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Abstract: UAV Swarm with high dynamic configuration at a large scale requires a high-precision
mathematical model to fully exploit its boundary performance. In order to instruct the engineering
application with high confidence, uncertainties induced from either systematic measurement or
the environment cannot be ignored. This paper investigates the Itô stochastic model of the UAV
Swarm system with multiplicative noises. By combining the cooperative kinematic model with a
simplified individual dynamic model of fixed-wing-aircraft for the first time, the configuration control
model is derived. Considering the uncertainties in actual flight, multiplicative noises are introduced
to complete the Itô stochastic model. Following that, the estimator and controller are designed to
control the formation. The mean-square uniform boundedness condition of the proposed stochastic
system is presented for the closed-loop system. In the simulation, the stochastic robustness analysis
and design (SRAD) method is used to optimize the properties of the formation. More importantly,
the effectiveness of the proposed model is also verified using real data of five unmanned aircrafts
collected in outfield formation flight experiments.

Keywords: stochastic system; UAV swarm; configuration control; multiplicative noises; dynamic
model; stochastic robustness analysis and design

1. Introduction

Swarms of UAVs, which can autonomously implement missions [1], have received significant
attention in recent years. There are many application scenarios for UAV swarms, such as comprehensive
combat [1], distributed reconfigurable sensor networks [2], surveillance [3], and reconnaissance
systems [4]. The primary concern of the UAV swarm is the configuration control problem and related
research mainly focuses on mathematical modeling [5], control strategies and methods [6,7] and
collision and obstacle avoidance algorithms [8,9]. However, most of them are based on a deterministic
system or a system with ideal Gaussian noises. High dynamic USCC model with multiplicative noise
remains as one of the primary and practical issues for utilizing UAV swarms in engineering applications.

Generally, the stochastic differential equation refers to a stochastic process-driven system or an
ordinary differential equation with a random coefficient [10–14]. Random factors are introduced into
the system in the following three ways [10]: 1. the system’s initial conditions or inputs are taken
as random variables, 2. the system’s random external disturbances, 3. the system’s parameters and
structures taken as random variables. The disturbances in the UAV swarm system are mainly induced

Sensors 2019, 19, 3278; doi:10.3390/s19153278 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19153278
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/15/3278?type=check_update&version=2


Sensors 2019, 19, 3278 2 of 24

from the sensor measurement, internet transmission and the task environment, and they fall under
point 2 mentioned above.

Existing work on the formation configuration control problem has been extensively investigated
for low dynamic deterministic systems. In [15], the formation containment problems based on linear
state equations of the multiagent systems were investigated. In [6,16], some theoretical and practical
problems of multiple quadrotors were studied. In [17–19], the dynamical model based formation
control problems of multirobot systems were studied. Most of the studies focus on low-speed vehicles,
such as multiple quadrotors or multirobot systems, with an ideal environment; however, very few
studies consider the formation control problems of high dynamic fixed-wing unmanned aircraft under
complex environments. The mathematical modeling of stochastic high dynamic UAV swarms remains
to be solved.

In this paper, we introduce the stochastic model for the following two reasons: (1) The UAV swarm,
especially for high dynamic, dense configuration and large scale swarms, requires a high-precision
mathematical model to describe the dynamic relationships among formation members and fully exploit
its boundary performance; (2) When the UAV swarm is carrying out missions, the influence of various
uncertainties (systematic measurement random interferences, network-induced random interferences
and mission environment random interferences) cannot be ignored, and the relative movements of
its members are usually random. Communication topology, caused by a network change, inevitably
influences the process of information sending and receiving [20]. Therefore, it is necessary to combine
the mathematical model of the USCC with the stochastic system to instruct the engineering practice
such as cooperative detection under complex mission environments with higher confidence.

Undoubtedly, constructing a more adaptable stochastic model for multiple vehicle systems is an
urgent task. The problem of Brownian motion-driven multiagent tracking was discussed in [21] and
sufficient conditions for the tracking of multi-agents were obtained by using the auxiliary function
of Brownian motion and random Itô integral technology. A time lag multiagent system model with
measurement noise was set up in [22], and the stability theory of stochastic differential equations
was used. In [23], the stochastic factor has been considered in the leader-following multiagent model
based on the event-triggered control strategy, Itô formula and stability theory. Studies [20,24–27]
have considered the influence of stochastic disturbances on the multiagent system (MAS) and have
established a stochastic model to control the MAS. However, existing works about the stochastic MAS
are mainly based on assumed state matrices. Although the assumed formula can be applied across
multiple levels, extra difficulties will occur in a certain practical system; for example, the process
of combining the flight member’s dynamics model and the formation’s kinematics model is more
complex; the modeling of process noises is more complex because the coefficients are presented in a
very complex way in the practical system; the simulation and flight test are more difficult because of
the complex system and high-risk environment. Therefore, numerous problems remain to be solved.

Typically, there are four main methods for formation coordination modeling reported in the
literature: the leader-follower framework [28], virtual structure approach [29,30], behavior-based
model [31,32] and graph theories [33]. Most of them focus on the consensus problems based on the
kinematic model. In this paper, intending to improve both the formation properties and individual
capabilities of UAV swarm in complex environments, we first use a simplified nonlinear dynamics
model of the fixed-wing aircraft flight control system and then construct the group dynamic cooperative
control system model together with the relative kinematic model. Based on Reynolds’ three criteria [31],
the model comprehensively considers the flight member’s individual properties and the whole
swarm’s cooperativeness.

To the best of our knowledge, although few efforts have been devoted to the modeling of
dynamic formation systems, there is almost no literature on the stochastic model of the UAV swarms.
For example, a six-degree-of-freedom (DOF) unified nonlinear dynamic model of spacecraft formation
was presented in [34]; In [35,36], the formation control laws for YF-22 aircraft models with six DOF
dynamics plus kinematic equations were designed. Although these formation models are efficient for
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the cooperative of a group without stochastic disturbance, the control strategy may be invalid when
control objects are moving in the noise environment.

To the best of the authors’ knowledge, few papers discuss the quality of the configuration,
and most of them have come up with an algorithm to control the formation, thereby achieving the
desired configuration or avoiding collision [6–8]. However, they do not discuss the robustness of UAV
swarms in much detail. In order to improve the robustness of the stochastic system, the parameters
of the estimator and the controller are optimized by the stochastic robustness analysis and design
(SRAD) method [37] in the simulation. Furthermore, few studies have carried out fixed-wing flight
test experiments. A multi-UAV outfield flight experiment was carried out to verify the effectiveness
of the formation collision forecast and coordination algorithm in [9]. In [36], a set of flights was
performed to assess the performance of the formation control laws. To extend the previous outfield
flight test results, the overall design in this paper is validated experimentally by flight testing using the
leader-follower configuration.

Motivated by the discussions above, the stochastic USCC model with multiplicative noises is
investigated in this paper. Compared with the existing literature, the main theoretical and experimental
contributions of our work are summarized as follows:

(a) Firstly, with the aim to instruct the engineering application of UAV swarms, we construct the
nonlinear formation model by combining the nonholonomic individual dynamics model of a UAV
swarm with the relative cooperative kinematics model. The model comprehensively considers
the personality of the individual members and the cooperation of the whole formation.

(b) Secondly, the stochastic state equation and output equation, together with the estimator and
controller, finally constitute a state-feedback-based closed-loop Itô stochastic system, which makes
full use of the platform’s boundary performance and better matches the complex task environments
to improve the cost-effectiveness of the UAV swarm system.

(c) Thirdly, most studies of formation configuration control focus on theoretical analysis, while the
technology proposed in this paper is for engineering applications and has been verified by outfield
flight tests.

The rest of this paper is structured as follows:
In Section 2, the problem’s formulation and preliminary studies of the USCC stochastic system are

presented. In Section 3, the mathematical model of formation control stochastic system is illustrated in
detail. The estimator and controller are also designed to control the formation, and SRAD has been
used to optimize the controller and estimator. The mean-square uniformly bounded condition of the
proposed stochastic system is then presented. In Section 4, simulations and experiments are conducted
to verify the effectiveness of the model. Finally, concluding remarks are given in Section 5.

2. Preliminary and Problem Formulation

2.1. Itô Stochastic System

Consider the linear Itô stochastic system as the model to be investigated as follows:

dx = [A(t)x + B(t)]dt +
m∑

i=1

[Fi(t)x + Gi(t)]dWi (1)

dx = A(t)xdt +
m∑

i=1

Fi(t)xdWi (2)
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where x, B, Gi ∈ Rn, A, Fi ∈ Rn×n, W(t) = [W1(t), W2(t), · · · , Wm(t)]
T, (t ≥ 0) are m dimensional

standard Wiener processes, which are defined in the complete probability space (Ω, F, P) and are
independent of each other. Define the following matrices:

M(t) = A(t) ⊕A(t) +
m∑

i=1
Fi(t) ⊗ Fi(t)

R(t) = 2
[
IN ⊗ BT(t)

]
KN + 2

m∑
i=1

[
IN ⊗Gi

T(t)
]
KNFi(t)

K(t) =
m∑

i=1
Gi(t) ⊗Gi(t)

(3)

where N = n2, ‘⊕’ denotes the Kronecker tensor for a matrix, and A⊕A = In ⊗A + A⊗ In, ‘⊗’ is the
Kronecker tensor product of a matrix.

KN =


1 0 · · · 0 0 · · · 0 0 · · · 0
0 0 · · · 1 0 · · · 0 0 · · · 0

· · · · · ·

0 0 · · · 0 0 · · · 1 0 · · · 0

 (4)

where the element ‘1’ appears in the first column, (n + 1)th column and [(n− 1)n + 1]th column of KN.

2.2. Mean-Square Uniform Boundedness of the Stochastic System

Since the stochastic system is complicated by external interferences, its stability condition is
relatively strict and there is no trivial solution to the equation. To solve this problem, we take advantage
of the mean-square uniform boundedness of the stochastic system. The condition for boundedness is
slightly less strict than that of stability. Under the condition of boundedness, the states of the system
are converging to bounded areas instead of certain stable points as time tends to infinity. Therefore, for
the USCC stochastic system model, stability refers to the mean-square uniform boundedness.

Definition 1. If there is a positive number c:

lim
t→∞

supE
{
‖Xi j(t, t0, Xi j0)‖

2
}
≤ c (5)

Then the states Xi j(t, t0, Xi j0) are mean-square bounded. The subscript ‘0’ represents the initial
value, Xi j0 denotes the initial states of the system which is composed of two members: i and j, t0

denotes the initial time, t denotes the current time, ‖·‖ is the Euclidean norm, E{·} is the mathematical
expectation, and sup is the minimum upper bound.

Lemma 1. [12] The necessary and sufficient condition for the mean-square boundedness of the solution for
the time-varying linear stochastic system (1) is that the following time-varying linear deterministic system is
bounded:

.
y =

[
M(t) R(t)

0 A(t)

]
y +

[
K(t)
B(t)

]
(6)

Lemma 2. [12] If (2) is a time-invariant linear system (i.e., A, Fi = const, i = 1, 2, · · · , m), system (2) is

uniformly asymptotically stable if and only if M = A⊕A +
m∑

i=1
Fi ⊗ Fi is stable, i.e., M is a Hurwitz matrix, or

the real parts of the eigenvalues of matrix M are negative.

Lemma 3. [12] If B(t), Gi(t), (i = 1, 2, · · · , m) are bounded and system (2) is mean-square uniformly
asymptotically stable, then the solution of system (1) is mean-square uniformly bounded.
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Based on Lemma 1, Lemma 2, Lemma 3, we present sufficient conditions for the stability of the Itô
stochastic model and prove them.

Theorem 1. The sufficient conditions for the stability of the Itô stochastic model (or the mean-square uniform
boundedness of the stochastic system (1)) are:

(1) B(t) and Gi(t) are bounded.
(2) The real part of the eigenvalues of matrix M(t) are negative.

Proof. For Equation (1), although we can use the conclusion of Lemma 1 to obtain the necessary and
sufficient conditions for the mean-square boundedness directly, given that A and Fk, k = 1 ∼ m are
linear time-invariant matrices, we further simplify the mean-square boundedness conditions.

According to Lemma 3, if it satisfies condition (1), the mean-square uniform boundedness of the
system (1) is equivalent to system (2) and is mean-square uniformly asymptotically stable:

According to Lemma 2, system (2) is mean-square uniformly asymptotically equivalent to
condition (2). Proof completed. �

2.3. Estimator of Itô Stochastic System

Lemma 4. [38] considering the Itô stochastic system in the form as follows:

dx(t) = Ax(t)dt + A0x(t)dw(t) + dw1(t) (7)

dy(t) = Hx(t)dt + H0x(t)dw(t) + dw2(t) (8)

where x(t) ∈ Rn, y(t) ∈ Rm are system states and measured values, respectively.A, A0, H and H0 are constant
matrices (they can also be extended to time-varying matrices if needed). w(t) is a standard scalar Wiener process,
as well as w1(t) and w2(t), where w1(t) ∈ Rn and w2(t) ∈ Rm. The initial state x(0) is a zero mean second-order
stochastic process.

Assuming that x(0) is independent of w(t), w1(t), and w2(t), and it satisfies:
E
{
x(0)xT(0)

}
= D(0)

E
{
dw(t)dwT(t)

}
= dt

E
{
dw1(t)dw1

T(t)
}
= Qdt

E
{
dw2(t)dw2

T(t)
}
= Rdt

(9)

Then the linear estimator with minimum mean square error is:

dx̂(t) = [A−K(t)H]x̂(t)dt + K(t)dy(t) (10)

x̂(0) = 0 (11)

The gain of the estimator is:

K(t) = [P(t)HT + A0D(t)H0
T][H0D(t)H0

T + R]
−1

(12)

where P(t) can be obtained as follow:

dP(t) = AP(t)dt + P(t)ATdt + A0D(t)A0
Tdt + Qdt

−K(t)[H0D(t)H0
T + R]KT(t)dt

(13)
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P(0) = D(0) (14)

dD(t) = AD(t)dt + D(t)ATdt + A0D(t)A0
Tdt + Qdt (15)

Remark 1. In this study, according to the above lemmas, we can construct a more applicable and effective USCC
stochastic model to improve the formation properties of the UAV swarm system. Moreover, the measurement
equation with Gaussian noises, the optimal estimator and controller are ingeniously involved in the closed-loop
model. The mean square uniform boundedness condition of USCC stochastic system can be obtained based on the
lemmas and theorem proposed above.

3. USCC Stochastic System Modeling

The group dynamic cooperative control system model comprehensively considers the personality
of the individual members and the cooperativeness of the whole formation based on Reynolds’ three
criteria [31]. Generally, the model is built with virtual forces: individuality and interaction forces.
Individuality force describes the nodes’ individual characteristics. Interaction force indicates the quality
of group collaboration among nodes and describes the group dynamic cooperative characteristics,
reflecting the ability to obey Reynolds’ three criteria. We will use it as a general theory to guide the
modeling of the USCC stochastic system.

3.1. Model of Individual Flight Control System

The individual flight control system of the UAV swarm adopts the north-up-east coordinate system.

Assumption 1. The formation moves in a two-dimensional plane, thus the flight path inclination and pitch
velocity are zero; the aircraft adopts side slip turning, thus the speed inclination angle, roll angle, roll angle
velocity, angle of attack and side slip angle are all small values.

Assumption 2. Thrust P is independent of velocity V.

The simplified nonlinear mathematical model of individual flight control system is:

m dV
dt = P−X

mV dϕ
dt = −Pβ+ Z

mV dβ
dt = ωy + Pβ−Z

Jy
dωy
dt = My

dP
dt = − 1

TP
P + KP

TP
δPc

dδy
dt = − 1

Tδy
δy +

Kδy
Tδy
δyc

(16)

where V is the flight velocity; ϕ is the flight path declination; β is the lateral slip angle; ω is the rotational
angle velocity of the body’s coordinate system relative to the ground coordinate system. The subscript
“y” denotes the y-component of ω. Jy is the y-component of inertial moments of the body’s coordinate
system. My is the y-component of moment caused by the external force (including thrust) on the
mass center; P is the thrust; X is the resistance force; Z is the lateral force; δ is the rudder declination;
Kδ, Tδ are gain and time constants of the control surface response, respectively (subscripts x,y, z are
aileron, rudder, and elevator, respectively); Kp, Tp are gain and time constants for the thrust response,
respectively; δc, δPc are rudder angle command and thrust command, respectively.
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By performing a small-disturbance linearization on (16) [39], we can obtain:

d∆V
dt = −XV

m ∆V + 1
m ∆P

d∆ϕ
dt = P−Zβ

mV ∆β− Zδy

mV ∆δy
d∆β
dt = −P−Zβ

mV ∆β+ ∆ωy +
Zδy

mV ∆δy

d∆ωy
dt = (

Mβ
y

Jy
−

M
.
β
y

Jy
P−Zβ
mV )∆β+ (

M
ωy
y

Jy
+

M
.
β
y

Jy
)∆ωy + (

M
δy
y

Jy
+

M
.
β
y

Jy
Zδy

mV )∆δy
d∆P
dt = − 1

TP
∆P + KP

TP
∆δPc

d∆δy
dt = − 1

Tδy
∆δy +

Kδy
Tδy

∆δyc

(17)

where XV = ∂X
∂V , the same as other elements which is in the same form with XV in (17).

3.2. Model of Formation Control System

For the convenience of outfield experiments and the safety of UAV swarm, we construct the model
in a two-dimensional (2D) plane to make it more adaptive to complex task environments such as flat
and dense formations, under which the aircraft would carry out missions at low altitude with almost
no vertical maneuver space. Moreover, theoretical results can be covered fully and extended to the
three-dimensional (3D) space. Therefore, we focus on the problem of USCC in the two-dimensional
plane, as shown in Figure 1.
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In Figure 1, vi and v j are the two nodes adjacent to each other. The flight path coordinate of node
vi is set as the relative coordinate system, in which the x-axis represents the direction of the velocity
and the z-axis is perpendicular to the x-axis shown as in Figure 1.

The ground coordinate system is set as the fixed coordinate system. di j is the distance between the
two nodes;xi j and zi j are the relative distances in the forward and lateral directions of the flight path
coordinate system, respectively. Vi, V j, ϕi and ϕ j represent their velocities and flight path declinations
in the ground coordinate system, respectively.

With the relationship from theoretical mechanics: absolute velocity = relative velocity + convected
velocity, the following kinematics equation for node vi and node v j can be derived:

→

V j =

.
→

d i j +
→

Vi +
.
ϕi ×

→

d i j (18)

The above equation can be decomposed in the flight path coordinate system of the node vi as:
dxi j
dt = V j cos(ϕ j −ϕi) −Vi +

dϕi
dt zi j

dzi j
dt = V j sin(ϕ j −ϕi) −

dϕi
dt xi j

(19)
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Substituting the second formula in (17) into (19) and performing small perturbation
linearization yields:

d∆xi j
dt = [−1 + (Pi−Xi)(−Piβi+Zi)+miViZi

Vi

mi
2Vi

2 zi j]∆Vi + V j sin(ϕ j −ϕi)∆ϕi

+
(−Pi+Zβi )zi j

miVi
∆βi −

βizi j
miVi

∆Pi −
Zδiy zi j
miVi

∆δiy + cos(ϕ j −ϕi)∆V j −V j sin(ϕ j −ϕi)∆ϕ j
d∆zi j

dt = [
(Pi−Xi)(−Piβi+Zi)+miViZi

Vi

mi
2Vi

2 xi j]∆Vi −V j cos(ϕ j −ϕi)∆ϕi

−
(−Pi+Zi

βi )xi j
miVi

∆βi +
βixi j
miVi

∆Pi +
Zi
δi y xi j

miVi
∆δiy + sin(ϕ j −ϕi)∆V j + V j cos(ϕ j −ϕi)∆ϕ j

(20)

Note that the aircraft flight momentum miVi is relatively large. Moreover, βi has small values

according to Assumption 1, and ϕ j −ϕi ≈ 0, thus (Pi−Xi)(−Piβi+Zi)

mi
2Vi

2 ∆Vi,
βi

miVi
∆P, and sin(ϕ j −ϕi)∆ϕi are

second-order small quantities. Meanwhile, cos(ϕ j − ϕi) ≈ 1, sin(ϕ j − ϕi) ≈ ϕ j − ϕi. Ignoring these
second-order small quantities and simplifying (20), we can get:

d∆xi j
dt = (

Zi
Vi zi j

miVi
− 1)∆Vi +

(−Pi+Zi
βi )zi j

miVi
∆βi −

Zi
δiy zi j

miVi
∆δiy + ∆V j

d∆zi j
dt =

Zi
Vi xi j

miVi
∆Vi −V j∆ϕi −

(−Pi+Zi
βi )xi j

miVi
∆βi +

Zi
δi y xi j

miVi
∆δiy + V j∆ϕ j

(21)

Combining Equations (17) with (19) and (21) yields the formation control system model:

d∆xi j
dt = a1∆Vi + a2∆βi − a3∆δiy + ∆V j

d∆zi j
dt = a4∆Vi −V j∆ϕi − a5∆βi + a6∆δiy + V j∆ϕ j

d∆Vi
dt = −a7∆Vi +

1
mi

∆Pi
d∆ϕi

dt = a8∆βi − a9∆δiy
d∆βi

dt = −a8∆βi + ∆ωiy + a9∆δiy
d∆ωiy

dt = a10∆βi + a11∆ωiy + a12∆δiy
d∆Pi

dt = − 1
TiP

∆Pi +
KiP
TiP

∆δiPc
d∆δiy

dt = − 1
Tiδy

∆δiy +
Kiδy
Tiδy

∆δiyc

(22)

where a1 =
Zi

Vi zi j
miVi

− 1, a2 =
(−Pi+Zi

βi )zi j
miVi

, a3 =
Zi
δiy zi j

miVi
, a4 =

Zi
Vi xi j

miVi
, a5 =

(−Pi+Zi
βi )xi j

miVi
, a6 =

Zi
δi y xi j

miVi
,

a7 = Xi
Vi

mi
, a8 = Pi−Zi

βi

miVi
, a9 = Zi

δiy

miVi
, a10 =

M
βi
iy

Jiy
−

M
.
βi
iy

Jiy

Pi−Zi
βi

miVi
, a11 =

M
ωiy
iy

Jiy
+

M
.
βi
iy

Jiy
, a12 =

M
δiy
iy

Jiy
+

M
.
βi
iy

Jiy

Zi
δiy

miVi
.

Note that: the state coefficients Vi, Pi, xi j, zi j and Zi
Vi in (22) are obtained at the balanced point.

3.3. Random Noises Analysis and Its Modeling

3.3.1. Process Noises

The formation could be easily affected by various forces in the atmosphere that cannot be accurately
measured in advance. Therefore, the process noises cannot be ignored.

For the node νi, assuming that the mass mi, velocity V j and flight path declination angle ϕ j of the
adjacent node ν j, which are obtained from the supporting network, are given values (i.e., consider that
V j and ϕ j are already estimated in ν j, and ignore the random transmission interference), but xi j, zi j, Vi,

Pi, Xi
Vi , Zi

Vi , Zi
βi , Zi

δiy , Mβi
iy, M

.
βi
iy, M

ωiy

iy and M
δiy

iy are determined by the aircraft’s instantaneous state
(such as velocity, altitude, attack angle, yaw angle, etc.); These states and their influences are random
in the real flight environment. Therefore, based on the central limit theorem, we assume that the above
parameters approximately obey the Gaussian distribution, that is:
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(1)

 xi j = xi jb + wxi j

wxi j ∼ N(0, σ2
xi j
)

, (2)

 zi j = zi jb + wzi j

wzi j ∼ N(0, σ2
zi j
)

, (3)
 Vi = Vib + wVi

wVi ∼ N(0, σ2
Vi
)

, (4)
 Pi = Pib + wPi

wPi ∼ N(0, σ2
Pi
)

,

(5)

 Xi
Vi = Xib

Vi + wXi
Vi

wXi
Vi ∼ N(0, σ2

Xi
Vi
)

, (6)

 Zi
Vi = Zib

Vi + wZi
Vi

wZi
Vi ∼ N(0, σ2

Zi
Vi
)

, (7)

 Zi
βi = Zib

βi + wZi
βi

wZi
βi ∼ N(0, σ2

Zi
βi
)

, (8)

 Zi
δi y = Zib

δi y + wZi
δi y

wZi
δi y ∼ N(0, σ2

Zi
δi y
)

,

(9)


Mβi

iy = Mβi
iyb + w

M
βi
iy

w
M
βi
iy
∼ N(0, σ2

M
βi
iy

)
, (10)


M

.
βi
iy = M

.
βi
iyb + w

M
.
βi
iy

w
M

.
βi
iy

∼ N(0, σ2

M
.
βi
iy

)
, (11)


M
ωiy

iy = M
ωiy

iyb + w
M
ωiy
iy

w
M
ωiy
iy
∼ N(0, σ2

M
ωiy
iy

)
, (12)


M
δiy

iy = M
δiy

iyb + w
M
δiy
iy

w
M
δiy
iy

∼ N(0, σ2

M
δiy
iy

)
.

(23)

The subscript “b” denotes that the values are determined and they are obtained at the balanced point.
The formation states do not change much when they fly around the balanced point; thus, the variances
of the random variables are approximately constant, and it can be assumed that the above parameters
are independent of each other. In the following, we use n1, n2, · · · , n12 to represent the random variables
in (23).

For a1 =
Zi

Vi zi j
miVi

− 1, substituting (2) (3) (6) in (23) into a1 yields:

a1 =
Zi

Vi zi j
miVi

− 1 =
(Zib

Vi+w
Zi

Vi )(zi jb+wzi j )

mi(Vib+wVi )
− 1 =

Zib
Vi zi jb

mi(Vib+wVi )
− 1 +

Zib
Vi wzi j

mi(Vib+wVi )
+

zi jbw
Zi

Vi

mi(Vib+wVi )
+

w
Zi

Vi wzi j

mi(Vib+wVi )
(24)

Assume that wVi is relatively small compared to the aircraft speed Vib. Since Vib + wVi is in the
denominator, the impact of wVi on a1 is small and can be ignored; assuming that both wZi

Vi and wzi j are
small,wZi

Vi wzi j is a second-order small quantity and can be ignored. Then we get:

a1 = (
Zib

Vi zi jb
miVib

− 1) +
zi jbw

Zi
Vi

miVib
+

Zib
Vi wzi j

miVib
= (

Zib
Vi zi jb

miVib
− 1) +

Zib
Viσzi j

miVib
n2 +

zi jbσZi
Vi

miVib
n6 , a1b + a1b2n2 + a1b6n6 (25)

Assuming that all the random parts of (23) are small, and ignoring the second-order small quantity.
For the same reason as a1, the expression of the coefficients a2 ∼ a15 could be derived. The results are
given as follows:

a2 =
(−Pib+Zib

βi )zi jb
miVib

+
(−Pib+Zib

βi )σzi j
miVib

n2 +
−zi jbσPi

miVib
n4 +

zi jbσZi
βi

miVib
n7 , a2b + a2b2n2 + a2b4n4 + a2b7n7 (26)

a3 =
Zib

δiy zi jb

miVib
+

Zib
δiyσzi j

miVib
n2 +

zi jbσZi
δiy

miVib
n8 , a3b + a3b2n2 + a3b8n8 (27)

a4 =
Zib

Vixi jb

miVib
+

Zib
Viσxi j

miVib
n1 +

xi jbσZi
Vi

miVib
n6 , a4b + a4b1n1 + a4b6n6 (28)

a5 =
(−Pib+Zib

βi )xi jb
miVib

+
(−Pib+Zib

βi )σxij
miVib

n1 +
−xi jbσPi

miVib
n4 +

xi jbσZi
βi

miVib
n7 , a5b + a5b1n1 + a5b4n4 + a5b7n7 (29)

a6 =
Zib

δi yxi jb

miVib
+

Zib
δi yσxi j

miVib
n1 +

xi jbσZi
δi y

miVib
n8 , a6b + a6b1n1 + a6b8n8 (30)

a7 =
Xib

Vi

mi
+
σXi

Vi

mi
n5 , a7b + a7b5n5 (31)

a8 =
Pib −Zib

βi

miVib
+

σPi

miVib
n4 +

−σZi
βi

miVib
n7 , a8b + a8b4n4 + a8b7n7 (32)

a9 =
Zib

δiy

miVib
+
σ

Zi
δiy

miVib
n8 , a9b + a9b8n8 (33)

a10 = (
M
βi
iyb

Jiy
−

M
.
βi
iyb

Jiy

Pib−Zib
βi

miVib
) +

−M
.
βi
iybσPi

JiymiVib
n4 +

M
.
βi
iybσZi

βi

JiymiVib
n7 +

σ
M
βi
iy

Jiy
n9 +

−(Pib−Zib
βi )σ

M

.
βi
iy

JiymiVib
n10

, a10b + a10b4n4 + a10b7n7 + a10b9n9 + a10b10n10

(34)
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a11 =
M
ωiy

iyb + M
.
βi
iyb

Jiy
+

σ
M

.
βi
iy

Jiy
n10 +

σ
M
ωiy
iy

Jiy
n11 , a11b + a11b10n10 + a11b11n11 (35)

a12 = (
M
δiy
iyb

Jiy
+

M
.
βi
iyb

Jiy

Zib
δiy

miVib
) +

M
.
βi
iybσZi

δiy

JiymiVib
n8 +

Zib
δiyσ

M

.
βi
iy

JiymiVib
n10 +

σ
M
δiy
iy

Jiy
n12

, a12b + a12b8n8 + a12b10n10 + a12b12n12

(36)

The states of the system are Xi j = [ ∆xi j ∆zi j ∆Vi ∆ϕi ∆βi ∆ωiy ∆Pi ∆δiy ]
T

; the inputs

are Ui j = [ ∆δiPc ∆δiyc ∆V j ∆ϕ j ]
T

; ∆V j and ∆ϕ j are determined random inputs. Substituting
(25) to (36) into (22), then the open-loop state equation of the formation stochastic system could be get:

.
Xi j = Ai jXi j + Bi jUi j +

12∑
k=1

Fi jkXi jnk (37)

where Aij =



0 0 a1b 0 a2b 0 0 −a3b
0 0 a4b −Vj −a5b 0 0 a6b
0 0 −a7b 0 0 0 1/mi 0
0 0 0 0 a8b 0 0 −a9b
0 0 0 0 −a8b 1 0 a9b
0 0 0 0 a10b a11b 0 a12b
0 0 0 0 0 0 −1/TiP 0
0 0 0 0 0 0 0 −1/Tiδy


, Bij =



0 0 1 0
0 0 0 Vj
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

KiP/TiP 0 0 0
0 Kiδy/Tiδy 0 0


.

For convenience of description, we define the square matrix Tmn whose order is eight and has
only one nonzero element; the value of the nonzero element is ‘1’ and it lies in column m and row n.

Then matrices Fi jk(k = 1, 2, . . . , 12) can be described as follows:

Fi j1 = a4b1T23 − a6b1T25 + a7b1T28,
Fi j2 = a2b2T15 − a3b2T18,
Fi j3 = a1b3T13,
Fi j4 = a2b4T15 − a5b4T25 + a8b4T45 − a89b4T55 + a10b4T65,
Fi j5 = −a7b5T33,
Fi j6 = a1b6T13 + a4b6T23,
Fi j7 = a2b7T15 − a5b7T25 + a8b7T45 − a8b7T55 + a10b7T65,
Fi j8 = −a3b8T18 + a6b8T28 − a9b8T48 + a9b8T58 + a12b8T68,
Fi j9 = a10b9T65,
Fi j10 = a10b10T65 + a11b10T66 + a12b10T68,
Fi j11 = a11b11T66,
Fi j12 = a12b12T68.

3.3.2. Measurement Noises

The states of the stochastic system (37) are measured by the support network and relative
navigation in the UAV swarm’s information acquisition system. The measuring vector is defined as:

Yi j = [ ∆xi jm ∆zi jm ∆Vim ∆ϕim ∆βim ∆ωiym ∆δiym ]
T

, assuming that ∆Pi cannot be measured.
These measured values are mainly affected by sensor measurement, network transmission and
random disturbances in the flight environment. Assuming that the measured noises of the system
approximately obey the Gaussian distribution, whose mathematical expectation is 0 and variance is
σm

2, the measurement equation is:
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

∆xi jm = ∆xi j + σ∆xi jmn13

∆zi jm = ∆zi j + σ∆zi jmn14

∆Vim = ∆Vi + σ∆vimn15

∆ϕim = ∆ϕi + σ∆ϕimn16

∆βim = ∆βi + σ∆βimn17

∆ωiym = ∆ωiy + σ∆ωiymn18

∆δiym = ∆δiy + σ∆δiymn19

(38)

The subscript “m” means the measured value of the system, n13, n15, · · · , n19 are standard Gaussian
white noises independent of each other. They are also independent of n1, n2, · · · , n12.

In summary, the measurement equation is:

Yi j = Hi jXi j +
19∑

k=13

Ei jknk (39)

where, Hi j =



1 0
1

1

1
. . .
1

1 0
0 1


, Ei j13 =



σ∆xi jm

0
0
0
0
0
0


, Ei j14 =



0
σ∆zi jm

0
0
0
0
0


, Ei j15 =



0
0

σ∆vim

0
0
0
0


,

Ei j16 =



0
0
0

σ∆ϕim

0
0
0


, Ei j17 =



0
0
0
0

σ∆βim

0
0


, Ei j18 =



0
0
0
0
0

σ∆ωiym

0


, Ei j19 =



0
0
0
0
0
0

σ∆δiym


.

3.4. Formation Estimator Design

For the state estimating problem of the formation control stochastic system (37) and (39), we use a
novel Itô stochastic system estimator which has a fixed gain according to [38].

In Lemma 4, the gain of the estimator is time-varying, but in this paper, the USCC problem is
investigated during cruising and the formation maintains a certain configuration with certain speed
and height in that period, the formation does not change very much. Therefore, we use an estimator
with fixed gain in (10) to estimate states, which can significantly simplify the computation and improve
the real-time performance of the system.

The formation control stochastic system (37) and (39) can be described as the following Itô
stochastic system:

dXi j(t) = Ai jXi j(t)dt + Bi jUi j(t)dt +
12∑

k=1

Fi jkXi j(t)dWk(t) (40)

dYi j(t) = Hi jdXi j(t) +
19∑

k=13

Ei jkdWk(t) (41)

where Wk(t) (k = 1 ∼ 12) in (40) are standard scalar Wiener processes.
19∑

k=13
Ei jkdWk(t) is a 7-dimension

Wiener process.
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The initial states Xi j(0) satisfy:
E
{
Xi j(0)Xi j

T(0)
}
= Di j(0)

E
{
dWk(t)dWk

T(t)
}
= dt

E
{
[

19∑
k=13

Ei jkdWk(t)][
19∑

k=13
Ei jkdWk(t)]T

}
= Ri jdt

(42)

Then, substituting (40) into (41) and the fixed gain estimator of the formation control stochastic
system can be obtained by Lemma 4:

dX̂i j(t) = (Ai j −K f Hi jAi j)X̂i j(t)dt + Bi jUi j(t)dt + K f dYi j(t) (43)

X̂i j(0) = 0 (44)

where X̂i j = [ ∆x̂i j ∆ẑi j ∆V̂i ∆ϕ̂i ∆β̂i ∆ω̂iy ∆P̂i ∆δ̂iy ]
T

is the state estimate vector; K f is
fixed gain of the estimator. Ui j is the control input.

3.5. Formation Controller Design

It can be seen from (22) that the system states have a high degree of coupling between each other
(such as the forward distance ∆xi j and the sideslip angle ∆βi, the lateral distance ∆zi j and ∆Vi, they all
have high degree of coupling between each other), so the forward and lateral distance will be controlled
with a couple in this paper. The PID-based formation control system structure is a commonly used
design method in the engineering application at present [40]. According to the clustering algorithm
proposed in [41], the PID formation controller we adopted is:

Ui j = KcKωi j(X̂i j −X∗i j) + U jd (45)

X∗i j = [∆x∗i j, ∆z∗i j, ∆V∗i , ∆ϕ∗i , ∆β∗i , 0, 0, 0]T (46)

Kωi j = diag(ωi j,ωi j, 1, 1, 1, 1, 1, 1) (47)

U jd = [0, 0, ∆V j, ∆ϕ j]
T (48)

where X̂i j is the output of the estimator; X∗i j is the system command; superscript “∗” indicates the
command, the same as below; U jd is the determined interference input vector of the adjacent node;
Kc ∈ R4×8 is the control law, in which the last two rows in Kc are zero vectors because ∆V j and ∆ϕ j
are the determined interference inputs in Ui j; Kωi j is the adjacency adjustment matrix, 0 ≤ ωi j ≤ 1 are
adjacency coefficients. The larger it is, the stronger the adjacency relationship between node νi and ν j.

The key to designing a better PID controller is to contrive the proper PID gain parameters. In order
to get a better parameter of the feedback coefficients, we use the SRAD method which combines the
genetic algorithm and Monte Carlo simulation to improve the robustness of the stochastic system.

We can see from (45) that Kc∆vi(∆V̂i −∆V∗i ) and Kc∆ϕi(∆ϕ̂i −∆ϕ∗i ) reflect the individuality forces of
the individual aircraft, Kc∆xi jωi j(∆x̂i j − ∆x∗i j) and Kc∆zi jωi j(∆ẑi j − ∆z∗i j) reflecting the interaction forces
which represent the quality of the formation cooperation. Both of them can contribute to maintaining
the configuration during formation maneuvering.
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3.6. Closed-Loop USCC Stochastic System

In summary, the Itô stochastic system of the USCC is as follows:

dXi j = Ai jXi jdt + Bi jUi jdt +
12∑

k=1
Fi jkXi jdWk

dYi j = Hi jdXi j +
19∑

k=13
Ei jkdWk

Ui j = KcKωi j(X̂i j −X∗i j) + U jd

dX̂i j = (Ai j −K f Hi jAi j)X̂i jdt + Bi jUi jdt + K f dYi j

(49)

where the first equation is the state equation, the second is the measurement equation, the third is
the control input, and the fourth is the state estimation equation. The above four equations together
construct the expansion closed-loop equation for the stochastic system of USCC (as shown in Figure 2):

dXi j =
[
Ai jXi j + Bi j(t)

]
dt +

19∑
k=1

[
Fi jkXi j + Gi jk

]
dWi (50)
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The states of the expansion system are:

Xi j =

[
Xi j
X̂i j

]
(51)

where Xi j ∈ R16×1; Xi j ∈ R8×1 are original states; X̂i j ∈ R8×1 are estimated states.
The state transfer matrix of the expansion system is:

Ai j =

[
Ai j Bi jKcKωi j

K f Hi jAi j [(I8×8 −K f Hi j)Ai j + (I8×8 + K f Hi j)Bi jKcKωi j]

]
(52)

where Ai j ∈ R16×16; Ai j ∈ R8×8 is the state transfer matrix of the original system; Bi j ∈ R8×4 is the input
matrix of the original system; Hi j ∈ R7×8 is the estimate matrix of the original system; Kωi j ∈ R8×8 is the
adjacent adjustment matrix in Ui j; Kc ∈ R4×8 is the control law; K f ∈ R8×7 is the gain of the estimator.
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The input matrix of the expansion system is:

Bi j(t) =

 −Bi j(KcKωi jX∗i j −U jd)

−(I8×8 + K f Hi j)Bi j(KcKωi jX∗i j −U jd)

 (53)

where Bi j(t) ∈ R16×1; X∗i j ∈ R8×1 is the system command; U jd ∈ R4×1 is the determined input of the

adjacent node in Ui j. Note that: Bi j(t) is a time-varying matrix because X∗i j is time-varying.
The expansion stochastic state transfer matrix is:

Fi jk =

[
Fi jk 0

K f Hi jFi jk 0

]
(54)

where Fi jk ∈ R16×16; Fi jk = 08×8(k = 13 ∼ 19).
The stochastic input matrix of the expansion system is:

Gi jk =

[
0

K f Ei jk

]
(55)

where Gi jk ∈ R16×1; Ei jk = 07×1(k = 1 ∼ 12).
The standard Wiener process is:

W = [W1, W2, · · · , W19]
T (56)

where W1 ∼W19 are the Wiener processes in (49); W is an independent 19-dimension standard Wiener
process defined in the complete probability space: (Ω, F, P).

3.7. Main Results

Define the following matrix:

Mi j = Ai j ⊕Ai j +
19∑

k=1

Fi jk ⊗ Fi jk (57)

According to Theorem 1, the sufficient conditions of the stability of USCC stochastic model are:

(1) Bi j(t), Gi jk, k = 1 ∼ 19 are bounded.

(2) The real part of the eigenvalues of matrix Mi j are negative.

It can be seen from (53) and (55) that all the elements in the matrices Bi j(t), Gi jk are bounded
according to their definition, because in Bi j, Kip, Tip are constant parameters of the thrust response and
Kiδy , Tiδy are constant parameters of the elevator response; Kc ∈ R4×8 is the control law which can be
obtained after simulation; Kωi j is an adjacency adjustment matrix whose elements are in the range
of (0, 1); X∗i j are bounded command values; U jd is the determined interference input vector of the

adjacent node; K f ∈ R8×7 is the fixed gain of the estimator which can be determined from simulation;
the nonzero elements in the matrix Hi j ∈ R7×8 are ‘1’; and in Gi jk, Ei jk(k = 13 ∼ 19) is the bounded
variance vector of measuring noises. Therefore, we can further deduce the following:

Proposition 1. Under normal circumstances, a sufficient condition for the stability (or the mean square uniform
boundedness of the stochastic system (50)) of the USCC system is that the real parts of the eigenvalues are
negative, that is:

max
{
Reλ(Mi j)

}
< 0 (58)

where the max
{
Reλ(Mi j)

}
is the maximum real part of the eigenvalue of Mi j.
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4. Simulation and Experiments

With the aim of cooperative detection under complex environments, we ran simulations with
two aircraft to verify the effectiveness of the proposed stochastic model. Moreover, the equivalent
outfield flight test was carried out to complete the mission of cooperative detection in a certain area.
The results demonstrate that the formation could be achieved effectively and accurately.

4.1. Simulation Results

4.1.1. Initial State

To make it convenient for analysis, we set the number of UAV swarm n = 2. The configuration
of the formation during cruising is x12b = 100 m, z12b = −173.2 m (that is, ν2 located 100 meters
forward and 173.2 meters left of ν1), and the cruising speeds are V1b = V2b = 100m/s. The cruising
trajectory declination is ϕ1b = ϕ2b = 0 rad. The current configuration of the formation is the cruising
formation, the current speed is V1 = V2 = 100 m/s, and the current flight path declination is
ϕ1 = ϕ2 = 0 rad. The original mass is m1 = m2 = 1400 Kg, the y-components of inertial moments are
Iy1 = Iy2 = 3980 Kg ·m2.

4.1.2. Formation Parameters

Assume that the supporting network is strongly connected and that the adjacency coefficient ωi j
in (47) is 1.

4.1.3. Standard deviation of random interference

Assume that the standard deviations of random interference in Equations (23) and (38) are:

σxi j
= 1 m, σzi j

= 1 m, σVi
= 0.1 m/s, σPi

= 5 N, σ
Xi

Vi
= 0.25 kg/s, σ

Zi
Vi
= 0.5 kg/s,

σ
Zi
βi
= 0.5 N/rad, σ

Zi
δi y

= 1.0 N/rad, σ
M
βi
iy

= 1.0 Nm/rad, σ
M

.
βi
iy

= 0.5 Nms/rad,

σ
M
ωiy
iy

= 1.0 Nms/rad, σ
M
δiy
iy

= 1.0 Nm/rad, σ∆xi jm = 4.8 m, σ∆zi jm = 4.8 m,

σ∆vim = 6.9 m/s, σ∆ϕim = 0.005 rad, σ∆βim = 0.01 rad, σ∆ωiym = 0.01 rad/s,
σ∆δiym = 0.001 rad.

4.1.4. Formation Commands

The expected configuration of the system are x∗i j = 50 m, z∗i j = −73.2 m, the expected formation
speed is V f = 100 m/s, and the expected formation declination is ϕ f = 0 rad.

4.1.5. Optimal Design of Estimator Gain and Control Law

In order to improve the robustness of the stochastic system, the estimator gain in (43) and the
control law in (45) are optimized by the SRAD [37].

The SRAD design flow is shown as in Figure 3, which is composed of two parts: a modern
optimization algorithm and a control structure design. MCE denotes Monte Carlo evaluation, SRA
denotes stochastic robustness analysis.

The cost function we designed is Ji j =
12∑

i=1
wiIi

2(qi), where qi represents the 12 indicators which

are shown in Table 1, wi is the weight of each indicator, and Ii(·) is the membership function of each
indicator which obeys the rising-ridge distribution (59) or 0–1 distribution (60).
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Table 1. The stability and indicators.

Indicators Weight Membership (a,b) Results

1.Stability (the real part of the
maximum eigenvalue is negative) 10 (−0.0001, 0) −0.00001

2. Forward distance adjust time 1 (0, 75 s) 54.7 s
3. Lateral distance adjust time 1 (0, 75 s) 49.8 s
4. Forward distance overshoot 5 (0, 10%) 1.42%
5. Lateral distance overshoot 5 (0, 10%) 2.51%
6. Forward distance steady error 1 (0, 1 m) 0.0332 m
7. Lateral distance steady error 1 (0, 1 m) 0.0944 m
8. Forward distance fluctuation 1 (0, 2 m) 0.2586 m
9. Lateral distance fluctuation 1 (0, 2 m) 0.9057 m
10. Average velocity instruct 3 (90 m/s, 110 m/s) 100.07 m/s
11. Average flight path declination
instruct 3 (−1.57 rad, 1.57 rad) 0.0644 rad

12. The weighted variance of the
estimation error 2 (0, 10.0) 3.86

For indicators 1–9 and 12, the membership function obeys the rising-ridge distribution, i.e.,

I(x) =


0 x ≤ a

1
2 + 1

2 sin π
b−a

(
x− a+b

2 ) a < x ≤ b
1 x > b

(59)

where a, b are the best and allowable value of the indicators respectively. x is the simulation result.
For indicators 10 and 11, the membership function obeys the 0–1 distribution, i.e.,

I(x) =


1 x < a
0 a ≤ x ≤ b
1 x > b

(60)

where (a, b) is the allowable range of the indicators, x is the simulation result.
p̂i(Kc, K f ) is the probability of indicator i that cannot satisfy the stability and requirements whose

probability distribution function is Ii(·).
The minimum cost function J reflects the minimum probability that any indicator cannot satisfy the

stability and requirements. It also indicates the minimum errors of the selected properties. Therefore,
the obtained controller has high-quality robustness, and the probability that the control system does
not meet the requirements is significantly reduced after multiple simulations.

The design steps in Figure 3 are as follows:
(1) Design the controller Gc(Kc) and estimator G f (K f ) for the controlled object H(ni);
(2) Define the indicators for SRAD: I(H(ni), Gc(Kc), G f (K f ));
(3) Carry out Monte Carlo simulation on the closed-loop system to obtain the probability p̂i(Kc, K f )

that cannot satisfy the stability and performance;
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(4) Constitute a random cost function Ĵ(Kc, K f ) to satisfy both of robust stability and performance;
(5) Apply a modern optimization algorithm to get an optimal value. After we get the minimum

value of Ĵ(Kc, K f ), then we obtain a stochastic robust optimal controller and an optimal estimator.
The optimization process of the designed parameters K f and Kc is shown in Figure 4. After

iterating 15 times with the genetic algorithm and running the Monte Carlo simulation 100 times per
iteration, we got the optimal cost value: J = 4.56 and the optimal parameters:

K f =



0.172
0 0.172

0 0.014
0 0.619

0 0.523
0 0.521

0 0
0.796


(61)

Kc =


0.0408 −0.0009 −0.1157 −0.0039 0.0164 0.0176 0 0.1894
0.0089 0.0048 −0.0274 −0.8921 0.3046 0.3350 0 −0.0012

0 · · · · · · 0
0 · · · · · · 0

 (62)
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Figure 4. The iterative process of the genetic algorithm. (Note that the best fitness is the minimum
value of the cost function in each iteration and the mean fitness is the mean value of the 100 Monte
Carlo simulations in each iteration).

4.1.6. Simulation Framework

The framework of the simulation model is shown in Figure 5.
In the framework shown in Figure 5, the flight members in the formation are referred to nodes in

the supporting network. The node obtains information through the formation support network and
the sensor system, including neighbor nodes’ information and environment information. The decision
management system allocates missions to flight members and plans the flight route for the formation.
Finally, formation control system and member flight control system carry out missions using the Itô
stochastic system model (49) and the parameters presented above.
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4.1.7. Simulation Results

In order to better reflect the performance of the USCC stochastic system, we define the
following indicator.

Definition 2. The weighted variance of the estimate errorX̃i j = Xi j − X̂i j is:

V(X̃i j) =
1

t f − t0

∫ t f

t0

(X̃i j − E
{
X̃i j

}
)

T
Wv(X̃i j − E

{
X̃i j

}
)dt (63)

where the diagonal matrix Wv ∈ R8×8 is the weighted matrix of weighted variances, and the diagonal
elements correspond to the states X̂i j of the estimator. The larger the weight is, the more accurate the
estimation of the corresponding state becomes. The trace of Wv is tr(Wv) = 1. Assuming that the
estimation accuracies of ∆x̂i j, ∆ẑi j, ∆V̂i and ∆ϕ̂i are required to be higher, the weighting matrix we
designed is: Wv = diag(0.2, 0.2, 0.2, 0.2, 0.1, 0.05, 0, 0.05).

The simulation results correspond with the optimal cost value and the optimal parameters are
shown as in Table 1 and Figure 6. Note that the fluctuation in the table refers to the standard deviation
of the difference between the real-time configuration and the expected configuration.

It can be observed from Table 1 that all the indicators are in the appropriate range. The real part
of the maximum eigenvalue is negative and the weighted variance of the estimation error calculated
from simulation results is 3.86. From Figure 6 we can observe that the two aircraft achieved the desired
configuration after 54.7 s, and the forward distance steady error is 0.0332 m, the lateral distance steady
error is 0.0944 m. The formation speed and the formation declination meet the designed requirements
well. Thus the system is mean-square uniform bounded according to Proposition 1.
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Figure 6. Simulation results of node νi. (a) forward distance; (b) lateral distance; (c) speed; (d) flight 
path declination. 
Figure 6. Simulation results of node νi. (a) forward distance; (b) lateral distance; (c) speed; (d) flight
path declination.

4.2. Autonomous Flight Experiments

In order to observe the performance of the model and verify the effectiveness of the USCC
stochastic system, we conducted an equivalent outfield autonomous formation flight test by using
multiple UAVs. As shown in Figure 7, we carried out experiments with seven nonholonomic UAVs.
The UAV swarm can cooperatively search the certain area with different configurations.
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The loads in each cabin of the UAV are shown in Figure 8, including the power module, formation
cooperative guidance module, autopilot module, detection module, formation communication module
and flight data transmission module. In the experiment, we adopted the proposed USCC stochastic
model into the formation cooperative guidance module to instruct the flight members to reach the
desired position and maintain a steady configuration. The framework of the whole system is shown in
Figure 9.
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Figure 9. The framework of the USCC outfield flight system.

The formation ground station is set to observe the real-time formation flight process, and upload
commands to instruct the formation to change its configuration or adjust relative distances. It can
also control the pod to capture the configuration. The flight member’s digital monitor station is set to
observe the real-time flight member’s flight statuses and to ensure the safety of the whole flight process.

Two configurations of five drones we designed in the experiments are shown in Figure 10a,b.
The lateral and forward distance between neighbor UAVs was set to 50 m. Moreover, the configurations
in Figure 10c,d were captured by the UAV that was flying higher with a pod.

It can be observed from Figure 10 that the UAVs achieved the desired configuration smoothly and
maintained the formation effectively under the proposed model.

For the convenience of analysis, the actual flight data could be saved through the formation
monitoring station. In this paper, we take the flight data of the wedge configuration with and without
the USCC stochastic system model in the experiment to invert the flight process and evaluate the
effectiveness of the USCC stochastic system. The results are shown in Figure 11.

The curves shown as in Figure 11 demonstrate that the five UAVs achieved the desired configuration
and steadily maintained the formation. The flight paths in the rectangle that the arrows “1” and “2”
point to in Figure 11a are amplified in Figure 11c,d. The data are summarized in Table 2, from which
we can observe that in the flight test not using the model, the relative height of the UAVs should
be maintained at the very least at 50 m to avoid the risk of collision, while the heights of the five
UAVs with USCC stochastic system model converged to 200 m and the relative distance in height was
zero. The average 3D distance between flight members in the flight test with the proposed model was
shortened by 32.14% compared to the test without the model.
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configuration; (c) Real time lateral configuration; (d) Real time wedge configuration.
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Figure 11. Experimental results of the wedge configuration. (a). The flight path of the five UAVs;
(b). The height of five UAVs. The flight paths in full line belong to the UAV0 to UAV4 with USCC
stochastic system model while the dotted line belong to the UAV0’ to UAV4’ are without the model;
(c). Northward distances between the five UAVs which are indicated by “2” in (a). The flight paths in
full line of UAV0 to UAV4 utilize the USCC stochastic system model while the dotted line of UAV0’ to
UAV4’ do not use the model; (d). Eastward distances between the five UAVs which are indicated by
“1” in (a). The flight paths in full line of UAV0 to UAV4 use USCC stochastic system model while the
dotted line of UAV0’ to UAV4’ do not use the model.
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Table 2. The data of configurations with and without USCC stochastic system model.

Indicators Configuration Data of Proposed Model Original Configuration Data

Eastward average distance 51.25 m 66.25 m
Northward average distance 51.5 m 67.5 m

Average relative height 0 m 50 m
Average 3D relative distance 72.6 m 107.0 m

The results show that the introduction of multiplicative noises improves the formation maintenance
performance and extends the boundary properties of the formation flight, such as the safety distance
is shorter and the relative height can be eliminated. Therefore, the proposed stochastic model could
provide the UAV swarm with a larger maneuvering space, and then improve the efficiency and quality
of mission execution, enhance the operational capability in high-risk environments and improve the
adaptation of the system to the complex environment.

5. Conclusions

In this paper, the problem of the state estimation and control of the UAV swarm system with the
consideration of multiplicative noises is studied. The closed-loop Itô stochastic system we constructed
is the combination of a state equation introduced from group kinematic model and individual dynamic
model considering the multiplicative noises, an observation equation considers the measurement
noises, an estimator and a controller. Following that, the proof to verify the mean-square uniform
boundedness of the system is presented. The optimal estimator and controller are obtained with
the use of SRAD in the simulation. Finally, simulation results show that the system is stable and
the selected indicators meet the requirements. The outfield experiment results demonstrate that the
configuration with the proposed model could be significantly condensed by 32.14% compared to the
test with the traditional model. Therefore, the stochastic system of USCC with multiplicative noises
proposed in this paper could contribute to effectively exploiting the boundary performances of the
system and constructing a high dynamic formation in practical application, thus better matching the
actual environment.

However, there is much to be researched further in this area. For example, in the practical
application, the time delay cannot be ignored, especially for large scale formations. The modeling of
the USCC stochastic system considering time delay is currently under investigation.
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