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Abstract: Efficient and robust evaluation of kernel processing from corn silage is an important
indicator to a farmer to determine the quality of their harvested crop. Current methods are
cumbersome to conduct and take between hours to days. We present the adoption of two
deep learning-based methods for kernel processing prediction without the cumbersome step of
separating kernels and stover before capturing images. The methods show that kernels can be
detected both with bounding boxes and at pixel-level instance segmentation. Networks were
trained on up to 1393 images containing just over 6907 manually annotated kernel instances. Both
methods showed promising results despite the challenging setting, with an average precision at an
intersection-over-union of 0.5 of 34.0% and 36.1% on the test set consisting of images from three
different harvest seasons for the bounding-box and instance segmentation networks respectively.
Additionally, analysis of the correlation between the Kernel Processing Score (KPS) of annotations
against the KPS of model predictions showed a strong correlation, with the best performing at
r(15) = 0.88, p = 0.00003. The adoption of deep learning-based object recognition approaches for
kernel processing measurement has the potential to lower the quality assessment process to minutes,
greatly aiding a farmer in the strenuous harvesting season.
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1. Introduction

Maize kernel processing evaluation is an important step in determining the quality of silage
harvested from a forage harvester. Maize silage is used as fodder for cattle in dairy production
and high quality silage though correct processing has an effect on milk yield [1] and suboptimal
setting of the machinery can also lead to the quality being affected by up to 25% [2]. Kernels must be
sufficiently cracked for efficient starch intake by lowering the requirement for chewing during eating
and ruminating [3]. Kernels are processing by two mill rolls which compress and shear the plant. The
gap known as the Processor Gap (PG) is often between 1 and 4 mm with 0.1 mm increments. This
work focuses on the evaluation of kernel processing for silage quality efficiently through deep learning
computer vision based methods via Convolutional Neural Networks (CNNs). Currently, the particle
size distribution of kernel processing is evaluated through means which can be time consuming,
cumbersome to conduct, and prone to error. An example of this is the Corn Silage Processing Score
(CSPS) [3] and is one of the major standards in kernel processing evaluation. CSPS gives an analytical
measurement of the kernel processing though laboratory equipment situated offsite typically returning
a measurement after a number of days. In CSPS the user places a 160 g dried sample of harvested
silage on a Ro-Tap sieving system which oscillates to allow processed kernels to pass through a number
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of differently sized sieve screens. The materials that pass through a 4.75 mm sieve can be measured
for starch content and the percentage of this that passes is the CSPS. Particles larger than this size
may result in a slow starch digestion in cattle and increase chewing requirement. The CSPS can
be interpreted according to [3] as greater than 70% is optimal processing, between 50% and 70% is
adequate processing and less than 50% is considered inadequate processing. An additional finer sieve
screen of 1.18 mm can be used to determine the number of over-processed kernels. The starch content
in such fragments can simply pass through the cow’s rumen, leading to wasted plant.

Another commonly used method for assessing kernel processing is the Penn State Particle
Separator (PSPS) [4]. PSPS is similar to CSPS, however, does not require off-site laboratory equipment
such as the Ro-Tap system or drying of the silage before starting the measurement process. Therefore,
PSPS is able to give a farmer a much quicker indication of the kernel processing from the forage
harvester. In PSPS three or four stacked trays with varying gaps are used to separate the kernel particles.
The sample is placed in the top tray and the stack is shook a total of 40 times at a rate of one shake per
second. After this, the weight of each tray is measured and is used to determine the distribution of
kernel processing in the sample. Despite PSPS being more flexible than CSPS, the method is sensitive
to the rate of shaking and moisture content, potentially giving a less accurate measurement.

The water separation method [5] can also be an effective method for a farmer to conduct a quick
assessment of the kernel processing. Here, the total number of whole kernels in a 1-quart (946 mL)
sample is evaluated. If more than one whole kernel per quart is found, the kernel processing is deemed
not optimal. The method begins by placing the sample in a container filled with water. Then the sample
is stirred gently until the stover, such as leaves and stalks, float and the kernels sink. Afterwards the
stover and water is removed from which the number of whole kernels can be counted.

As mentioned, the aforementioned current kernel processing assessment methods are relatively
time-consuming and can require potentially error-some manual steps. There has been minimal work
done in automating this process and to our knowledge only one such exists. In this work computer
vision is used to calculate the kernel particle size distribution [6]. In the method, first kernels must be
separated from the stover using a method such as water separation. After this, the kernels are placed
without touching any other samples on a dark background together with a common coin whose size is
known, such as a penny. The coin can then be used as a reference later on in the system to calculate
the kernel sizes. An image is captured and the contours of the kernel particles are found via image
processing. Then the maximum inscribed circle is found for each particle in pixels which is converted
to a kernel particle size distribution in millimetres. Metrics such as the percentage of particles smaller
than 4.75 mm or average area give an indication to the user of kernel processing quality.

Looking into the broader domain, there is a large amount of research into measuring the quality
of other crops. Firstly, the grades of product are determined by calculating rice kernel shape and
size features and training a support vector machine [7,8]. Additionally, in [9] rice colour features
and Fourier descriptors for shape and size are extracted from which the quality grade is determined
through multivariate statistical analysis. A number of methods identify whole or broken fragments
in grains. In [10], the size, color and brightness values are used in combination with a flatbed
scanning device. In [11], rice is segmented based on color, and shape features indicate the grade of
the crop. Classification of the grains in the image can be necessary when different grain types are
mixed. Artificial neural networks have been used to classify types based upon extracted handcrafted
features. In [12] color and texture features, in [13] size, color, and shape features, and in [14] color and
morphological features were used to train networks respectively. K-Nearest Neighbor classifiers were
trained on size and texture features in [15,16], with a number of color models being used in the latter.
The quality of maize seeds was evaluated in [17] using hyperspectral imaging where data was reduced
through t-distributed stochastic neighbourhood embedding and Fischer’s discriminant analysis for
quality classification.

The works mentioned so far all follow that traditional computer vision approach of extracting
hand-crafted features followed by using a classifier to make a decision on the task at hand. However,



Sensors 2019, 19, 3506 3 of 20

since 2012 when AlexNet [18] won the ImageNet classification challenge by a significant margin,
deep learning with CNNs has dominated the field. Object recognition in images is a challenging task
due to potential variations in objects, such as the colour, texture, shape, and size, and variations in
images, such as the lighting, viewpoint, and occlusion. CNNs have been shown to learn complex
patterns in data through a hierarchy of layers. Typically earlier CNN layers capture simple patterns
such as the edges, while later layers learn more complex representations such as the shape of specific
objects. This hierarchy has the potential to learn a powerful model given high quality data. There are
numerous examples of machine vision with deep learning in agriculture that show good results and
in many cases a significant improvement over using hand-crafted features. Examples include [19],
where fully convolutional neural networks were trained to predict a semantic segmentation map of
clover, grass, and weeds in RGB images containing clover-grass mixtures to estimate the distribution
of the classes in the field. Here, they account for the potentially large amount of training data required
for CNNs, as it was observed the annotation could take up to 3.5 h for 10 images. New images
were simulated by combining augmented objects from those already annotated on top of captured
background images. A deep learning approach to detect tomato plant diseases and pests was done
in [20], where a number of popular models was evaluated for the task. In [21] a CNN and random
forest classifier was trained to classify 32 different species of leaves. Plant disease detection of 14
different crop species including 26 diseases was done in [22] using CNNs and a number of different
feature extractors such as AlexNet [18]. Crop and weed detection using CNNs was done in [23] on a
combination of RGB and near-infrared data.

The aim of this work is to create a system to localise kernels fragments in RGB images for kernel
processing assessment without the requirement separation of stover and kernels such as in [3,4,6].
Such a system will allow the farmer to gain an insight into the quality of the kernel processing without
the need to perform a time-consuming and cumbersome process. We propose to train CNNs in both a
bounding-box detector and instance segmentation form to automatically detect and localise kernel
fragments in the challenging images. Examples of the images used in this work are shown in the
following section in Figure 3. The methodology in training the aforementioned networks will be
covered in Section 2 and the achieved results in Section 3.

An example of the difference between separated kernel/stover images such as those typically
used in [6] and non-separated used in this work can be seen in Figure 1. Additional white outlines in
Figure 1b represent the outline of kernel fragments.

(a) (b)
Figure 1. Example of the difference in images between separated and non-separated corn silage. (a)
Reprinted from [6], with permission from Elsevier; (b) Example image from this work.

2. Materials and Methods

This section details the materials and methods used in the work. This includes images, subsequent
kernel annotation and overview of the CNN models and training parameters. In order to train the
respective recognition algorithms, a dataset of harvested silage is required. Both the basis for the
images of the silage and annotation with resulting datasets is covered.
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2.1. Images

RGB colour images were taken of harvested silage over three years. The silage was produced from
a variety of fields and crop conditions, and harvested with different machine settings. For example,
the PG primarily accounts for the differences in the level of kernel fragmentation by altering the
distance between two rollers mills in which the corn plant passes through. Secondly, the cutting
length (CL) affects how fine the corn plant is chopped before passing through the rollers. Figure 2
shows an example of harvested silage, while the two images in Figure 3 show the differences in the
harvested silage and a small PG (a) and a larger PG (b), resulting in a higher proportion in smaller
and larger kernel fragments respectively. The silage in both (a) and (b) were harvested with same CL.
Additionally, in the images a scale is shown in the bottom right indicating 1 cm, which equates to a
resolution of 0.05 mm per pixel.

Figure 2. Example of harvested silage.

(a) (b)
Figure 3. Example images of the differences in silage harvested with varying fragmentation. The white
outline shows kernel fragment annotation outlines. (a) Smaller Processor Gap (PG) resulting in smaller
kernel fragments; (b) Larger PG resulting in larger kernel fragments. A scale in the bottom right of the
images shows the size of the images where 200 pixels is equal to 1 cm.

2.2. Datasets

The images were annotated using a tool with user defining vertices outlining the kernel’s
fragments creating a polygon for each instance in a given image. These vertex-based annotations can
be used to train both the instance segmentation models or they can be converted to bounding-boxes by
taking the outer extremas of the annotated vertices for detection models. Just under 2500 images were
annotated across the data collected from three years, with the largest number of annotations being
done on the images collected in 2017 as seen in Table 1. It is also shown in the table that a total of four
datasets were created, one for each of the harvest years (2015, 2016, & 2017) and a final set that contains
all of the data from the three years combined (151617). For each of the datasets, train and test is split
randomly at roughly 60% and 40% respectively. The division of years was done to evaluate how a CNN
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model would react to being trained on images from one harvest with its given conditions and how the
resulting model would perform on images from another harvest year. The visual appearance of the
crop can change due to the variations in farming such as geographical location, weather conditions, or
plant maturity. The combination of data in 151617 is to evaluate the large data requirement of deep
learning models and to see if models tuned to specific conditions or a model with larger variation is
preferable.

Table 1. Overview of datasets created based on the year in which the images were captured. The total
number of images and kernel instances per dataset is shown.

2015 2016 2017 151617

Train Images 111 115 1167 1393
Train Kernel Instances 1388 675 4844 6907

Test Images 76 85 884 1045
Test Kernel Instances 836 433 3425 4694

2.3. Deep Learning Models

This section covers the two deep learning approaches used for kernel fragment recognition in
both object detection and instance segmentation form. First, we will give a short overview of deep
learning and CNNs with respect to the core concepts. Deep learning is a form of machine learning that
aims to solve a task using a “deep” model through the transformation of data using various functions
that can represent the data in a hierachical manner [24]. Deep learning can be especially successful
as it allows for automatic feature extraction, rather than an engineer designing hand-crafted features.
If the dataset is representative of the deployment scenario it can allow the model to learn a strong
set of functions that can be difficult for an engineer to find. However, due to this deep hierarchical
manner, the features determined by the model can be difficult to debug and are often treated as a
black box. In deep learning the aim is to have model learn a feedforward mapping between input
and output, for example, given an input of an RGB image of maize silage output, the x-y coordinates
of kernels together with a confidence score of the prediction. In order to learn this mapping the aim
is to update the parameters of the model through training to give the desired output. The model is
trained over a number of iterations where given the model and its current set of parameters, it perform
the feedforward mapping for an image and measures the error of the model in comparison to the
correct answer defined in the annotation. This error can then be used to push the model parameters
in the correct direction by updating them through the method of backpropagation. Here, the error
traverses back through the network and computes the gradient for each function’s parameters that
should decrease the error. Using this gradient, an optimisation algorithm, such as Stochastic Gradient
Descent (SGD), updates the parameters of the function. This process is continuously performed until
the model has updated the parameters in such a way to best perform the mapping of input and
output with the lowest possible error in the training set whilst still performing well on a validation
set. Depending on the task there are a number of different types of architectures within deep learning:
this includes recurrent neural networks often used for natural language processing, reinforcement
learning used in robotics, and CNNs used in this case for RGB images. With CNNs the deep hierarchy
of functions mainly revolve around the convolution mathematical operation which is well suited
for the grid-like topology of images. The convolution operation is relatively simple and has been
used in hand-crafted feature engineering such as edge detection or image blurring. Convolution is
computed by a filter of a given size (i.e., 3 × 3 or 5 × 5) sliding over the image data and computing
an elementwise multiplication and producing a single output value in a feature map. Convolving
over the entire image produces a fully realised feature map. The deep aspect of CNNs is therefore
a large number of convolution layers computing feature maps upon previously computed maps in
succession. The learning process described earlier for CNNs aims to learn the weights in the hierarchy
of convolution filters that give the optimal mapping between input and output.
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The methods chosen in this work are the Region-based Fully Convolutional Network (R-FCN) [25]
for bounding-box detection and the Multi-task Network Cascade (MNC) [26] for instance segmentation.
These were chosen due to their state-of-the-art nature at the time of conducting this work, where both
performed well on a number of object recognition benchmarks including PASCAL VOC [27] and MS
COCO [28].

The CNN approaches solve the task of object recognition but at different degrees of localisation
granularity. Bounding-box detectors place an axis-aligned bounding-box around the detected object
whereas segmentation indicates the object at a pixel level. Due to the lower localisation granularity of
bounding-box detectors, they may over-sample the object and give a larger indication of size than is
actually true. This difference on an image from this work can be seen in Figure 4.

(a) (b)
Figure 4. Examples of the difference in localisation granularity between bounding-boxes and
segmentation. (a) Bounding-box localisation, (b) Segmentation localisation. The segmentation
localisation fits much closer to the kernel instances and thereby can give a more precise measurement
on kernel size.

This remainder of this section includes an overview of how the methods perform their respective
forms of object recognition by covering the model architecture and defining the model and learning
parameters used in this work.

2.3.1. Region-Based Fully Convolutional Networks (R-FCN)

R-FCN is a bounding-box CNN-based object detection method and is based on the popular
two-stage detection strategy of object proposals followed by classification of found proposals.
Additionally, the authors were one of the first to adapt Fully Convolutional Networks (FCNs) into the
two-stage pipeline, rather than using feature pooling layers, such as Region of Interest (RoI) pooling as
in the Faster R-CNN detector [29]. Thus, potentially important spatial information is not discarded
as can be the case when pooling features. The R-FCN architecture can be seen in Figure 5. In the
first stage, an input RGB image is passed through a number of convolutional layers to create a deep
representation through a number of feature maps. As is common practice in object recognition through
CNNs, the convolutional layers can take many forms that can vary in complexity. Popular choices
for the layers include AlexNet [18], VGG [30] and ResNets [31], where in the original R-FCN work
the ResNet-101 network was primarily explored. Class-agnostic RoI object locations are found by a
Region Proposal Network (RPN) [29]. The RPN finds RoI proposals by sliding a small network over
the last feature map computed by the previous convolutional layers. At each sliding window location
a number of anchor boxes with varying scales and aspect ratios predict the confidence of a location
containing an object. In the second stage, candidate RoI proposal features via an FCN for classification
are extracted from a number of position-sensitive score maps. A total of k2(C + 1) maps are computed
where C is the number of object classes and k2 is the spatial grid representing relative positions. In the
case shown in Figure 5, k = 3, therefore, nine score maps are computed for each object class.
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Figure 5. The R-FCN architecture illustrating an image being passed through a number of convolutional
layers. RoIs are computed from a RPN on the final convolutional layer, these RoIs are classified through
the coloured position-sensitive score maps.

The R-FCNs trained for kernel detection in this work largely follow the same procedure as that
conducted in the original work. The network weights were initialised from a pretrained ResNet-101 for
ImageNet [32] classification supplied by the authors. The networks were trained for a total of 110,000
iterations using SGD with an initial learning rate of 0.001 and after 80,000 iterations the learning rate
was dropped by 0.1. Additionally, momentum of 0.9 and weight decay of 0.0005 was used during
optimisation. With respect to the position-sensitive score maps k = 3. For each image the mean
RGB ImageNet values are subtracted to normalise the training set which aids in the learning process.
Subtracting the mean RGB from our training datasets was also evaluated during early development,
however, it showed that results were better when using the ImageNet means. Horizontal flipping was
the only data augmentation strategy used during training and images were scaled such that the height
was 600 pixels and the width was then scaled accordingly to keep the original aspect ratio.

2.3.2. Instance-Aware Semantic Segmentation via Multi-Task Network Cascades (MNC)

MNC also follows the mantra of multi-stage object recognition. The task in MNC is instance
segmentation where the key difference between R-FCN is a module for determining mask instances, in
addition to the region proposals and classification modules. The general architecture of MNC can be
seen in Figure 6. As in R-FCN, a feature map is extracted from the last of a number of convolutional
layers computed based on an input RGB image. The authors performed their primary experiments
using the VGG-16 networks, however, as in R-FCN any popular or user-designed CNN architecture
can be used for feature extraction. An RPN determines class-agnostic region proposals followed by
RoI warping and pooling. These are used as input to the mask generation modules in combination
with learnt fully-connected (FC) layers. Finally, the masks in combination with another set of FC layers
perform classification of the mask instances.
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Figure 6. The Multi-task Network Cascade (MNC) architecture, as in Region-based Fully Convolutional
Network (R-FCN), an image is passed through a number of convolutional layers and RoIs are found
with an RPN. Features are extracted from the RoIs via RoI warping and pooling. Class agnostic masks
are founding from the features that are being passed through FC layers. The masks are classified from
the RoI features through another set of FC layers.

As the name implies and as shown in Figure 6, MNC is a cascaded approach for instance
segmentation of first determining box instances then mask instances and lastly categorising the
instances. However, it is common practice to refine the predictions by extending the cascade to five
stages by repeating both the mask generation and classification module. This approach was adapted
in this work from the open source code provided by the authors. The work included a pre-trained
VGG-16 network trained on ImageNet which was used for transfer learning. However, due to the
large complexity of using VGG-16 as a feature extractor, an ImageNet pre-trained AlexNet feature
extractor was adapted instead. Following the author’s procedures, MNC models were trained for a
total of 25,000 iterations using SGD with an initial learning rate of 0.001. After 20,000 iterations, the
learning rate was decreased by 0.1. Additionally, momentum of 0.9 and a weight decay of 0.0005 was
used. As in the R-FCN models, the ImageNet RGB mean values were subtracted from the images.
Again, horizontal flipping was the only data augmentation implemented and images were scaled such
that the height was 600 pixels with width scaled accordingly.

2.4. Hardware

Models were trained on an Ubuntu 16.04 machine with an NVIDIA Titan XP Graphics Processing
Unit (GPU) using the Caffe framework [33]. Caffe is a deep learning framework developed by Berkely
AI Research that allows for fast training of testing of multiple types of models including CNNs and
recurrent neural networks. An overview of the memory requirements for training the R-FCN and
MNC models and inference speed can be seen in Table 2. While the two models have a relatively low
requirement on GPU memory, the difference in the feature extractor can be seen for both train and test
memory. The considerably larger and more complex ResNet-101 model present in R-FCN increases the
memory usage and adds to the inference timings in comparison to MNC with the AlexNet backbone.



Sensors 2019, 19, 3506 9 of 20

Table 2. Overview of hardware statistics for both methods. Timings were done on images of size
600 × 1000 pixels on an Ubuntu 16.04 machine with an NVIDIA Titan XP GPU.

Train Memory (MB) Test Memory (MB) Inference Time per Image (s)

R-FCN (ResNet-101) 6877 3251 0.101
MNC (AlexNet) 3439 2369 0.087

2.5. Computer Vision Metrics

Both of the algorithms can be evaluated on an object-level. These metrics do not directly measure
how well a prediction intersects with the ground truth instance, rather, it is a measurement of whether
or not an instance is correctly classified given a minimum Intersection-over-Union (IoU) threshold
between the two. If a prediction overlaps by more than the IoU threshold it can be determined as
a true positive detection, otherwise, it is a false positive. In this work an IoU of 0.5 is used when
presenting results for the object-level metrics. It should also be noted that only a single prediction
can be considered as a true positive with a given ground truth—typically this is the prediction with
the highest IoU. If multiple predictions overlap above the threshold, the remaining are considered as
false positives.

Firstly, the precision on a dataset can be calculated as:

Precision =
TPobjects

TPobjects + FPobjects
, (1)

where TPobjects and FPobjects are the total number of true positives and false positives object instances.
The recall of a dataset is calculated by:

Recall =
TPobjects

Pobjects
, (2)

where Pobjects is the total number of positive ground truth examples.
Additionally, Average Precision (AP) is calculated as the mean precision of a dataset and is

calculated across 11 equally spaced levels of recall [0, 0.1, ..., 1]. AP is determined by:

AP =
1
11 ∑

r∈{0,0.1,...,1}
ρinterp(r), (3)

where the precision at each level of recall r is interpolated by the maximum precision measured for
which the corresponding recall exceeds r:

ρinterp(r) = max
r̃:r̃≥r

ρ(r̃), (4)

where ρ(r̃) is the measure precision at recall r̃.
The F1-score is calculated by:

F1-Score =
2TPobjects

2TPobjects + FPobjects + FNobjects
, (5)

where FNobjects are the total number of non-identified ground truth instances.

3. Results

The results for the various trained models according to the metrics defined in Section 2.5 will
be covered. Finally, an analysis of Kernel Processing Score (KPS) will be conducted to address the
potential of using the system for silage quality evaluation in an industry setting.
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3.1. Computer Vision Results

Firstly, detections from the four trained R-FCN models can be seen on an example image from
the 2016 test set in Figure 7 and the corresponding four MNC models in Figure 8. In Figure 7b–e
the ground truth bounding-box annotations are shown in white around the kernel fragments, true
positive detections are shown in green, and false positives are shown as red. Whereas in Figure 8b–e
the annotations are shown as a white outline around the kernel fragment, individual kernel fragment
instance predictions are shown with different colours, while the determination of true positive or false
positive is indicated by the green or red text above the prediction. In both figures, detections were
considered as either a true positive or false positive at an IoU threshold of 0.5. The original image can
be seen in Figures 7a and 8a.

(a) Original image.

(b) 2015 model. (c) 2016 model.

(d) 2017 model. (e) 151617 model.
Figure 7. Model predictions on a test image from 2016. Bounding-boxes colours indicate ground truth
(white), true positive (green) and false positive (red). True positives and false positives evaluated at an
IoU threshold of 0.5.
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(a) Original image.

(b) 2015 model. (c) 2016 model.

(d) 2017 model. (e) 151617 model.
Figure 8. Model predictions on a test image from 2016. Ground truth annotations are shown as a white
outline around the kernel fragment. The colour in the text box indicate true positive (green) and false
positive (red). True positives and false positives evaluated at an IoU threshold of 0.5. The individual
colour for each prediction indicate separate instances of predictions.

An overview of the metrics covered in the previous section are shown below for the models
trained and tested on the respective datasets defined in Table 1. As stated in Sections 2.3.1 and 2.3.2,
the four respective R-FCN and MNC models were trained using a consistent architecture and learning
parameters. The only difference is the training dataset itself, where the content aimed to give an insight
into the varying field conditions in agriculture from harvesting season to season. Additionally, there
is a considerable difference in the amount of data annotated in the sets, where the 2017 sets have
around 10× more images in both training and testing. Of course, this also has the effect of images
captured in 2017 being the significant majority in the combined 151617 dataset. An overview of the
results for the computer vision metrics can be seen in Table 3. For each test set the best performing
model for a given metric is shown in bold. The general trend seen in the table is that the 151617 model
is the most robust across the four test sets, in many cases being the best performing for a metric or
the second best. The differences between then R-FCN and MNC models are slight with only a few
percentage points difference for all test sets apart from the 2015 test set. For this test set the model
trained on the larger 151617 dataset performs considerably better than the other models across all
metrics, including the 2015 model which is trained on only images from the same year as the test set.
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The R-FCN 151617 model achieves a 65.9% AP, 31.9% points higher than that of the 2015 counterpart.
Whereas the AP for the MNC model is significantly lower at 40.4%, a significant increase is still present
compared to the 2015 MNC model. Additionally, for the 151617 R-FCN model precision and recall
scores at 70.0% and 76.0%, roughly 20.0% points higher than the 2015 model in both regards. The
considerable improvement of the 151617 model in comparison to 2015 is present despite images from
2015 only making up around 10% of the training material in 151617. However, this 10% in addition to
the roughly 10% from 2016 seems to have a significant impact as the model trained on data only from
2017 performs worse than both 2015 and 151617 models at 28.5% AP.

Table 3. Computer vision metric results for both the R-FCN and MNC models across the four test sets.

R-FCN MNC

Train Dataset AP Prec Recall F1-Score AP Prec Recall F1-Score

2015 Test

2015 34.0 55.5 53.0 54.2 27.7 44.5 31.8 37.1
2016 19.0 80.0 21.0 33.3 16.8 60.5 16.5 25.9
2017 28.5 51.1 40.2 45.0 27.7 50.0 32.1 39.1

151617 65.9 70.0 76.0 73.9 40.4 50.3 46.3 48.2

2016 Test

2015 25.3 23.3 87.1 36.8 40.7 30.1 61.0 40.3
2016 41.8 52.1 73.2 60.9 52.1 54.4 62.8 58.3
2017 34.2 41.7 63.1 50.2 53.0 45.7 67.9 54.6

151617 66.9 56.9 90.8 70.0 71.8 47.6 80.8 59.9

2017 Test

2015 15.3 19.0 70.5 29.9 18.6 20.2 36.4 25.8
2016 19.2 43.4 44.1 43.7 24.3 39.8 32.8 36.0
2017 31.0 36.4 66.9 47.2 36.3 32.9 53.3 40.7

151617 33.4 37.6 67.2 48.2 35.9 31.9 53.7 40.0

151617 Test

2015 19.6 23.4 73.6 35.6 26.1 26.2 42.9 32.5
2016 22.3 50.1 44.7 47.2 28.4 46.7 34.2 39.5
2017 30.2 39.2 62.5 48.2 35.8 36.0 51.0 42.2

151617 34.0 40.7 66.0 50.4 36.1 34.2 52.2 41.4

As mentioned, the difference in results between R-FCN and MNC models are not as significant
for the remaining test sets, however, the trend of the combined 151617 training dataset giving robust
results continue. The 151617 models is the best performing for both models by considerable margins.
AP for the 151617 model scores at 66.9% and 71.8% for R-FCN and MNC respectively, 25.1% and 19.7%
points higher than the 2016 models. Similar increases in the remaining metrics exist as of that for the
2015 test set. Once again images similar to the test set is in the minority in the 151617 training set
with around 10% being harvested in 2016. As in the results for the 2015 test set this 10% addition has
a considerable effect as the relatively large 2017 model is the third best performing model on most
metrics.

The 2017 and 151617 results do not show an as significant difference in the results as for 2015
and 2016. The best performing model varies across the numerous metrics, however, the 2017 and
151617 models measure consistently well in comparison to the other two who lack in some regards.
For example, the 2015 R-FCN model has a relatively high recall of 70.5% but poorer precision of 19.0%.
Whereas the 2016 R-FCN model has the highest precision on both 2017 and 151617 test sets at 43.4%
and 50.1%, however, the AP is considerably lower at around 10% points. The results are similarly not
as varying for the MNC models, with the 2017 and 151617 models in general performing strongest. In
general, there is negligible difference between the 2017 and 151617 models for both R-FCN and MNC
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on the corresponding two test sets. This is likely because the training set between the two models has
much more overlap than the earlier results.

3.2. Kernel Processing

To evaluate the viability of the two CNN methods for kernel fragment recognition, we adopt the
commonly used KPS score from the CSPS [3]. For each detected instance for either method the length
of smallest axis from a rotated fitted bounding-box is found. This length gives an indication of the
detected kernel instance that would pass through the 4.75 mm sieve screen used in CSPS. The smallest
axis length is used as a quality indicator due to the three-dimensional shaking present in the Ro-Tap
separators used in CSPS, therefore, particles are separated based upon the shortest diameter. The KPS
was also used to evaluate the image processing algorithm developed in [6], however, the diameter of
the largest inscribed circle was used in this case. Additionally, in [6] the actual KPS was calculated by
performing the Ro-Tap laboratory separation, unfortunately, this was not done while harvesting in
this work. Instead we calculated the KPS for a sequence of images from a given PG by determining
the shortest axis length from the ground truth annotations. As the images of the silage were taken
with known distance to the camera, the pixel resolution in mm can be converted as 1 mm to 20 pixels,
meaning that kernels of lengths below 95 pixels (4.75 mm) are considered to be optimally processed.
Figure 9 shows the calculation of the minor axis from a rotated bounding-box for an annotated image.
In this example a single kernel is above the 4.75 mm threshold and deemed not optimally processed
with a minor axis of 95.10 pixels.

Figure 9. Visualisation of determining kernel processing based on the shortest axis length of a rotated
bounding-box for a number of annotated kernel fragments. The shortest axis is shown via a blue line
with the length in pixels for each shown next to the fragment.

Due to the large number of annotations present for images from 2017, a number of different
sequences were created with different conditions. This is shown in the left-most two columns in Table 4,
with 17 sequences with varying PGs. The table also shows the KPS calculated as the percentage of
kernel fragment detections with a shorter axis below 4.75 mm for the eight respective models trained
on different subsets of data. It should be noted that because of the nature of the predictions between
the R-FCN and MNC models, it was only possible to determine a rotated bounding box for the MNC
predictions due to the higher localisation granularity of pixel-level segmentation. Instead, for the
R-FCN detections, the shortest distance of the axis-aligned bounding box was taken. Finally, the
KPS ground truth from the annotations is shown in the right-most column. The average absolute
error summarises the accuracy of each model of all PGs in the final row. While there are individual
differences in the KPS calculation in comparison to the annotations from different sequences, in general
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the average absolute error is lowest for the 151617 R-FCN model—4.5% points less than the MNC
counterpart despite having the disadvantage of axis-aligned bounding-boxes.

Table 4. Kernel Processing Score (KPS) results across sequences of varying PGs for R-FCN and MNC
models. The final row shows the average absolute error for each model over all sequences from the
2017 test set.

%(<4.75 mm) 2015 2016 2017 151617

PG R-FCN MNC R-FCN MNC R-FCN MNC R-FCN MNC Annotation

1 96.2 97.7 91.8 94.7 93.8 95.5 92.2 97.3 93.5
1 95.4 95.4 95.2 96.1 95.8 98.8 95.1 97.7 98.7
1 88.0 76.4 85.7 86.5 81.3 87.2 80.7 88.9 79.9
1 93.7 94.8 93.0 91.1 92.5 95.7 92.1 96.1 94.3
2 93.9 94.8 78.8 75.2 89.2 95.8 87.8 97.3 79.1
2 92.8 97.7 89.9 92.6 86.3 95.7 90.8 95.7 93.8
2 84.8 71.5 84.2 100.0 82.5 85.8 82.7 87.7 88.8
2 88.0 86.1 86.4 85.6 82.2 90.6 76.0 92.6 79.1
3 89.6 80.7 85.1 83.5 82.4 89.3 81.8 90.4 82.3
3 94.6 95.2 91.2 95.7 89.9 94.1 86.1 93.8 85.7
3 90.4 85.9 83.2 83.1 77.9 90.3 80.5 90.0 79.3
3 89.1 86.3 83.6 84.5 88.5 93.0 89.8 91.8 94.5

3.5 90.2 80.8 83.5 88.0 81.4 89.5 81.2 91.2 83.1
3.5 88.6 75.5 84.0 81.6 79.7 89.0 80.3 90.2 76.6
3.5 91.2 93.0 89.5 92.6 91.7 93.2 92.9 94.6 92.4
3.5 85.6 75.9 75.4 72.5 79.5 84.7 78.4 86.1 73.7
3.5 91.5 89.8 86.8 91.3 86.6 91.5 86.9 92.9 86.4

Avg. abs.
error 6.7 5.3 3.8 4.6 3.3 6.3 2.7 7.2

3.3. Correlation Analysis

Given the results in Table 4 across the varying PGs, the effectiveness of the KPS calculation can
be evaluated across a number of different potential sizes of kernel fragments. This section covers a
correlation analysis for both the R-FCN and MNC method.

3.3.1. R-FCN

Four scatter plots including the equation describing the linear regression fit can be seen for each
R-FCN model against the KPS annotations in Figure 10. Each indicate a positive slope of an increasing
KPS for a model as the ground truth KPS increases.

To determine the significance of a potential correlation, a Pearson’s correlation coefficient was
calculated as shown in Table 5. Results from a Shapiro-Wilk normality test are also shown, as Pearson’s
assumes that both samples arise from a normal distribution. A high W, as present for all five samples in
Table 5, means that the null hypothesis that the population is normally distributed cannot be rejected.
Following [34] we can interpret the results for Pearson’s correlation coefficient that all models have a
strong positive correlation to the annotation KPS. The strongest being the 151617 model of r(15) = 0.88
with a p-value of 0.000003, explaining 77.7% of the variance in the ground truth KPS.
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Figure 10. Four scatter plots of the R-FCN model KPS against annotation KPS with linear regression
analysis computer for each.

Table 5. Correlation analysis via Pearson’s correlation coefficient for the KPS of the four R-FCN models
against the annotation KPS. Pearson’s assumes a normal distribution in the data which is evaluated
through a Shapiro-Wilk normality test.

Shapiro-Wilk Pearson’s Correlation

KPS W p-value r(15) p-value r2 (%)

Annotations 0.94 0.32 NA NA NA

2015 0.973 0.870 0.54 0.0244 29.4
2016 0.97 0.816 0.77 0.0003 59.5
2017 0.94 0.320 0.81 0.00009 65.1

151617 0.94 0.327 0.88 0.000003 77.7

3.3.2. MNC

The corresponding four scatter plots for the MNC models can be seen in Figure 11. Again, a
positive relationship is indicated between the KPS from each model and the KPS for annotations across
processor gaps.
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Figure 11. Four scatter plots of the MNC model KPS against annotation KPS with linear regression
analysis computer for each.

Table 6 firstly show Shapiro-Wilk tests for each sample with high W and corresponding p-values.
The resulting Pearson’s correlation coefficient also indicates a strong positive correlation. The strong
appears from the 2016 model with r(15) = 0.74 with a p-value of 0.0007, explaining 54.4% of the variance
in the KPS annotations.

Table 6. Correlation analysis via Pearson’s correlation coefficient for KPS of the four MNC models
against the annotation KPS. Pearson’s assumes a normal distribution in the data which is evaluated
through a Shapiro-Wilk normality test.

Shapiro-Wilk Pearson’s Correlation

KPS W p-Value r(15) p-Value r2 (%)

Annotations 0.94 0.32

2015 0.91 0.098 0.60 0.0106 36.2
2016 0.97 0.743 0.74 0.0007 54.4
2017 0.97 0.806 0.69 0.002 48.1

151617 0.97 0.666 0.63 0.0065 39.9
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4. Discussion

The potential to train CNN models for kernel fragment recognition in RGB images of silage
is promising. This appears to be the case even without conducting the time-consuming step of
separating kernels and stover before evaluation, as in all current popular kernel fragmentation
evaluation methods [3–6].

The four models trained in both R-FCN bounding-box and MNC instance segmentation performed
well and two major tendencies appeared. Firstly and possibly unsurprisingly, a larger training dataset,
such as that of 151617, led to models that performed well across all metrics on all test sets. Deep
learning methods are known to have a high requirement on the amount of data and the roughly 10×
larger 151617 training set in comparison to the 2015 and 2016 sets seemed to show this effect. However,
a total of 1393 images with 6907 annotated kernel instances is not on the same level as considerably
larger object recognition benchmarks such as PASCAL VOC [27] or MS COCO [28] consisting of
over 10,000 and 165,000 images for training respectively. The trained R-FCN and MNC models of
course take advantage of transfer learning from a pre-trained models on ImageNet datasets. With this
aid, roughly 1400 annotated training images in 151617 set gave consistent results across test images
from three different harvest years. Additionally, the second finding was of the at times significant
improvement when adding only a small amount of data to a larger dataset. This was seen for the
models trained on the 151617 dataset for test sets 2015 and 2016, where despite the additional data
being in the minority during training in contrast to images from 2017, they had a large increase in
performance compared to models that did not combine all of the data.

With respect to the viability of using a CNN-based model for KPS measurement, both methods
can be deemed to have potential. A strong positive correlation was found between annotation KPS
and model KPS, with the strongest existing for the 151617 R-FCN model. A criticism of the correlation
analysis is naturally that this was against annotation KPS and not a truer laboratory measurement
than in [6]. However, as the training and testing splits were kept separate, the correlation results still
give a good indication for the approaches.

In comparison to [6] who show KPS measurement given manually separated kernels in a
controlled camera setting, the error measurement across sequences is similar to our work. KPS
based on image analysis from wet samples from the field from [6] show an average absolute error
of 5.6% in comparison to our range of 2.7% to 7.2% dependent on the model and test set. Of course,
care should be taken comparing the two works given the differences in ground truth measurement,
location of harvesting, the machine, and so forth. A key improvement in this work is the time required
to obtain a KPS measurement. In [6] the time was improved to hours instead of days as in [3], however,
due to removing the requirement of kernel/stover separation, this work allows KPS calculation to be
done in minutes.

Future work is to evaluate against a laboratory measured KPS as mentioned earlier. Furthermore,
research into applying newer object recognition methods from the fast-moving field may also be
viable, potentially improving challenges such as recognition of small objects. Finally, such CNN-based
methods could be used to measure other silage-quality aspects, such as the cutting length of the
forage harvester.

5. Conclusions

This work has shown that kernel fragmentation in maize silage can be estimated from images
using trained CNNs in both bounding-box and instance segmentation form. Through transfer learning
and training models on images captured across three different harvest seasons, both forms were able to
estimate the fragmentation robustly. This was evaluated via computer vision metrics and an analysis
of the correlation between model predictions and a kernel processing score. Where the latter showed a
strong correlation for both CNN forms to an industry standard kernel processing score.

Furthermore, this work showed promise in kernel fragmentation estimation in non-separated
kernel/stover images, leading to a potentially significant decrease in measurement time.
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Abbreviations

The following abbreviations are used in this manuscript:
RGB Red, Green, and Blue
PG Processor Gap
CSPS Corn Silage Processing Score
PSPS Penn State Particle Separator
CNN Convolutional Neural Network
CL Cutting Length
R-FCN Region-based Fully Convolutional Network
MNC Multi-task Network Cascades
FCN Fully Convolutional Network
RoI Region of Interest
RPN Region Proposal Network
SGD Stochastic Gradient Descent
FC Fully-Connected
GPU Graphics Processing Unit
KPS Kernel Processing Score
IoU Intersection-over-Union
AP Average Precision
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