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Abstract: Bioimpedance spectroscopy consists of measuring the complex impedance of biological
tissues over a large frequency domain. This method is particularly convenient for physiological
studies or health monitoring systems. For a wide range of applications, devices need to be portable,
wearable or even implantable. Next generation of bioimpedance sensing systems thus require to
be implemented with power and resource savings in mind. Impedance measurement methods are
divided into two main categories. Some are based on “single-tone” signals while the others use
“multi-tone” signals. The firsts benefit from a very simple analysis that may consist of synchronous
demodulation. However, due to necessary frequency sweep, the total measurement may take a
long time. On the other hand, generating a multi-frequency signal allows the seconds to cover the
whole frequency range simultaneously. This is at the cost of a more complex analysis algorithm.
This makes both approaches hardly suitable for embedded applications. In this paper, we propose an
intermediate approach that combines the speed of multi-tone systems with a low-resource analysis
algorithm. This results in a minimal implementation using only adders and synchronous ADC.
For optimal performances, this small footprint digital processing can be synthesized and embedded
on a mixed-mode integrated circuit together with the analog front-end. Moreover, the proposed
implementation is easily scalable to fit an arbitrary frequency range. We also show that the resulting
impact on noise sensitivity can be mitigated.

Keywords: bioimpedance spectroscopy; multi-frequency; digital processing

1. Introduction

Bioimpedance spectroscopy consists of measuring the complex impedance of biological tissues
over a large frequency domain [1]. This method is convenient in particular for studying body
composition [2], blood characterization [3] and even cancer detection [4]. This wide range of
applications makes it suitable as a part of health monitoring systems. Today’s self-monitoring devices
tend to be portable, wearable or even implantable. Next, generation bioimpedance sensing systems
thus require to be implemented with power and resource savings in mind.

Impedance measurement methods are divided into two main categories. Some are based on
“single-tone” signals while the others use “multi-tone” signals. The firsts use a pure frequency sine
wave to make the measurement [5–8]. They benefit from a very simple analysis that can consist of
synchronous demodulation or sampling. However, the operation must be repeated for each frequency
over the domain of interest. Due to this necessary frequency sweep, the total measurement may take a
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long time. On the other hand, generating a multi-frequency signal allows the analysis to cover the whole
frequency range simultaneously [9–11]. This is at the cost of a more complex analysis algorithm (discrete
cosine transform—DCT, typically). Unfortunately, both methods result in excess power consumption: a
long time of measurement for single-tone frequency sweep, hardware and computational resources for
multi-tone. This makes both approaches hardly suitable for embedded applications. In 2008, Ronk and
Toomessoo proposed an implementation of bioimpedance measurement using multi-frequencies on
a field-programmable gate array (FPGA) [12]. Their method is similar to DCT, but use square-waves
instead of sines. This avoids the need of multiplication in the processing.

Some intermediate methods of frequency analysis have been developed with resource savings in
mind. They combine the speed of multitone measurement with a much simpler analysis algorithm than
DCT or fast Fourier transform (FFT). For instance, Goertzel filters can be used to calculate frequency
components [13]. These methods are particularly useful for applications like the built-in self test of
integrated circuits [14].

Last year, we presented a similar approach with further simplifications thanks to the power-of-two
frequency distribution [15] at the International Conference on Sensing Technology (ICST 2018, Limerick,
Ireland). The present paper proposes a slightly improved implementation of the concept resulting
in a reduced (divided by two) clock frequency in most of the digital circuitry. As a consequence, the
circuit itself avoids a few frequency dividers, all resulting in further power savings. Compared to the
conference paper, the present article also adds a new frequency domain analysis of the concept, studies
the noise impact on impedance values and gives an extended bibliography.

The rest of the paper is organized as follows. First, we consider some a priori facts about
bioimpedance. Those allow us to simplify the resolution needs for a bioimpedance-specific sensor
compared to a generic purpose impedance analyzer. Then, we compare classical approaches to
impedance analysis for sparse logarithmic frequency distribution and we propose a new methodology.
In the fourth section, we analyze the proposed method based on synchronous sampling demodulation
and present the processing steps. The fifth section gives the proposal of a digital implementation of
the algorithm using only adders and frequency dividers. In the sixth section, we study the impact of
noise on impedance estimation. Finally, the last section opens some discussions about the limits of the
proposed approach.

2. Conceptualization

Let’s put into evidence some general characteristics of bioimpedance. All biological tissues present
similar frequency behaviors. Typically, the impedance is globally decreasing, with one or several
relaxation domains [16] as we can see in Figure 1. Variations are smooth, with noticeably no resonance
and only require sparse frequency resolution.
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Figure 1. Impedance of bluefin tuna muscle measured using a digital impedance analyzer (MFIA from
Zurich Instruments AG, Switzerland).

Figure 1. Impedance of bluefin tuna muscle measured using a digital impedance analyzer (MFIA from
Zurich Instruments AG, Switzerland).
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Typical bioimpedance can be modeled with resistors, capacitors and so-called constant phase
elements (CPE) of impedance

ZCPE( f ) =
1

q0(2iπ f )α
, with q0 arbitrary parameter, and 0 < α < 1. (1)

Physiological parameters (fat content, body water, tissue characteristics) are related to objective
markers such as: relaxation frequencies, amplitude, and phase of CPE. Estimating such values
is better achieved with logarithmically growing frequencies, as illustrated Figure 2. Designing a
bioimpedance-specific sensor, we can adopt a frequency distribution of the form

fi =
f0

2i , 0 ≤ i < nf, (2)

for the multitone excitation signal. This gives nf frequencies with a maximum of f0 and a resolution of
log2(10) ≈ 3.32 points per decade.
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Figure 2. Bioimpedance modeling by constant phase elements (CPE). Two domains and the transition
(relaxation) frequency are highlighted (top). Logarithmic sampling of the bioimpedance measurements
for parameter estimation (bottom).

3. Methodology

The basic idea behind the proposed method of impedance estimation is the use of coherent
sampling together with a multitone excitation signal. Classical approaches either use coherent
sampling of a single-tone (pure frequency sine) or Fourier analysis (sine values multiplications)
of a multi-tone signal.

The first case is summarized in Figure 3 where analysis is performed by down-sampling, then
low-pass filtering the voltage signal. In the frequency domain, it consists of convoluting the acquired
signal by a Dirac comb, then estimating the DC (zero-frequency) content. The signal must be acquired
for at least one period of the lowest frequency signal, i.e., 2nf−1

f0
. Because the operation must be repeated

for each frequency, the total acquisition time reaches nf × 2nf−1

f0
.
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Figure 3. Conceptual representation of impedance spectroscopy based on single-frequency excitation
and coherent sampling in frequency domain.
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Figure 3. Conceptual representation of impedance spectroscopy based on single-frequency excitation
and coherent sampling in frequency domain.

The second case is summarized in Figure 4 where analysis is performed by multiplying the
multi-frequency voltage signal by pure sine values, then low-pass filtering. In the frequency domain,
it consists of convoluting the acquired signal by a unique Dirac, then estimating the DC content. In this
case, the signal still must be acquired for at least the inverse of the lowest frequency, i.e., 2nf−1

f0
), but

only one time.

∑ Zi

∗
f1 f2 f3

=

Z1 Z2 Z3

Figure 4. Conceptual representation of impedance spectroscopy based on multi-frequency excitation
and Fourier analysis in frequency domain.

Coherent sampling only requires one addition per period, and no multiplication. Thus, the total
number of additions is ∑nf−1

i=0 2i = 2nf − 1. This number must be multiplied by two to get real and
imaginary parts of the impedance.

As said before, bioimpedance spectroscopy can be performed using a somehow sparse number of
frequency points. Therefore, DCT reveals itself to be more appropriate than the FFT algorithm. The
processing requires as additions and multiplications as the number of samples, 2nf (with the ADC at
the Shannon rate, 2 f0), repeated for each of the nf frequencies of interest. Again, this number must be
multiplied by two for real and imaginary parts, i.e., nf × 2nf+1.

Mixing coherent sampling with multi-tone excitation results in short acquisition time while
avoiding the need for multipliers (see Table 1). This method should be implemented using the lowest
power consumption. Unfortunately, Figure 5 shows that aliasing occurs in this case at null frequency,
making it harder to process. However, we show in the following section that it is still possible to
discriminate valuable information from the measured DC component.

∑ Zi

∗
∑ fi

=
∑ Zi

Figure 5. Conceptual representation of impedance spectroscopy based on multi-frequency excitation
and coherent sampling in frequency domain.

Table 1. Expected characteristics of impedance estimation methods.

(Proposed Method)
Single Freq. Multi Freq. Multi Freq.

& Coherent Sampling & DCT & Coherent Sampling

Acquisition time (mini.) nf × 2nf−1

f0

2nf−1

f0

2nf−1

f0

Additions 2× (2nf − 1) nf × 2nf+1 2× (2nf − 1)
Multiplications 0 nf × 2nf+1 0

4. Formal Analysis

The chosen principle of bioimpedance sensing is illustrated in Figure 6. With the above
considerations, generated current i(t) can be expressed as the superposition of nf sine waves. Current
being real, hermitian symmetry applies to complex amplitudes (I−i = I∗i ) such that
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i(t) =
nf−1

∑
i=0

Iie
2iπ f0

2i t
+ I∗i e−2iπ f0

2i t. (3)

Multitone
current

generator

Tissue
Z( f )

Voltage
acquisition

Multifrequency
Impedance
estimation

i(t) v(t)
Z( fi)

0 ≤ i < nf

clk

Figure 6. Principle of multi-tone synchronous bioimpedance sensing system.

For the sake of simplicity, we can let all Ii be equal to 1
2 (normalized amplitudes and null phase

for all frequency components). If not so, we can get back to this case by resistor calibration:

i(t) =
1
2

nf−1

∑
i=0

e2iπ f0
2i t

+ e−2iπ f0
2i t. (4)

Let us express the Fourier transform I( f ) = F{i(t)} in the frequency domain

I( f ) =
1
2

nf−1

∑
i=0

δ( f − f0
2i ) + δ( f + f0

2i ), (5)

with δ(t) denoting the Dirac distribution. We can deduce from the last equation the voltage expression
V( f ) = F{v(t)} in the sinusoidal steady state:

V( f ) = Z( f )I( f ) =
1
2

nf−1

∑
i=0

Ziδ( f − f0
2i ) + Z∗i δ( f + f0

2i ), (6)

with Zi = Z( fi)and Z∗i = Z( f−i).
The objective of the following processing is to extract the values Zi = Z( fi) from the acquired v(t)

signal. The main idea is to use synchronous sampling demodulation. Indeed, Z( f0) can be obtained by
sampling v(t) at the higher frequency f0 and by low-pass filtering (averaging) the resulting samples.
However, sampling the signal at lower frequencies results in aliasing. Let us explicitly express the
result of sampling v(t) at f j =

f0
2j . In the frequency domain, sampling is equivalent to a convolution

product by a Dirac comb:

V( f ) ∗ ∑
k∈Z

δ( f − k f0
2j ) =

1
2 ∑

k∈Z

nf−1

∑
i=0

Ziδ
(

f − f0(
k
2j +

1
2i )
)
+ Z∗i δ

(
f − f0(

k
2j − 1

2i )
)

. (7)

We isolate from the last equation the DC component Sj, i.e., the coefficient of δ( f ). For all i between
0 and j, there are two integers k = ±2j−i that satisfy

1
2i ±

k
2j = 0. (8)

Summing all contributions, we get

Sj =
1
2

j

∑
i=0

(Zi + Z∗i ) =
j

∑
i=0
<(Zi). (9)
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In the same manner, we can get the quadrature components by delaying the sample time by a
quarter of period 2j

4 f0
:

V( f ) ∗ ∑
k∈Z

δ( f − k f0
2j )e

−2iπ 2j

4 f0
f
=

1
2 ∑

k∈Z

nf−1

∑
i=0

Ziδ
(

f − f0(
k
2j +

1
2i )
)

e−iπ k
2 + Z∗i δ

(
f − f0(

k
2j − 1

2i )
)

e−iπ k
2 . (10)

Again, for k = ±2j−i, we get the DC component

Qj =
1
2

j

∑
i=0

Zie
−iπ−2j−i

2 + Z∗i e−iπ 2j−i

2 . (11)

If j ≥ 2, we can isolate the terms corresponding to i = j and i = j− 1:

Qj =
1
2

j−2

∑
i=0

Zieiπ2(j−i−1)
+ Z∗i e−iπ2(j−i−1)

+
1
2
(Zj−1eiπ + Z∗j−1e−iπ) +

1
2
(iZj − iZ∗j ). (12)

Thus,

Qj =
j−2

∑
i=0
<(Zi)−<(Zj−1)−=(Zj). (13)

From Equations (9), (11) and (13), we can recursively calculate real and imaginary parts of Zj.

<(Z0) = S0, =(Z0) = −Q0, (14)

<(Z1) = S1 − S0, =(Z1) = −Q1 − S0, (15)

<(Zj) = Sj − Sj−1, =(Zj) = 2Sj−2 − Sj−1 −Qj. (16)

5. Numerical Simulation

In order to validate the formal analysis described in Section 4, we have performed some numerical
simulations using the open-source computational software Scilab. The code provided in Listing 1 tests
the algorithm for eight frequencies and a sample rate of 1 MHz. To make results more realistic, we
use measurements from tuna muscle bioimpedance (Figure 1) as the reference model. As expected,
estimated values by decimation–accumulation and post-processing are in perfect agreement with the
reference (Table 2).
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// Parameters

f_clk = 1e6; // ADC sample rate (Hz)
n_f = 8; // Nb of frequencies
data_file = "tuna_impedance.csv";

// Reference bioimpedance values
// Interpolated from real measurements

f_0 = f_clk /4; // Max frequency
f = 2^ -(0:n_f - 1)*f_0; // Frequencies
data = csvRead(data_file);
z_mod = interp(f, data(:, 1), data(:, 2), splin(data(:, 1), data(:, 2)));
phi = %pi /180* interp(f, data(:, 1), data(:, 3), splin(data(:, 1), data(:, 3)));

// Signal samples from the ADC

t = (0:2^( n_f + 1) - 1)/f_clk; // One period
x = z_mod*cos(2* %pi*f’*t + phi ’*ones(t));

// Impedance estimation

function z = impedance(x, n_f)
// Accumulation
for i = 0:n_f - 1

S(i + 1) = sum(x(1:2^(i + 2):$))/2^( n_f - i - 1);
Q(i + 1) = sum(x(2^(i) + 1:2^(i + 2):$))/2^( n_f - i - 1);

end
// Postprocess
z(1) = S(1) - %i*Q(1);
z(2) = S(2) - S(1) + %i*(-Q(2) - S(1));
for i = 2:n_f - 1

z(i + 1) = S(i + 1) - S(i) + %i*(2*S(i - 1) - S(i) - Q(i + 1));
end

endfunction

z = impedance(x, n_f);

// Magnitude and phase calculation.

function [magnitude , phase] = mag_phase(a)
magnitude = abs(a);
phase = (real(a) ~= 0).*( atan(imag(a)./real(a)) + %pi*(real(a) < 0))..

+ (real(a) == 0)*%pi.*sign(imag(a));
endfunction;

// Results

[magnitude , phase] = mag_phase(z);
diary("output.txt");
disp(f, "Frequencies (Hz)");
disp(z_mod , "Reference modulus (Ohm)");
disp(magnitude ’, "Estimated modulus (Ohm)");
disp(phi , "Reference Phase (rad)");
disp(phase ’, "Estimated Phase (rad)");
diary("output.txt");

Listing 1. Scilab code used for validating the impedance estimation algorithm.
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Table 2. Results of the numerical simulation performed with Scilab compared with reference values.

Frequencies Reference Estimated Reference Estimated
(Hz) Modulus (Ohm) Modulus (Ohm) Phase (Rad) Phase (Rad)

250,000 235.55872 235.55872 –0.0740422 –0.0740422
125,000 242.33682 242.33682 –0.0852266 –0.0852266
62,500 251.06561 251.06561 –0.1040394 –0.1040394
31,250 262.43457 262.43457 –0.1302557 –0.1302557
15,625 277.09086 277.09086 –0.1660522 –0.1660522
7812.5 295.96917 295.96917 –0.2183331 –0.2183331
3906.25 321.75482 321.75482 –0.3006170 –0.3006170

1953.125 362.5306 362.5306 –0.4326722 –0.4326722

6. Implementation

The main advantage of the proposed method is the simplicity of its digital implementation. Like
classical synchronous demodulation, it only requires an ADC sharing the same clock as the signal
generation (Figure 6). Samples are fed by the ADC at the rate of fclk = 4 f0. Then, they are re-sampled
at each frequency fi composing the multitone signal. The extraction of the DC component can be easily
done by averaging the samples over a period of the whole multitone signal. Then, sample decimation
is performed between each stage by dividing the frequency by two (Figure 7).

in
rst

i
q

clk÷2
Demod0

/
nb S0

/
nb Q0

in
rst

i
q

clk÷2
Demod1

/
nb S1

/
nb Q1

in
rst

i
q

clk÷2
Demodn f−1

/
nb

Sn f−1

/
nb Qn f−1

O
ut

pu
tr

eg
is

te
r

(2
×

n f
×

n b
)

from ADC
/

nb

reset

÷2
clock

÷2 set

Figure 7. Overview of the parallel implementation of the impedance estimation algorithm.

Practically, these functions are grouped in a block called Demod for demodulator that can be easily
instantiated from a generic description (Figure 8). In more detail, at each stage, we generate two clock
signals in quadrature (Figure 9). They control two identical accumulators (Figure 10). Samples are
accumulated at the rate corresponding to a particular frequency fi. The adder size is adapted to avoid
overflow. Then, dividing by 1

2nf−j−1 is done by keeping only the nb most significant bits (MSB). Thus,
all Sj and Qj accumulation are eventually encoded with the same precision.
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rst clki÷2
clkq÷2

Freq.
Divider

in
rst out∑

Accumulator

in
rst out∑

Accumulator

1
2

n f −j−1

MSB

1
2

n f −j−1

MSB

in
/

nb

rst

clk clk÷2

/
nb i

/
nb

q

Figure 8. Details of the “Demodulator” generic block.

÷2

÷2
clk
rst

clki÷2

clkq÷2

Figure 9. Details of the “Freq. Divider” block.

in1
in2
rst out

Adder

clk
rst

in

/
nb + nf − j− 1

Figure 10. Details of the “Accumulator” block.

Values of Sj (in-phase) and Qj (in-quadrature) are saved in the output register at the end of the
global period ( 2nf

f0
). This is achieved using a simple frequency divider on the clock output of the last

demodulator. We choose not to embed the computation of actual real and imaginary parts of the
impedance as described by Equations (14) to (16). It can be done without transmission penalty (same
size of data) as a post-process. The objective is to keep the digital circuit as simple as possible in a
low-power constraint.

It must be noticed that the proposed algorithm is mathematically equivalent to a bank of finite
impulse response (FIR) filters. This is in particular made explicit in the implementation proposed
by [17] that uses a similar multiplication-less approach. However, the straightforward implementation
of such filters increases a lot the complexity of embedded computations and lacks genericity due to
differing coefficients of each filter.

In our design, the parallel architecture can smoothly scale with the number nf of frequency
components. Moreover, each stage only uses two adders together with a few flip-flops to divide the
frequency. For optimal performances, it is totally realistic to embed this digital processing directly
with the analog front-end (current source and sensing amplifier) in a mixed-mode application-specific
integrated circuit (ASIC).

7. Noise Sensitivity

The proposed architecture raises the question of the effect of noise on measurements. In particular,
low frequencies suffer from averaging low numbers of samples. The worst occurring for fnf−1 = f0

2nf−1

where only one sample is used to calculate each of Snf−1 and Qnf−1. In this section, we show that, in
the case of bioimpedance spectroscopy, this effect can be mitigated.
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We now model perturbations by additive white noise n. Let σ2 be the noise power. Voltage
samples from the ADC can be written v[i] + n[i]. At the end of the period, in-phase and quadrature
accumulators of rank j have summed 2nf−j−1 samples:

Ŝj =
1

2nf−j−1

2nf−j−1−1

∑
i=0

(v[2j+2i] + n[2j+2i]), (17)

Q̂j =
1

2nf−j−1

2nf−j−1−1

∑
i=0

(v[2j(4i + 1)] + n[2j(4i + 1)]). (18)

From Equation (16), the estimated value of the impedance real part is

<(Ẑj) = Ŝj − Ŝj−1. (19)

This combination contains 2nf−j−1 noise samples, thus the signal power

P{<(Ẑj)} = <(Zj)
2 + 2nf−j−1 σ2

(2nf−j−1)2 = <(Zj)
2 +

σ2

(2nf−j−1)
. (20)

In the same manner,
=(Ẑj) = 2Ŝj−2 − Ŝj−1 − Q̂j. (21)

Consider 2nf−j+1 noise samples, thus the power

P{=(Ẑj)} = =(Zj)
2 + 2nf−j+1 σ2

(2nf−j+1)2 = =(Zj)
2 +

σ2

(2nf−j+1)
. (22)

Now, the signal-to-noise ratio (SNR) can be expressed as

SNR = 2nf−j−1<(Zj)
2

σ2 . (23)

Because we study bioimpedance, Z( f ) can be assimilated to CPE. Using Equation 1, we assume
that α ≈ 1/2:

<(Zj)
2 =

1
2

∣∣∣∣Z( f0

2j

)∣∣∣∣2 =
2j

2q0π f0
. (24)

Leading to the signal-to-noise ratio

SNR =
2nf−2

σ2q0π f0
. (25)

We can notice that the expression does not depend on rank j. Obviously, the same conclusion
applies for the imaginary part. Therefore, with the previous assumptions, the SNR is almost constant
along the whole frequency range. This is due to typical bioimpendances decreasing at the same rate
as the squared root variance of the proposed estimator (Figure 1). A numerical simulation has been
performed to illustrate this behavior (Figure 11).
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Var(|Z|)/σ2
100

10−1

10−2

105104 f (Hz)

fnf / f

Figure 11. Variance of the impedance measurements exhibiting 1/ f evolution. The variance is
numerically estimated over 1000 random trials where gaussian noise has been added to ADC datas.
Variance is normalized by noise power (σ2).

Finally, in the case where the impedance does not decrease as 1/
√

f , a solution may be to adapt
the generated current signal by increasing the amplitudes for frequencies where the SNR worsens.

8. Discussion

In the presented bioimpedance spectroscopy system, all frequency components are processed
in parallel. Thus, mismatch between channels might impact output accuracy. However, with the
proposed architecture, all signal paths (real, imaginary, for each frequency) are fed from the same
ADC. Considering a particular channel, data are just sub-samples of a unique sample flow. All further
processing being digital, the only source of mismatch appears to be the ADC clock jitter. Under the
reasonable assumption that jitter is statistically independent from the sub-sampling operation, we
hope that this effect will be moderated by the accumulation operation. From this point of view, jitter
may be treated as an additional noise (or error) on sample values.

Another concern may be the very-low frequency noise due to amplifier offset, electronics 1/ f
noise, electrode interface potential, etc. It would induce DC component that would impact all Sj and
Qj values. However, it appears relatively easy to get rid of this effect by averaging all samples at fclk,
i.e., before decimation and subtracting this DC value during post-processing.

The last issue could be the fixed resolution due to frequency distribution as powers of 1
2 . If more

resolution is needed, a non-power-of-two frequency division can be introduced, e.g., fclk
3 and then

used instead of fclk in a duplicated structure. Of course, expressions of Sj and Qj will be affected and
need to be re-evaluated. However, only post-processing computation will be modified.

9. Conclusions

We have proposed a very efficient implementation of multitone analysis for bioimpedance sensing.
Thanks to general characteristics of bioimpedance, we have chosen a logarithmic frequency distribution.
With this hypothesis, we can explicit the aliasing resulting from successive synchronous demodulations
and decimations. This expression can be used to post-process the measurements and estimate real
and imaginary parts of the impedance for each frequency. The digital implementation consists only
in accumulators and frequency dividers and does not make any use of multipliers. Moreover, the
structure can be easily scaled to wider frequency ranges. Despite expected degradation of SNR for low
frequencies, we show that this effect is mitigated by the increase of impedance in this range.
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Abbreviations

The following abbreviations are used in this manuscript:

ADC Analog to Digital Converter
ASIC Application-Specific Integrated Circuit
CPE Constant Phase Element
DCT Discrete Cosine Transform
FIR Finite Impulse Response filter
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
MSB Most Significant Bit
SNR Signal-to-Noise Ratio
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