the CFA pattern than a generic classical demosaicing technique that
is not learning based (such as the modified ACUDe), we perform three experiments. The first two
experiments are part of the quantitative analysis for the quality performance of the two algorithms
and these include: objective evaluation (using the average CPSNR and the average PSNR for each
color channel, with the standard deviation of the mean, calculated over the reconstructed images from
each image data-set) and perceptual evaluation (using the SSIM metric, with the standard deviation
of the mean calculated over the reconstructed images from each image data-set). When each quality
metric was calculated, 11 pixels were excluded from the two vertical and horizontal image borders.
In the third experiment, which is part of the qualitative analysis, we analyze and compare images that
were reconstructed with the both algorithms, for the five different Bayer-like CFA patterns.
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5. Results

In what follows, we present the results and the conclusions from the experiments of the performed
analysis about the quality performance of the two representative state-of-the-art algorithms (the
modified ACUDe as representative among the classical demosaicing algorithms and the modified
CDMNet as representative among the modern learning-based demosaicing algorithms).

5.1. Results from the Quantitative Analysis

In Figure 5, we present the averaged CPSNR results with the standard deviation of the mean
(over the images from each image data-set) obtained for each analysed Bayer-like CFA pattern, with
the representative techniques (the modified ACUDe and the modified CDMNet). In Figures 6-§,
we present the average PSNR results with the standard deviation of the mean (over the images
from each image data-set) for each channel separately. In the same way, in Figure 9, we present the
SSIM results.
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Figure 5. Average color peak signal-to-noise ratio (CPSNR) results with standard deviation of the
mean: for the two modified generic algorithms (“CDMNet modified” and “ACUDe modified”), for the
two data-sets (“KODAK” and “IMAX”), for five different Bayer-like patterns (Bayer, Lukac, Yamanaka,

Modified Bayer and Quad Bayer).
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Figure 6. Average PSNR (red channel) results with standard deviation of the mean: for the two
modified generic algorithms (“CDMNet modified” and “ACUDe modified”), for the two data-sets
(“KODAK” and “IMAX?”), for five different Bayer-like patterns (Bayer, Lukac, Yamanaka, Modified
Bayer and Quad Bayer).
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Figure 7. Average PSNR (green channel) results with standard deviation of the mean: for the two
modified generic algorithms (“CDMNet modified” and “ACUDe modified”), for the two data-sets
(“KODAK” and “IMAX?”), for five different Bayer-like patterns (Bayer, Lukac, Yamanaka, Modified
Bayer and Quad Bayer).
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Figure 8. Average PSNR (blue channel) results with standard deviation of the mean: for the two
modified generic algorithms (“CDMNet modified” and “ACUDe modified”), for the two data-sets
(“KODAK” and “IMAX?”), for five different Bayer-like patterns (Bayer, Lukac, Yamanaka, Modified
Bayer and Quad Bayer).

From the CPSNR graph (see Figure 5), it can be noticed that the difference in quality, achieved
with the modified CDMNet (especially on the KODAK image data-set) across the different Bayer-like
CFA patterns, is smaller than the difference in quality of the modified ACUDe. The highest difference
in the quality, which may be observed from the both PSNR and SSIM values and as it is expected,
is between the Bayer CFA pattern and the Quad Bayer CFA pattern. The color pixels in Bayer CFA
are more frequently distributed around the pixel of interest (the pixel whose value is to be estimated)
and therefore the reconstruction quality with both algorithms is better for the Bayer CFA pattern.
This difference (for the KODAK image data-set) of ~3 dB when the modified CDMNet is applied,
is significantly lower, when being compared to the ~6 dB difference when the modified ACUDe is
applied. Although not highly pronounced, a similar trend is recognized when the results of the IMAX
image data-set are observed. The same conclusion can be derived from the observations on the PSNR

results for each color channel separately (see Figures 6-8).
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Figure 9. Average SSIM results with standard deviation of the mean: for the two modified
generic algorithms (“CDMNet modified” and “ACUDe modified”), for the two data-sets (“KODAK”
and “IMAX?”), for five different Bayer-like patterns (Bayer, Lukac, Yamanaka, Modified Bayer and
Quad Bayer).

To examine if this difference (between the reconstruction quality across the different CFA patterns)
becomes more apparent when the modified ACUDe is applied, we proceed with analyzing the SSIM
results (see Figure 9). As expected, the derived conclusion of the CPSNR and PSNR results is more
notably supported with the SSIM results. This analysis brings us towards a more general conclusion
on the improvement of the reconstruction quality, with the emergence of new and more advanced
demosaicing techniques. The conclusion is that the reconstruction quality becomes less affected by the
CFA pattern, as the demosaicing techniques become more sophisticated and more reliant on powerful
deep learning-based approaches.

Although the absolute overall quality performance of both representative demosaicing algorithms
(the modified ACUDe and the modified CDMNet) is not the main focus of the performed analysis,
in what follows, with a purpose to make the analysis thorough, we will discuss the major differences
between the two algorithms for each image data-set. The KODAK image data-set, compared to the
IMAX image data-set, consists of natural images that are more color consistent. On the contrary,
the IMAX image data-set abounds with images that consider more high spatial color frequencies.
Therefore, the better quality performance of the both demosaicing algorithms, on the KODAK image
data-set, is expected and justified. On the other hand, the color constancy in natural images is one
of the assumptions that the design of many classical demosaicing techniques (also including the
state-of-the-art algorithms: the generic ACUDe and ARI) is based on. Therefore, our assumption is that
the significantly better quality performance of the modified ACUDe on the KODAK image data-set,
rather than on the IMAX image data-set, is due to the fact that ACUDe, in the way it was originally
designed, is inherently biased towards image content with higher color constancy. If the PSNR results
for each color channel (see Figures 6-8) are analyzed, it can be noticed that both algorithms are better
in reconstructing the green color channel, rather than the blue and the red color channels. It can also
be noticed that the difference in quality reconstruction between the content of the two image data-sets
is smaller in the case when the modified CDMNet is applied. Moreover, the standard deviation of
the mean (calculated over the reconstructed images from each image data-set and each analyzed CFA
pattern) is smaller (especially when SSIM results are observed) in the case when the modified CDMNet
is applied.

These results show that the modified CDMNet, as a representative among the modern learning-based
demosaicing techniques, is more adaptive to different types of scenes and at the same time succeeds
with achieving high quality reconstruction for different CFA patterns.
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5.2. Results from the Qualitative Analysis

Here, we visually present the results (cropped parts of the reconstructed images) from the
selected representative examples of each image data-set (KODAK and IMAX). The ground-truth (GT)
images, with the corresponding cropped parts (marked with rectangles), are presented in Figure 10.
In Figure 11, we show the results obtained with the both algorithms (the modified ACUDe and the
modified CDMNet) for the five Bayer-like CFA patterns presented in Figure 4. The differences between
the reconstructed images from the different CFA inputs are visually more pronounced in the case when
the modified ACUDe is applied. Note the color aliasing artifacts in the result for the KODAK example
and the Yamanaka CFA pattern and the color aliasing artifacts accompanied with zippering artifacts
for the KODAK example and the Quad Bayer CFA pattern presented in Figure 11. Some color aliasing
artifacts may also be noticed (although negligible) in the reconstructed images with the modified
CDMNet (see the result obtained with the modified CDMNet, for the KODAK example and the
Yamanaka CFA pattern, presented in Figure 11). If we compare the results for the Quad Bayer CFA
pattern and the Bayer CFA pattern, obtained with the modified CDMNet, we notice that there are
no demosaicing artifacts present. The only difference between the two results may be perceived as
insignificant blurriness in the case of the Quad Bayer CFA pattern. Furthermore, if the results obtained
with the modified CDMNet for the IMAX example are observed, almost no differences between the
reconstructed images will be noticed.

The consistently higher reconstruction quality across different patterns and data-sets achieved by
CDMNet, over ACUDe, can be attributed to the strong representation power of convolutional neural
networks. The advantage of CNN models compared to classical methods is the capability of modeling
a distribution of natural images, and learning spatial and spectral correlations in the data. The huge
number of trainable parameters in CDMNet provides sufficient model complexity for solving the
demosaicing problem with similar quality for different input mosaic configurations.

The presented results from the performed experimental analysis, additionally with the results
from the experimental evaluation presented in [30], veritably support our initial hypothesis that, when
modern learning-based techniques are applied for demosaicing, the overall reconstruction quality is less
influenced by the choice of the CFA pattern.

Cropped part: KODAK GT Cropped part: IMAX GT

IMAX example: ground truth (GT)

KODAK example: ground truth (GT)

Figure 10. Examples of ground truth images from KODAK and IMAX image data-sets and their
cropped parts.
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Representative example from the KODAK set

ACUDe: Lukac ACUDe: Yamanaka ACUDe: Modified Bayer
L]
|

ACUDe: Quad Bayer
Y

CDMNet: Lukac CDMNet: Yamanaka CDMNet: Modified Bayer CDMNet: Quad Bayer

Representative example from the IMAX set
] i = .' 2

CDMNet: Bayer CDMNet: Lukac CDMNet: Yamanaka CDMNet: Modified Bayer CDMNet: Quad Bayer

Figure 11. Results obtained for the representative examples from KODAK and IMAX data-sets.
Two algorithms were analysed: (1) the modified ACUDe based on the algorithm presented in [28], as
a state-of-the-art generic algorithm among the classical demosaicing techniques and (2) the modified
CDMNet based on the algorithm presented in [25] as a state-of-the-art generic algorithm among the
learning-based demosaicing techniques. The algorithms were tested on five Bayer-like CFA patterns.
There are no big visual differences between the reconstructed images from different CFA inputs
when the modified CDMNet (the representative of the modern learning-based demosaicing techniques)
is applied.

6. Conclusions

Within this study, we analyse the quality performance of two state-of-the-art generic demosaicing
algorithms for different Bayer-like CFA patterns. The first one (modified ACUDe) belongs to the group
of classical demosaicing algorithms, while the second one (modified CDMNet) belongs to the group of
modern learning-based, i.e., neural-network-based demosaicing algorithms. The aim of the performed
analysis is to test the hypothesis that the modern learning-based demosaicing techniques (the NN-based
approaches) overcome the high difference in quality performance for different CFA patterns and at
the same time succeed at achieving quality performance that is higher than the quality performance
of the state-of-the-art generic algorithm (here modified ACUDe) that belongs to the group of classical
demosaicing techniques. The presented results of the analysis for the quality performance indeed show
that the hypothesis is true. From this study, we derive a conclusion about the constantly increasing
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reconstruction power of the modern learning based demosaicing algorithms towards adaptiveness to
any CFA design without loss in the reconstruction quality (which used to be dependent on the quality
of the CFA design). This conclusion leads to a finding regarding the future opportunities for camera
manufacturing and image reconstruction, specifically in combining lower hardware requirements with
powerful reconstruction techniques. In other words, this means that, with the modern learning-based
demosaicing methods, camera manufacturers have more freedom in the choice of the CFA pattern
layout, without a noticeable loss in the image quality. In that direction, the patterns can be adapted
to improve other image properties and facilitate various imaging tasks, such as the Quad Bayer that
was designed to improve noise reduction in low-light imaging. Furthermore, this conclusion points
towards the advantage of using the easily adaptive and retrainable neural-network based demosaicing
techniques in various applications of multispectral imaging.
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