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Abstract: This paper presents the design and analysis of a new micro-electro-mechanical system
(MEMS) tuning fork gyroscope (TFG), which can effectively improve the mechanical sensitivity
of the gyroscope sense-mode by the designed leverage mechanism. A micromachined TFG with
an anchored leverage mechanism is designed. The dynamics and mechanical sensitivity of the
design are theoretically analyzed. The improvement rate of mechanical sensitivity (IRMS) is
introduced to represent the optimization effect of the new structure compared with the conventional
one. The analytical solutions illustrate that the IRMS monotonically increases with increased
stiffness ratio of the power arm (SRPA) but decreases with increased stiffness ratio of the resistance
arm (SRRA). Therefore, three types of gyro structures with different stiffness ratios are designed.
The mechanical sensitivities increased by 79.10%, 81.33% and 68.06% by theoretical calculation.
Additionally, FEM simulation demonstrates that the mechanical sensitivity of the design is in accord
with theoretical results. The linearity of design is analyzed, too. Consequently, the proposed new
anchored leverage mechanism TFG offers a higher displacement output of sense mode to improve
the mechanical sensitivity.

Keywords: mechanical sensitivity; tuning fork gyroscope; anchored leverage mechanism; stiffness
ratio; coordinate transformation method

1. Introduction

A micro-electro-mechanical system (MEMS) gyroscope is a kind of inertial sensor used to detect
the attitude angle and angular rate. It is based on an energy conversion of two vibrational modes due
to the Coriolis effect [1,2]. With the rapid development of MEMS technology, the MEMS gyroscope has
long been considered as an attractive and dynamic inertial sensor for a wide variety of applications,
including the automotive industry, robotics, consumer electronics and high-volume military uses
(0.1 to 100◦/h). Compared with conventional gyroscopes, MEMS gyroscopes have many advantages,
such as tiny volume, light weight, low power consumption, low cost, and the possibility of batch
fabrication [3,4].

A common type of MEMS vibratory gyroscope is implemented as a tuning fork gyroscope
(TFG). It is composed of two identical tines and two coupling mechanisms for synchronization of the
anti-phase drive mode and anti-phase sense mode. The advantage of the TFG is that it can cancel the
external common mode effect by applying a differential Coriolis detection between the two tines [5–9].
The sensitivity of the TFG is the biggest challenge in terms of superior performance.
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The sensitivity of a micromachined TFG depends on two factors, peripheral circuit gain and the
gyro’s own mechanical sensitivity. Much effort has already been made to improve the circuit gain and
precision, and many achievements have been obtained [10,11]. Improving the sensitivity of the system
only by enlarging the amplification of the peripheral circuit is meaningless. Since the Coriolis signal
and the noise are often amplified at the same time, the system could not improve the signal-to-noise
ratio (SNR). Therefore, to improve the sensitivity of vibratory gyroscopes, it is essential to achieve high
mechanical sensitivity. The vibrational amplitude greatly improves when the work frequency equals the
resonant frequency. Therefore, the displacement of differential tines is maximized and the mechanical
sensitivity can be effectively increased when the two work modes of the gyroscope have the same
resonant frequency (i.e., they are mode matched) [12,13]. It is difficult to completely match the resonant
frequencies of the two modes through structural design due to fabrication imperfections. Therefore,
mode matching through electrostatic tuning is often adopted [14–18]. Minimizing substrate energy
dissipation and vacuum packaging can improve sensitivity owing to a high quality factor [19–22].
On the other hand, many studies on vibration type angular rate sensors in materials group them into
bulk Si and polycrystalline Si [23]; some researchers focus on quartz gyroscopes based on material
characteristics [24].

Amplification mechanisms are gaining importance in MEMS devices where motion reliability,
precision, and sensitivity are needed. Researchers all over the world have proposed different types of
amplification mechanisms, such as bridge-type, lever-type and four-bar linkage mechanisms [25–30].
The amplification mechanism has been applied to MEMS resonant output gyroscope (ROG) and MEMS
accelerometer due to the force or displacement amplification effects [31,32]. The focus of this paper is
on how to improve the mechanical sensitivity of a MEMS gyroscope by using a leverage mechanism.

In this paper, a new kind of micromachined TFG with an anchored leverage mechanism is
proposed to analyze mechanical sensitivity. A conventional one with direct connection between
sense-mode frame and proof mass is introduced at the same time for comparison. Detailed descriptions
of the two design structures are provided in Section 2. Section 3 establishes and solves the dynamic
equations for the response of the two architectures. FEM simulation of the stiffness of different springs
on sense-mode and comparisons between simulation and analytical solutions are discussed and the
linearity of the design is analyzed in Section 4. In Section 5, the discussion is given. Section 6 concludes
the paper with a summary.

2. Architecture Design

In this paper, a novel MEMS tuning fork gyroscope with an anchored leverage mechanism is
designed. The architecture of type A, as discussed in detail in Figure 1a, is a dual-mass structure
that consists of an anchored diamond coupled spring, two sense levers, and two identical tines. As a
conventional structure, type B is the same as type A, except for the connection between the proof mass
and the sense-mode frame, as depicted in Figure 1b.

Both type A and type B are completely symmetrical double structured–decoupled architectures.
Each tine contains a proof mass, two drive-mode frames and two sense-mode frames supported by
symmetrical springs, and type A has an additional lever mechanism. In order to improve the robustness
of the mode match between drive mode and sense mode, the springs are located on the same axis and
can resist any temperature change of the resonance frequency, except the supporting lever springs and
the anchored diamond coupled spring. All springs in the design are U-shaped in series or in parallel,
which can reduce their axial stress to a greater extent, so that there is a linear relationship between
force and displacement, which matches the electrodes by the variable-area capacitance mechanism.
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Figure 1. Schematic of designed tuning fork gyroscopes (TFGs): (a) type A, (b) type B. 

3. Theoretical Analysis 

3.1. Kinematic Analysis of Type A and B 

The spring in Figure 1 represents the stiffness of the drive beams, the sense beams and the 
decoupling beams in the design of this paper. The stiffness of these beams is much less than that of 
the lever, frame and proof mass. On the other hand, the mass of the lever, frame, and proof mass is 
much larger than that of the beam. Therefore, the lever, frame and proof mass are simplified to 
inelastic mass and beam to massless spring. It is worth mention here that the lumped-parameter 
model used in this study is based on linear elastic material behavior, which is very widely used in 
the research of TFG [6,14,21,33–35]. Furthermore, the nonlinear analysis of the overall structure will 
be discussed in detail later. However, when the stiffness and mass of the beam are relatively large 
compared to other structures, some errors will occur and will not be adapted to this assumption. 

According to Figure 1a, we can obtain the four-degrees-of-freedom (4-dof) coupling vibration 
model of the MEMS tuning fork gyroscope with an anchored leverage mechanism, as illustrated in 
Figure 2. 

Figure 1. Schematic of designed tuning fork gyroscopes (TFGs): (a) type A, (b) type B.

3. Theoretical Analysis

3.1. Kinematic Analysis of Type A and B

The spring in Figure 1 represents the stiffness of the drive beams, the sense beams and the
decoupling beams in the design of this paper. The stiffness of these beams is much less than that of the
lever, frame and proof mass. On the other hand, the mass of the lever, frame, and proof mass is much
larger than that of the beam. Therefore, the lever, frame and proof mass are simplified to inelastic
mass and beam to massless spring. It is worth mention here that the lumped-parameter model used in
this study is based on linear elastic material behavior, which is very widely used in the research of
TFG [6,14,21,33–35]. Furthermore, the nonlinear analysis of the overall structure will be discussed in
detail later. However, when the stiffness and mass of the beam are relatively large compared to other
structures, some errors will occur and will not be adapted to this assumption.

According to Figure 1a, we can obtain the four-degrees-of-freedom (4-dof) coupling vibration
model of the MEMS tuning fork gyroscope with an anchored leverage mechanism, as illustrated in
Figure 2.
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Figure 2. Model of type A. 

In operation, two proof masses and their respective drive mechanisms are electrostatically 
driven into anti-phase motion with the same amplitude along the drive direction by driving voltages 
imposed across the differential lateral comb electrodes on the drive mechanism. When an angular 
rate Ωz is applied, the anti-phase Coriolis acceleration of the proof mass induces linear anti-phase 
motions that are capacitively detected using differential parallel plate electrodes on the sense 
mechanism along the y-axis. The input angular rate Ωz can be calculated by the differential output. 

Ideally, the structure is entirely symmetrical. Then, the two proof masses systems and damping 
coefficients are equal. The dynamics in the direction of sense mode are governed by the following: 
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where cm , 1sm  and 2sm  are the mass of the proof mass, decoupled frame and sense-mode frame, 
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Figure 2. Model of type A.

In operation, two proof masses and their respective drive mechanisms are electrostatically driven
into anti-phase motion with the same amplitude along the drive direction by driving voltages imposed
across the differential lateral comb electrodes on the drive mechanism. When an angular rate Ωz is
applied, the anti-phase Coriolis acceleration of the proof mass induces linear anti-phase motions that
are capacitively detected using differential parallel plate electrodes on the sense mechanism along the
y-axis. The input angular rate Ωz can be calculated by the differential output.

Ideally, the structure is entirely symmetrical. Then, the two proof masses systems and damping
coefficients are equal. The dynamics in the direction of sense mode are governed by the following:

Proof mass:  (ms1 + mc)
..
y1 + cy

.
y1 +

(
ky1 + kl1

)
y1 + fl11 = −2mcΩz

.
x1

(ms1 + mc)
..
y2 + cy

.
y2 +

(
ky1 + kl1

)
y2 + fl21 = −2mcΩz

.
x2

(1)

where mc, ms1 and ms2 are the mass of the proof mass, decoupled frame and sense-mode frame,
respectively. cy is the damping coefficient of each tine in sense direction. ky1 is the stiffness of the
spring connected to mc and the drive-mode frame. kl1 represents the stiffness of the spring connected
to decoupled frame and lever in the sense direction. fl11 and fl11 represent the force exerted on the
lever by the decoupled frame in the left and right tines. Ωz is the angular rate and the drive velocity

.
x1

can be defined as: 
.
x1(t) = −

Qx_an fdωx_an
kx_an

sinωx_ant
.
x2(t) =

Qx_an fdωx_an
kx_an

sinωx_ant
(2)

Sense-mode frame:  ms2
..
y′1 +

(
ky2 + kl2

)
y′1 + ky3

(
y′1 − y′′

)
= fl12

ms2
..
y′2 +

(
ky2 + kl2

)
y′1 + ky3

(
y′2 + y′′

)
= fl22

(3)

where ky1 is the stiffness of the spring connected to the anchor and the sense-mode frame; kl1 represents
the stiffness of the spring connected to the sense-mode frame and lever in the sense direction; ky3 is
the stiffness in the direction of the spring connected to the sense lever and sense-mode frame; and
fl11 and fl11 represent the force exerted on the sense-mode frame by the lever in the left and right
tines, respectively.

The leverage mechanism and coordinate relationships are as follows:
fl11 = B fl12
fl21 = B fl22
y′ = By

(4)
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where B is the leverage rate (LR), B > 1.
Sensing coupling frame:

ky3
(
y′1 − y′′

)
= ky3

(
y′2 + y′′

)
(5)

According to the above equations, the kinematic analysis of the dual-mass gyroscope in the sense
direction can be expressed as:

(ms1 + mc + B2ms2)
..
y1 + cy

.
y1 +

ky1 + kl1 + B2ky2 + B2kl2 +
B2ky3

2

y1 +
B2ky3

2
y2 = −2mcΩz

.
x1 (6)

(ms1 + mc + B2ms2)
..
y2 + cy

.
y2 +

ky1 + kl1 + B2ky2 + B2kl2 +
B2ky3

2

y2 +
B2ky3

2
y1 = −2mcΩz

.
x2 (7)

Subtracting Equation (7) from Equation (6), we obtain

(ms1 + mc + B2ms2)
( ..
y1 −

..
y2

)
+ cy

( .
y1 −

.
y2

)
+

(
ky1 + kl1 + B2ky2 + B2kl2

)
(y1 − y2) = 2 fc sinωx_ant (8)

where fc is the Coriolis force at angulate rate Ωz, which can be given as:

fc =
2mcΩzQx_an fdωx_an

kx_an
(9)

where fd is the driving force, and ωx_an, kx, and Qx are the resonant frequency, total stiffness, and
quality factor, respectively, in the anti-mode.

Adding Equations (6) and (7), we obtain:

(ms1 + mc + B2ms2)
( ..
y1 +

..
y2

)
+ cy

( .
y1 +

.
y2

)
+

(
ky1 + kl1 + B2ky2 + B2kl2 + B2ky3

)
(y1 + y2) = 0 (10)

Since the vibration output of in- and anti-phase modes needs to be explored, a coordinate
transformation is made as follows:

yan = y1 − y2, yin = y1 + y2 (11)

Substituting Equation (11) into Equations (8) and (9), we obtain:
..
yan +

ωy_an
Qy_an

.
yan +ω2

y_anyan = 2 fc sinωx_ant
..
yin +

ωy_in
Qy_in

.
yin +ω2

y_inyin = 0
(12)

where ωy_an =

√
ky1+kl1+B2ky2+B2kl2

my
, ωy_in =

√
ky1+kl1+B2ky2+B2kl2+B2ky3

my
, Qy_an =

myωy_an
cy

, Qy_in =

myωy_in
cy

, and my = ms1 + mc + B2ms2, in which ωy_an and ωy_in are the defined resonant frequencies and
Qy_an and Qy_in are the quality factors of the anti- and in-phase motions, respectively, and my is the
total mass in the sense direction.

Equation (12) can be represented as a matrix:

M
..
y + C

.
y + Ky = Fc sinωt (13)

where M =

[
1

1

]
, C =


ωy_an
Qy_an

ωy_in
Qy_in

, K =

 ω2
y_an

ω2
y_in

, Fc =

 2 fc
my

0

, and y =

[
yan

yin

]
.
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The natural frequency can be obtained by using the characteristic equation:

ω2
1 = ω2

y_an =
ky1+kl1+B2ky2+B2kl2

my

ω2
2 = ω2

y_in =
ky1+kl1+B2ky2+B2kl2+B2ky3

my

(14)

where ω1 and ω2 are the first- and second-order resonant frequency, respectively.
The modal superposition technique is used to acquire the steady-state response by solving

Equation (13):

y(t) =
fcβ1

myω2
1

[
1
0

]
sin(ωx_ant−ψ1) +

fcβ2

myω2
2

[
0
1

]
sin(ωx_ant−ψ2) (15)

where βi = 1√
(1−λ2

i )
2
+

(
λ

Qi

)2
, ψi = arctan λ

(1−λ2)Qi
, and λi =

ωx_an
ωi

are the magnification factors of

amplitude, phase angle, and frequency ratio, respectively.
When ω = ωx_an = ωy_an, we can obtain that:

y′1(t) = Byan(t) =
2mcΩzQx_an fdωBQy_an

ky_ankx_an
sin

(
ωt− π

2

)
y′2(t) = Byan(t) = −

2mcΩzQx_an fdωBQy_an
ky_ankx_an

sin
(
ωt− π

2

) (16)

According to Equation (16), the differential detection output of the tuning fork micromechanical
gyroscope is:

ydA = y′1(t) − y′2(t) =
2 fcBQy_an

ky_an
sin

(
ωt−

π
2

)
=

4mcΩzQx_an fdωBQy_an

ky_ankx_an
sin

(
ωt−

π
2

)
(17)

The mechanical sensitivity of the type A architecture can be obtained from Equation (17):

Sma =
y′1(t) − y′2(t)

Ωz
=

4mcQx_an fdωBQy_an

ky_ankx_an
sin

(
ωt−

π
2

)
(18)

The 4-dof coupling vibration model of the MEMS gyroscope with equal displacement capacitance
detection is shown in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 7 of 19 
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The differential detection output and mechanical sensitivity of the type B architecture can be 
acquired by the same technique: 
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_
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ω
+

=
+  are the quality 

factor, total stiffness, total mass, and resonant frequency of the anti-phase mode in the drive  
direction, respectively. 

3.2. Optimization Analysis of LR 

In order to obtain a more substantial improvement of mechanical sensitivity, it is effective to 

reduce _y ank  and increase B  as much as possible. 

Here, the dimensionless parameters α , K , and β are defined in terms of stiffness ratio (SR): 
α  is the stiffness ratio of the power arm (SRPA) and β is the stiffness ratio of the resistance arm 
(SRRA). The three parameters are given by: 

1

1

l

y

k
k

α =
, 

2

1

y

y

k
K

k
=

 and 

2

1

l

y

k
k

β =
 

(21) 

Obviously, tiny LR will lead to an insignificant amplification effect of leverage, which will not 
be important in truly amplifying the mechanical sensitivity. On the other hand, extremely large LR 
will increase the detection mode stiffness, thus making it difficult for the tiny Coriolis force to drive 
the detection mode effectively. Without considering the effect of the quality factor during the design 
phase, according to Equation (18), we obtain: 

( ) ( )
( )( )
2

_ _
22

1 _

41 +
sin

21 +
c x an d y anma

y x an

m Q f QB KS
t

B k kB K

ωα β πω
α β

+ −∂  = ⋅ − ∂  + +
 

(22) 

When 
0maS

B
∂

=
∂ , we can obtain that: 

1+
+

B
K

α
β

=
 

(23) 

Figure 3. Model of type B.
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The differential detection output and mechanical sensitivity of the type B architecture can be
acquired by the same technique:

ydB = y1b(t) − y2B(t) =
2 fcQyb_an

kyb_an
sin

(
ωt−

π
2

)
=

4mcΩzQx_an fdωBQyb_an

kyb_ankx_an
sin

(
ωt−

π
2

)
(19)

Smb =
4mcQx_an fdωQyb_an

kyb_ankx_an
sin

(
ωt−

π
2

)
(20)

where Qyb_an =
mybωyb_an

cyb
, kyb_an = ky1 + ky2, myb = ms2 + mc, and ωyb_an =

√
ky1+ky2
ms2+mc

are the
quality factor, total stiffness, total mass, and resonant frequency of the anti-phase mode in the
drive direction, respectively.

3.2. Optimization Analysis of LR

In order to obtain a more substantial improvement of mechanical sensitivity, it is effective to
reduce ky_an and increase B as much as possible.

Here, the dimensionless parameters α, K, and β are defined in terms of stiffness ratio (SR): α is the
stiffness ratio of the power arm (SRPA) and β is the stiffness ratio of the resistance arm (SRRA). The
three parameters are given by:

α =
kl1
ky1

, K =
ky2

ky1
and β =

kl2
ky1

(21)

Obviously, tiny LR will lead to an insignificant amplification effect of leverage, which will not be
important in truly amplifying the mechanical sensitivity. On the other hand, extremely large LR will
increase the detection mode stiffness, thus making it difficult for the tiny Coriolis force to drive the
detection mode effectively. Without considering the effect of the quality factor during the design phase,
according to Equation (18), we obtain:

∂Sma

∂B
=

(1 + α) − B2(K + β)

(1 + α+ B2(K + β))2 ·
4mcQx_an fdωQy_an

ky1kx_an
sin

(
ωt−

π
2

)
(22)

When ∂Sma
∂B = 0, we can obtain that:

B =

√
1 + α
K + β

(23)

Equation (23) shows that an optimal solution to this problem exists and different parameters
have different effects on the optimal leveraged magnification. Furthermore, the square of B is directly
proportional to α and inversely proportional to K and β.

3.3. Analysis of IRMS

Type A and type B adopt the same structure and springs, except for the connection between the
proof mass and detection frame, and the same fabrication and packaging technique. It is assumed that
the damping ratios of the two types of TFG are equal.

The dimensionless parameters η and M are defined by:

η =
Sma − Smb

Smb
=

ydA − ydB

ydB
, M =

ms2

mc
(24)

where η denotes the improvement rate of mechanical sensitivity (IRMS) and M denotes the mass
ratio (MR).
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Substituting Equations (18) and (20) into Equation (24), we obtain:

η =

√
((1 + α)M + K + β)(1 + K)

2(1 + M)(K + β)2 − 1 (25)

It can be seen that the IRMS is mainly determined by the stiffness ratios K, α, and β and mass ratio
M. By solving the partial derivative of function η with respect to these variables, we obtain that:

∂η

∂K
= −

1
4
·

(1 + α)(K − β+ 2)M−
√

2(β− 1)(K + β)

(K + β)2 √
((1 + α)M + K + β)(1 + M)(1 + K)

(26)

∂η

∂α
=

√
2

4
·

M
√

1 + K

(K + β)
√
(1 + M)(M(1 + α) + K + β)

(27)

∂η

∂β
= −

√
2

4
·

(2M(1 + α) + K + β)
√

1 + K

(K + β)2 √
(1 + M)(M(1 + α) + K + β)

(28)

∂η

∂M
= −

√
2

4
·

(K + β− 1 + α)
√

1 + K

(K + β)
√
(1 + M)3(M(1 + α) + K + β)

(29)

In general, the values of the stiffness ratios K, α, and β and mass ratio M are greater than 0 and
less than 1. From Equations (26)–(29), we can find that:

∂η

∂K
< 0,

∂η

∂α
> 0,

∂η

∂β
< 0,

∂η

∂M
> 0 (30)

From Equation (30), the improvement rate of mechanical sensitivity η monotonically increases
with increasing α and M, but decreases with increasing K and β. Within a reasonable range, K
and β are as small as possible and α and M are as large as possible. The leverage mechanism can
improve the displacement of sense frame effectively and obtain a huge improvement in terms of
mechanism sensitivity.

The change of M and K will lead to a corresponding change of the mechanism architecture with
no leverage. Furthermore, M and K are system parameters, not just leverage mechanism parameters,
which will be analyzed in later studies. Here, four architectures are designed to explore the impact
of α and β on IRMS. One is based on type B architecture and the other three are based on type A
architecture, defined as types A1, A2 and A3. The kl1 of type A2 and the kl2 of type A3 are slightly
larger than those of type A1. This can be achieved by intentionally increasing the spring width of the
leverage mechanism in the sense direction.

4. FEM Simulation and Analysis

4.1. Analysis of LR and IRMS

From Equation (21), the stiffness ratio is dependent on the stiffness of various springs in the sense
direction. Therefore, simulations are carried out on the stiffness of these springs by applying a 1 µN
force in the linked structure, shown in Figure 4. The length, width and height of the designed spring
are 500 µm, 10 µm and 80 µm, respectively. The stiffness of the linear springs connecting the anchor to
the proof mass and the sense frame is shown in Figure 4a,b, respectively. The stiffness of the beam
associated with the leverage mechanism is shown in Figure 4c,d. Using the formula k = F/x, the
stiffness k can be obtained:
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ky1 =
1 µN

0.0012029 µm
= 831.32 N/m, ky2= 2 ·

1 µN
0.0103225 µm

= 193.75 N/m

kl1= 2 ·
1 µN

0.025038 µm
= 79.88 N/m, kl2= 2 ·

1 µN
0.039746 µm

= 50.32 N/m

kl1_2= 2 ·
1 µN

0.015593 µm
= 128.26 N/m, kl2_3= 2 ·

1 µN
0.027567µm

= 72.55 N/m

(31)

Substituting Equation (31) into Equations (21) and (24), we obtain:

K =
ky2

ky1
=

193.75
831.32

= 0.233063, α =
kl1
ky1

=
79.88

831.32
= 0.096088,

α2 =
kl1_2

ky1
=

128.26
831.32

= 0.15429

β =
kl2
ky1

=
50.32

831.32
= 0.06053, β3 =

kl2
ky1

=
72.55

831.32
= 0.08727

(32)

Substituting Equation (32) into Equation (23), we obtain:

B1 =

√
1 + α
K + β

=

√
1+0.096088

0.233063 + 0.06053
= 1.93, B2 =

√
1 + α2

K + β
=

√
1 + 0.15429

0.233063 + 0.06053
= 1.98

B3 =

√
1 + α

K + β3
=

√
1 + 0.096088

0.233063 + 0.08727
= 1.85

(33)

The mass ratio M is determined by structural design parameters; the mass of the proof mass and
sense frame are 1.16e− 6 kg and 2.78e− 7 kg, so we obtain:

M =
ms2

mc
=

2.774e− 7 kg
1.1598e− 6 kg

= 0.23918 (34)

Therefore, the IRMS of the MEMS tuning fork gyroscope with an anchored leverage mechanism
can be calculated from Equations (25), (32) and (34):

η1 =

√
((1 + α)M + K + β)(1 + K)

2(1 + M)(K + β)2 − 1 = 79.10%,

η2 =

√
((1 + α2)M + K + β)(1 + K)

2(1 + M)(K + β)2 − 1 = 81.33%

η3 =

√
((1 + α)M + K + β3)(1 + K)

2(1 + M)(K + β3)
2 − 1 = 68.06%

(35)

From the above numerical analysis, it is concluded that the IRMS of type A1 is lower than that of
type A2 and slightly higher than that of type A3, which is in accord with the theoretical results.
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4.2. FEM Analysis of Mechanism Sensitivity

4.2.1. Modal Analysis

A structural model simulation is carried out using the ANSYS software. The mesh element is
SOLID186, which is a high-order three-dimensional 20-node solid structure unit. All the structures use
hexahedral meshes: the linear beam uses a small mesh, and the drive and sense frames use slightly
larger meshes. All anchor and proof mass elements use larger hexahedral meshes. Types A1, A2, A3,
and B have a total of 543,516, 547,996, 547,039, and 399,356 meshes, respectively. The main parameters
of the structures and the material properties of silicon are shown in Tables 1 and 2, respectively.

Figure 5 shows the sense modes of types A1 and B. The anti-sense and anti-drive modes of all types
are the first two order modes. The natural frequencies of the first three modes and the corresponding
modes of vibration of all types are listed in Table 3.
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Table 1. Main parameters of the structures.

Parameter Value

Proof mass (µm3) 2300× 2700× 80
Length of drive spring (µm) 440
Width of drive spring (µm) 10
Length of sense spring (µm) 440
Width of sense spring (µm) 10

Length of drive coupling leverage (µm) 1131
Width of drive coupling leverage (µm) 15
Length of sense coupling leverage (µm) 5450
Width of sense coupling leverage (µm) 220

Length of leverage (µm) 1050
Width of leverage (µm) 60
Lever arm length ratio 1.93

Equivalent mass of type A1 (kg) 2.2469× 10−6

Equivalent mass of type A2 (kg) 2.3019× 10−6

Equivalent mass of type A3 (kg) 2.1604× 10−6

Equivalent mass of type B (kg) 1.4372× 10−6

Table 2. Material parameters for FEM simulation.

Parameters Young’s Modulus (Pa) Poisson’s Ratio Density (kg/m2)

Values 1.7× 1011 0.28 2330

Table 3. Natural frequencies of first three modes and corresponding modes of vibration of all types.

Type
Order

1 2 3

Type A1 Frequency (Hz) 4227.3 4234.8 7914.9
Mode of vibration Anti-phase of drive Anti-phase of sense In-phase of sense

Type A2 Frequency (Hz) 4227.4 4288.9 8068.6
Mode of vibration Anti-phase of drive Anti-phase of sense In-phase of sense

Type A3 Frequency (Hz) 4227.3 4319.2 7938.4
Mode of vibration Anti-phase of drive Anti-phase of sense In-phase of sense

Type B Frequency (Hz) 4185.2 4248 6478.9
Mode of vibration Anti-phase of sense Anti-phase of drive In-phase of sense
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It can be seen from Table 3 that the anti-sense and anti-drive modes of all types are the first two
order modes. The mode order of type A with an anchored leverage mechanism does not change
compared to type B. The leverage mechanism can improve the frequency of in-phase sense mode,
which can decrease the influence of the common vibration on the mechanical sensitivity.

4.2.2. Sensitivity Analysis

To analyze the vibration output response, a mode-based steady-state linear dynamic analysis is
performed on the design by ANSYS software to predict the linear response of a structure subjected to
continuous harmonic excitation. In this simulation, the parameters of the structure, material properties
of silicon, mesh division and element type are the same as those of the modal analysis. According to
previous experimental results, the quality factor of MEMS gyroscopes is about 3000–8000 [33]. In this
analysis, when the quality factor of type B is 4000, the quality factor of types A1, A2 and A3 can be
calculated by the previous assumptions and defined as 6328, 6565 and 6605, respectively. In order
to guarantee the accuracy and efficiency of the simulation, the frequency ranges of types A1 and B
designs sweep from 4100 Hz to 4300 Hz based on the results of modal analysis in the previous section.
The frequency step is 1 Hz. Since the amplitude response around the resonant frequency varies greatly,
a harmonic response analysis with higher accuracy needs to be carried out. The frequency range is
determined by the previous results. The frequency ranges of types A1 and B designs sweep from 4233.5
Hz to 4236 Hz and from 4184 Hz to 4186.5 Hz, respectively. As a result, the frequency step is 0.025 Hz.
In the left and right proof mass of the design, in-phase and anti-phase simple harmonic force with a
relative amplitude of 1 µN is applied. The resonance frequency of sense-mode in type A1 and type B
is 4234.8 Hz and 4185.2 Hz, respectively, and the vibration amplitude of sense-mode frame is about
6.483 µm and 3.766µm. Figure 6 displays the deformation results at 20 times magnification. The left
and right sense mode frame’s amplitude–frequency characteristics of the vibration of the tuning fork
structure after loading are shown in Figure 7.
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As depicted in Figure 7, two tines of types A and B have completely synchronized movement to
eliminate the vibration output. This verifies the function as a tuning fork. The differential displacement
of two tines can be obtained by computing the simulation data with MATLAB software, as shown in
Figure 8.
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4.3. Numerical and Theoretical Comparisons

The differential displacement of two tines can be calculated through the analytical expressions of
Equations (17) and (19). The theoretical and simulation values of types A1 and B and the error rate are
obtained, as listed in Table 4.

Table 4. Comparisons with theoretical and simulation values of types A1 and B.

Displacement

Type Type A1 Type B

Theoretical
Value

Simulation
Value

Error
Rate

Theoretical
Value

Simulation
Value

Error
Rate

Two tines’ displacement
difference (µm) 13.418 12.966 3.49% 7.804 7.532 3.62%

From Table 4, it can be found that the simulation results are consistent with the theoretical values,
which verifies the proposed theoretical model. Therefore, the theoretical model can be effective for an
anchored leverage mechanism. Meanwhile, the theoretical and simulation values of types A1, A2, and
A3 and the error rate are compared in Table 5.

Table 5. Comparison of theoretical and simulation values of types A1, A2 and A3.

Type Theoretical Value Simulation Value Error Rate

Type A1 13.418 12.966 3.49%
Type A2 13.585 13.098 3.72%
Type A3 12.596 12.141 3.75%

Substituting the simulation data in Tables 4 and 5 into Equation (25), the IRMS simulation values
of types A1, A2, and A3 are obtained. From Equation (35), the theoretical values of the design can be
obtained. The comparison of theoretical and simulation values of types A1, A2, and A3 is shown in
Table 6.

Table 6. Comparison of theoretical and simulation values of types A1, A2 and A3.

Type Theoretical Value Simulation Value

Type A1 79.10% 72.15%
Type A2 81.33% 73.90%
Type A3 68.06% 61.19%

Table 6 shows that the IRMS of type A1 is lower than that of type A2 and slightly higher than that
of type A3 regardless of simulation and theoretical values. It is found that the simulation values of
the IRMS are in accord with the theoretical values, although error still exists in these results, which
verifies the analysis result of the IRMS in that we proposed that it would increase with increasing α but
decrease with increasing β.

4.4. Nonlinear Analysis

Scale factor nonlinearity is one of the main errors of MEMS gyroscopes. The structure error
and circuit noises are the main causes of nonlinearity of scale factor. [36–38]. This paper presents
nonlinearity caused by large deformation of elastic beam in ideal TFG designs, other potential errors
(non-ideal fabrication, capacitive nonlinearity, etc.) are not covered in this paper.

The nonlinear analysis can be used to analyze problems where the stress–strain relationship of the
material is nonlinear and check whether the model gives reasonable results. After nonlinear analysis,
increasing input force from 0 µN to 7.0× 104 µN increases displacement of sense-mode frame along
y-axis from 0 to 67.916 µm as shown in Figure 9, and a linear reference line are used to highlight
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the changes in stiffness under large deformation. The nonlinearity of the overall structure cannot be
ignored when the deflection of elastic beams exceed a certain limit.Sensors 2019, 19, x FOR PEER REVIEW 16 of 19 
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The interval of U-shaped beam in this design is usually relatively small and the width is 20 µm.
In addition, solid stoppers should be introduced to improve the shock resistance of the MEMS
gyroscope. Therefore, the maximum displacement range of the whole structure is 20 µm. Additionally,
to verify the linearity of the TFG in the maximum working range, the deviation from the best-fit line
is calculated, as shown in Figure 10. The nonlinearity of the mechanical scale factor is found to be
negligible (adjusted R2 = 0.999999), which verified that the design works within a linear interval and
the validity of the lumped parameter model proposed.
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5. Discussion

From the theoretical mechanical analysis of a tuning fork gyroscope with anchored leverage
mechanism, it is concluded that the IRMS monotonically increases with increasing α but decreases
with increasing β. Actually, the stiffness of the springs associated with SR cannot increase or decrease
indefinitely. The strength theory of the structure should be considered at the design stage. On the other
hand, stoppers, such as elastic or solid stoppers, should be introduced to improve the shock resistance
of the MEMS gyroscope.

It is noteworthy that kl1 consists of two U-shaped springs in parallel. This structure has the same
effect as the decoupling spring so that it can reach the secondary decoupling effect of quadrature couple
in the sense direction.
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In future studies, the proposed anchored leverage mechanism of the TFG will be fabricated
by a traditional silicon-on-glass and deep reactive ion etching process for experimental verification.
In addition, it should be noted that sufficient machining accuracy in the lever mechanism is required to
ensure consistency of the stiffness of the left and right levers.

6. Conclusions

In this paper, a novel MEMS tuning fork gyroscope with an anchored leverage mechanism is
presented and a new dynamic model is established to investigate the mechanical sensitivity. Moreover,
the leverage rate and improvement rate of mechanical sensitivity are analyzed to represent the
optimization effect. The theoretical solutions show that the IRMS monotonically increases with
increasing α but decreases with increasing β. Three types of gyro structures with different stiffness
ratios are designed. In addition, the stiffness of the springs associated with the stiffness ratio is obtained
by an FEM simulation. The IRMS of the design can be calculated as 79.10%, 81.33%, and 68.06%. Finally,
modal analysis and harmonic response simulation are carried out. FEM simulation demonstrates that
the mechanical sensitivities of the design are in accord with theoretical results, verifying the theoretical
model. The linearity of design is analyzed, too. Consequently, the anchored leverage mechanism TFG
is confirmed to offer a higher displacement output of sense mode, improving the mechanical sensitivity.
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