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Abstract: The IoT describes a development field where new approaches and trends are in constant
change. In this scenario, new devices and sensors are offering higher precision in everyday life in an
increasingly less invasive way. In this work, we propose the use of spatial-temporal features by means
of fuzzy logic as a general descriptor for heterogeneous sensors. This fuzzy sensor representation is
highly efficient and enables devices with low computing power to develop learning and evaluation
tasks in activity recognition using light and efficient classifiers. To show the methodology’s potential
in real applications, we deploy an intelligent environment where new UWB location devices, inertial
objects, wearable devices, and binary sensors are connected with each other and describe daily human
activities. We then apply the proposed fuzzy logic-based methodology to obtain spatial-temporal
features to fuse the data from the heterogeneous sensor devices. A case study developed in the
UJAmISmart Lab of the University of Jaen (Jaen, Spain) shows the encouraging performance of the
methodology when recognizing the activity of an inhabitant using efficient classifiers.

Keywords: sensor data fusion; fuzzy logic; activity recognition; smart objects

1. Introduction

Activity Recognition (AR) defines models able to detect human actions and their goals in smart
environments with the aim of providing assistance. Such methods have increasingly been adopted in
smart homes [1] and healthcare applications [2] aiming both at improving the quality of care services
and allowing people to stay independent in their own homes for as long as possible [3]. In this way,
AR has become an open field of research where approaches based on different types of sensors have
been proposed [4]. In the first stages, binary sensors were proposed as suitable devices for describing
daily human activities within a smart environment setting [5,6]. More recently, wearable devices have
been used to analyze activities and gestures in AR [7].

Furthermore, recent paradigms such as edge computing [8] or fog computing [9] place the
the data and services within the devices where data are collected, providing virtualized resources and
engaged location-based services, at the edge of the mobile networks [10]. In this new perspective on the
Internet of Things (IoT) [11], the focus shifts from cloud computing with centralized processing [12] to
collaborative networks where the smart objects interact with each other and cooperate with their neighbors
to reach common goals [13,14]. In particular, fog computing has had a great impact, between ambient
devices [15] and wearable devices [16].
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In this context, the proposed work presents a methodology for activity recognition that:
(i) integrates interconnected IoT devices that share environmental data and (ii) learns from the
heterogeneous data from sensors using a fuzzy approach, which extracts spatial-temporal features.
The outcome of this methodology is recognizing daily activities by means of an efficient and lightweight
model, which can be included in the future generation of smart objects.

The remainder of the paper is structured as follows: the following subsection reviews works
related to our proposal, emphasizing the main novelties we propose. Section 2 presents the proposed
methodology for learning daily activities from heterogeneous sensors in a smart environment.
Section 3 introduces a case study to show the utility and applicability of the proposed model for
AR in the smart environment of the University of Jaen. Finally, in Section 4, conclusions and ongoing
works are discussed.

1.1. Related Works

Connectivity plays an important role in Internet of Things (IoT) solutions [17]. Fog computing
approaches require the real-time distribution of collaborative information and knowledge [18]
to provide a scalable approach in which the heterogeneous sensors are distributed to dynamic
subscribers in real time. In this contribution, smart objects are defined as both sources and targets
of information using a publish-subscribe model [19]. In the proposed methodology, we define a fog
computing approach to: (i) distribute and aggregate information from sensors, which are defined by
spatial-temporal features with fuzzy logic, using middleware based on the publish-subscribe model,
and (ii) learn from the distributed feature sensors with efficient classifiers, which enable AR within
IoT devices.

In turn, in the context of intelligent environments, a new generation of non-invasive devices
is combined with the use of traditional sensors. For example, the use of new location devices
based on UWB is allowing us to reach extremely high accuracy in indoor contexts [20], which has
increased the performance of previous indoor positioning systems based on BLE devices [21].
At the same time, the use of inertial sensors in wearable devices has been demonstrated to
enhance activity recognition [22]. These devices coexist with traditional binary sensors, which
have been widely used to describe daily user activities from initial AR works [23] to more recent
literature [24]. These heterogeneous sensors require integrating several sources: wearable, binary, and
location sensors in smart environments [25], to enable rich AR by means of sensor fusion [26].

Traditionally, the features used to describe sensors under data-driven approaches have depended
on the type of sensors, whether accelerometers [27] or binary sensors [28]. In previous works,
deep learning has also been shown as a suitable approach in AR to describe heterogeneous features
from sensors in smart environments [5,6,29]. However, it is proving hard to include learning capabilities
in miniature boards or mobile devices integrated in smart objects [30]. First, we note that deep learning
requires huge amounts of data [31]. Second, learning, and in some cases, evaluating, under deep
learning approaches within low computing boards requires the adaptation of models and the use of
costly high-performance embedded boards. In line with this, we highlight the work [32], where a new
form of compression models was proposed in several areas to deploy deep neural networks in
high-performance embedded processors, such as the ARM Cortex M3. Advancement across a range of
interdependent areas, including hardware, systems, and learning algorithms, is still necessary [33].

To bring the capabilities needed to develop general features from sensors to low-computing
devices, we propose using spatial-temporal feature extraction based on fuzzy logic with minimal
human configuration together with light and efficient classifiers. On the one hand, fuzzy logic
has been proposed in sensor fusion [34] and the aggregation of heterogeneous data in distributed
architectures [35]. For example, fuzzy temporal windows have increased performance in several
datasets [5,6,29], extracting several temporal features from sensors, which have been demonstrated as
a suitable representation for AR from binary [36] and wearable [37] sensors.
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On the other hand, some other efficient classifiers have been successfully proposed for AR [38]
using devices with limited computing power. For example, decision trees, k-nearest neighbor,
or support vector machine has enabled AR in ubiquitous devices by processing embedded sensors in
mobile devices [39,40].

Taking this research background into consideration, we defined the following key points to
include in our approach and compensate for the lack of previous models:

• To share and distribute data from environmental, wearable, binary, and location sensors among
each other using open-source middleware based on MQTT [17].

• To extract spatial features from sensors using fuzzy logic by means of fuzzy scales [41] with
multi-granular modeling [42].

• To extract temporal features in the short- and middle-term using incremental fuzzy temporal
windows [5].

• To learn from a small amount of data, to avoid the dependency of deep learning on a large amount
of data [31].

• To evaluate the performance of AR with efficient and lightweight classifiers [40], which are
compatible with computing in miniature boards [38].

2. Methodology

In this section, we present the proposed methodology for learning daily activities from
heterogeneous sensors in a smart environment. As the main aim of this work is integrating and learning
the information from sensors in real time, we first describe them formally. A given sensor si provides
information from a data stream Si(t∗) = {vi

t0 , vi
t1 , . . . , vi

tN}, where vi
t represents a measurement of the

sensor si in the timestamp t. Under real-time conditions, t∗ represents the current time and Si(t∗), t∗ ≥ t
the status of the data stream in this point in time.

In this work, in order to increase scalability and modularity in the deployment of sensors,
each sensor si publishes the data stream independently of the other sensors in real time. For this,
a collecting rate ∆t is defined in order to describe the data stream constantly and symmetrically
over time:

Si(t∗) = {vi
t∗ , vi

t∗−∆t, . . . , vi
t∗−∆t·j}

Further details on the deployment of sensors in real time are presented in Section 2.1,
where a new trend for smart objects and devices are connected with each other using
publish-subscribe-based middleware.

Next, in order to relate the data stream with the activities performed by the inhabitant,
it is necessary to describe the information from the sensor stream with a set of features
F = {F1, . . . , F|F|}, where a given feature Fm is defined by the function Fm(Si, t∗) to aggregate the
values vi

tj
of the sensor streams Si in the current time t∗:

Fk(Si, t∗) =
t∗>tj⋃

tj

vi
tj

Since our model is based on a data-driven supervised approach, the features that describe the
sensors are related to a given label L(t∗) for each given time t∗:

F1(S1, t∗), . . . , Fm(Si, t∗), . . . , F|F|(SN , t∗)→ L(t∗)

where L(t∗) defines a discrete value L = {L1, . . . , Ll . . . , L|L|} and Ll identifies the labeled activity
performed by the inhabitant in the given time t∗.

In Section 2.2, we describe a formal methodology based on fuzzy logic to obtain spatial-temporal
features to fuse the data from the heterogeneous sensors.

Next, we describe the technical and methodological aspects.
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2.1. Technical Approach

In this section, we present sensors and smart objects that have been recently proposed as
non-invasive data sources for describing daily human activities, followed by the middleware used to
interconnect these different devices.

2.1.1. Smart Object and Devices

As mentioned in Section 1.1, the aim of this work is to enable the interaction between new
generations of smart objects. In this section, we present the use of sensors and smart objects, which
have been recently proposed as non-invasive data sources for describing daily human activities. These
devices have been included in the case study presented in this work, deployed at the the UJAmISmart
Lab of University of Jaen (Jaen, Spain) [25] (http://ceatic.ujaen.es/ujami/en/smartlab).

First, in order to gain data on certain objects for AR, we included an inertial miniature board in
some daily-use objects, which describes their movement and orientation. To evaluate this information,
we attached a Tactigon board [43] to them, which collects inertial data from the accelerometer and
sends them in real time under a BLE protocol. For prototyping purposes, in Figure 1, we show the
integration of the inertial miniature board in some objects.

Figure 1. Prototyping of smart objects (a cup, a toothbrush, and a fork), whose orientation and
movement data are collected and sent in real time by an inertial miniature board (The Tactigon).

Second, we acquired indoor location data by means of UWB devices, which offer high performance
with a location accuracy closer to centimeters [44], using wearable devices carried by the inhabitants
of the smart environment [44]. In this work, we integrated Decawave’s EVK1000 device [45], which is
configured with (almost three) anchors located in the environment and one tag for each inhabitant.

Third, as combining inertial sensors from wearable devices on the user enhances activity
recognition [22], we collected inertial information from a wristband device worn by an inhabitant.
In this case, we developed an Android Wear application deployed in a Polar M600, which runs on
Android Wear [46]. The application allowed us to send data from the accelerometer sensor in real time
through a WiFi connection.

Fourth, we included binary sensors in some static objects that the inhabitant interacts with while
performing his/her daily activities, such as the microwave or the bed. For this purpose, we integrated
some smart things devices [47] in the UJAmI Smart Lab, which transmit the activation of pressure from
a mat or the open-close of a door through a Z-Wave protocol. These four types of sensors represent a
new trend of high-capability devices for AR. In the next section, we describe the architecture to connect
these heterogeneous sources and distribute sensor data in real time.

http://ceatic.ujaen.es/ujami/en/smartlab
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2.1.2. Middleware for Connecting Heterogeneous Devices

In this section, we describe a distributed architecture for IoT devices using MQTT, where aggregated
data from sensors are shared under the publish-subscribe model. The development of an architecture
to collect and distribute information from heterogeneous sensors in smart environments has become
a key aspect, as well as the prolific research field in the integration of IoT devices due to the lack of
standardization [48]. In this section, we present the middleware deployed at the UJAmI Smart Lab of the
University of Jaen (Spain) [25] based on the following points:

• We include connectivity for devices in a transparent way, including BLE, TCP, and Z-Wave protocols.
• The data collected from heterogeneous devices (without WiFi capabilities) are sent to a given

gateway, which reads the raw data in a given protocol, aggregates them, and sends them by
MQTT under TCP.

• The representation of data includes the timestamp for when the data were collected together
with the given value of the sensor. The messages in MQTT describe the data in JSON format,
a lightweight, text-based, language-independent data interchange format [49].

Next, we describe the specific configuration for each sensor deployed in this work.
First, the inertial data from the miniature boards located in smart objects are sent under BLE in
raw format at a frequency close to 100 samples per second. A Raspberry Pi is configured as a BLE
gateway, reading information from the Tactigon boards, aggregating the inertial data into one-second
batches and sending a JSON message in MQTT on a given topic for each sensor.

Second, the Decawave UWB devices are collected in a gateway at a frequency close to 1 sample
per second, collecting the location of tag devices by means of a USB connection. The open-source
software (https://www.decawave.com/software/) from Decawave was used to read the information
and then publish a JSON message in MQTT with the location on a given topic for each tag.

Third, an Android Wear application was developed in order to collect the information from
the inertial sensors of the smart wristband devices. The application obtains acceleration samples at
a frequency close to 100 per second, collecting a batch of aggregated samples and publishing a JSON
message in MQTT on a given topic for each wearable device.

Fourth, a Raspberry Pi is configured as a Z-Wave gateway using a Z-Wave card connected to the
GPIO and the software (https://z-wave.me/). In this way, the Raspberry Pi gateway is connected to
smart things devices in real time, receiving the raw data and translating them to JSON format to be
published in real time using MQTT on a given topic that identifies the device.

In Figure 2, we show the architecture of the hardware devices and software components that
configure the middleware for distributing the heterogeneous data from sensors in real time with MQTT
in JSON format.

2.2. Fuzzy Fusion of Sensor Spatial-Temporal Features

After detailing the technical configuration of the devices and middleware involved in this work,
we present a methodology used to extract spatial-temporal features and represent the heterogeneous
data from sensors using fuzzy logic in a homogeneous way in order to learn and evaluate tasks in
activity recognition using light and efficient classifiers.

The proposed methodology is based on the following stages:

• Describing the spatial representation of sensors by means of fuzzy linguistic scales, which provide
high interpretability and require minimal expert knowledge, by means of ordered terms.

• Aggregating and describing the temporal evolution of the terms from linguistic scales by means
of fuzzy temporal windows including a middle-to-short temporal evaluation.

• Predicting AR from the fused sensor features by means of light classifiers, which can be trained
and evaluated in devices with low computing power.

https://www.decawave.com/software/
https://z-wave.me/
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In Figure 3, we show the components involved in fusing the spatial-temporal features of
heterogeneous sensors.

Figure 2. Architecture for connecting heterogeneous devices. Binary, location, and inertial board
sensors send raw data to gateways, which collect, aggregate, and publish data with MQTT in JSON
format. The Android Wear application collects, aggregates, and publishes the data directly using MQTT
through WiFi connection.

Figure 3. Fuzzy fusion of spatial-temporal features of sensors: (i) data from the heterogeneous sensors
are distributed in real time; (ii) fuzzy logic processes spatial-temporal features; (iii) a light and efficient
classifier learns activities from the features.

2.2.1. Spatial Features with Fuzzy Scales

In this section, we detail how the data from heterogeneous sensors is described using fuzzy
scales, requiring minimal expert knowledge. A fuzzy scale ¯|Li| of granularity g describes the values of
an environmental sensor si, which is defined by the terms Ai

l , l ∈ [1, g]. The terms within the fuzzy
linguistic scale (i) fit naturally and are equally ordered within the domain of discourse of the sensor
data stream Si from the interval values [L1, . . . Lg] and (ii) fulfill the principle of overlapping to ensure
a smooth transition [50].

¯|Li| = {Āi
1, . . . , Āi

l , . . . , Āi
g}, (1)
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Each term Ai
l , l ∈ [1, g] is characterized by using a triangular membership function as detailed in

Appendix A. Therefore, the terms Ai
l , which describe the sensor si, configure the fuzzy spatial features

of the sensor from the values:

Ai
l(t
∗) = Ai

l(S
i(t∗)) = {Ai

l,t∗(v
i
t∗), . . . , Ai

l,j(v
i
j)}

To show a graphical description of the use of fuzzy linguistic scales in describing the sensor
values, we provide an example of the sensor location in Figure 4. In the example, the location sensor
s measured the distance in meters to the inhabitant within a maximum of 6 meters (we avoided the
sensor super index for the sake of simplicity), whose sensor stream Si(t∗) = {vt1 = 0.5 m, vt2 = 5.0 m}
is defined in the two points of time t1 and t2. First, we describe a fuzzy scale ¯|L| of granularity
g = 3, which determines the membership function of the terms A1, A2, A3. Second, from the values
of the sensor stream, which define the distances to the location sensor, we computed the degrees
for each term A1, A2, A3 in the fuzzy scale obtaining A1(t∗) = {A1,t1 = 0, A1,t2 = 0.83}, A2(t∗) =

{A2,t1 = 0.33, A2,t2 = 0.16}, A3(t∗) = {A3,t1 = 0.66, A3,t2 = 0}.

Figure 4. Example of the fuzzy scale defined for g = 3 on distance to the location sensor. Example degrees
for values evaluating the distances Si(t∗) = {vt1 = 0.5 m, vt2 = 5.0 m} → A1(t∗) = {A1,t1 = 0,
A1,t2 = 0.83}, A2(t∗) = {A2,t1 = 0.33, A2,t2 = 0.16}, A3(t∗) = {A3,t1 = 0.66, A3,t2 = 0}.

2.2.2. Temporal Features with Fuzzy Temporal Windows

In this section, the use of multiple Fuzzy Temporal Windows (FTW) and fuzzy aggregation
methods [35] is proposed to enable the short- and middle-term representation [5,6] of the temporal
evolution of the degrees for the terms Ai

l(t
∗).

The FTWs are described straightforwardly according to the distance from the current time t∗ to a
given timestamp tj as ∆tj = t∗ − tj using the membership function µTK(∆tj). Therefore, a given FTW
Tk is defined by the values Lk, Lk−1, Lk−2, Lk−3, which determine a trapezoidal membership function
(referred to in Appendix C), as:

Tk = Tk(∆t∗i )[Lk, Lk−1, Lk−2, Lk−3] (2)

Next, the aggregation degree from the relevant terms Ai
l(tj) within the temporal window Ti

K of
a sensor si is computed using a max-min operator [35] (detailed in Appendix B). This aggregation
degree is defined as Ai

l(t
∗) ∪ Ti

k(t
∗), which represents the aggregation degree of the FTW Ti

K over the
degrees of term Ai

l(t
∗) in a given time t∗.

We provide an example in Figure 5 to show a graphical description of the use of an FTW T1(∆tj)

in aggregating the degrees of a term A1 in the sensor stream as A1(t∗) = {A1,t1 = 0.7, A1,t2 =

0.2, A1,t3 = 0.4, A1,t4 = 0.3, A1,t5 = 0.5, A1,t6 = 0.9} (we avoid the sensor super index for the sake
of simplicity). First, we define an FTW as T1 = T1(∆t∗i )[1 s, 2 s, 4 s, 5 s] ¯|L| in magnitude of seconds
s. Second, we compute the degree of the temporal window T1(t∗) = {t1 = 0, t2 = 0.5, t3 = 1, t4 =
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1, t5 = 0.5, t6 = 0, whose aggregation degree A1(t∗) ∪ T1(t∗) is computed by the max-min operator
and determines the value of the spatial-temporal feature defined by the pair T1, A1. Therefore, we
define a given feature Fm = Ai

l(t
∗) ∪ Ti

k(t
∗) for each pair of fuzzy terms Ai

l and the FTW Ti
K of a sensor

stream Si in the current time t∗.

Figure 5. Example of temporal aggregation of the FTW T1(∆t∗i )[1 s, 2 s, 4 s, 5 s] (in magnitude of
seconds s) for the degrees of the term A1(t∗) = {0.7, 0.2, 0.4, 0.3, 0.5, 0.9}. The aggregation degree
A1(t∗) ∪ T1(t∗) = 0.5 is determined by the max-min operator. The value 0.5 defines a fuzzy spatial
temporal feature of the sensor stream.

3. Results

In this section, we describe the experimental setup and results of a case study developed at the
UJAmI Smart Lab of the University of Jaen (Spain), which were gathered in order to evaluate the
proposed methodology for AR.

3.1. Experimental Setup

The devices defined in Section 2.1.1 were previously deployed at the UJAmI Smart Lab of the
University of Jaen. The middleware based on MQTT and JSON messages integrated: (i) UWB-Decawave
location devices, (ii) Tactigon inertial devices, (iii) Smart Things binary sensors, (iv) wearable devices
(Polar M660) with Android Wear, and (v) Raspberry Pi gateways. The middleware allowed us to collect
data from environmental sensors in real time: location and acceleration data from inhabitants; acceleration
data from three smart objects: a cup, a toothbrush, and a fork; binary activation from nine static objects:
bathroom faucet, toilet flush, bed, kitchen faucet, microwave, TV, phone, closet, and main door.

In the case study, 5 scenes were collected while the inhabitant performed 10 activities: sleep,
toileting, prepare lunch, eat, watch TV, phone, dressing, toothbrush, drink water and enter-leave house.
A scene consisted of a coherent sequence of human actions in daily life, such as: waking up, preparing
breakfast, and getting dressed to leave home. In the 5 scenes, a total of 842 samples for each one
of the 26 sensors were recorded in one-second time-steps. Due to the high inflow of data from the
inertial sensors, which were configured to 50 Hz, we aggregated the data in one-second batches within
the gateways. Other sensors sent the last single value for each one-second step from the gateways
where they were connected. In Table 1, we provide a description of the case scenes and in Table 2 the
frequency of activities.
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Table 1. Sequence activities of the case scenes.

Scene 1 Sleep→ Toilet→ Prepare lunch→ Eat→Watch TV→ Phone→ Dressing→ Toothbrush→ Exit
Scene 2 Enter→ Drinking→ Toilet→ Phone→ Exit
Scene 3 Enter→ Drinking→ Toilet→ Dressing→ Cooking→ Eat→ Sleep
Scene 4 Enter→ Toilet→ Dressing→Watching TV→ Cooking→ Eat→ Toothbrush→ Sleep
Scene 5 Enter→ Drinking→ Toilet→ Dressing→ Cooking→ Eat→ Phone→ Toothbrush→ Sleep

Table 2. Frequency (number of time-steps) for each activity and scene.

Activity Scene 1 Scene 2 Scene 3 Scene 4 Scene 5

Sleep 10 0 16 11 11
Toilet 13 10 6 10 14
Cooking 29 0 27 17 24
Eat 36 0 40 46 41
Watch TV 20 0 0 16 0
Phone 14 17 0 0 15
Dressing 15 0 21 16 17
Toothbrush 21 0 0 18 18
Exit 3 2 0 0 0
Enter 0 3 4 2 3
Drinking 0 16 7 0 12

The information from all sensors was distributed in real time by means of MQTT messages
and topics in one-second time-steps. An MQTT subscriber collected and recorded the sensor data
from topics streaming within a database. The collection of data was managed by MQTT messaging,
enabling us to start or stop data collection in the database in real time. We note that at the same
point of time, each board or computer could take different time-stamps since the clocks did not
have to be synchronized. To synchronize all the devices (within the one-second interval), we
collected the time-stamp of the first value for each sensor from the initial message for collecting
data, which determined the reference time t0 for this sensor. Therefore, all the following timestamps
for each sensor were computed as relative time to starting time t′i = ti − t0. Some examples of data
collected from different sources are shown in Figure 6.

During the case study, an external observer labeled the timeline with the activity carried out by
the inhabitant in real time. For training and evaluation purposes, a cross-validation was carried out
with the 5 scenes (each one was used for testing and another for training). The evaluation of the AR
was developed in streaming for each second in real-time conditions, without explicit segmentation
of the activities performed. Next, we merged all time-steps from the 5 case tests, configuring a full
timeline test, which could be analyzed according to the metrics. The metrics to evaluate the models
were precision, recall, and F1-score, which were computed for each activity. In turn, we allowed an
error margin of a second, since the human labeling of the scenes may be slightly displaced at this speed
(by a margin of seconds).

Finally, as light and efficient classifiers, we evaluated: kNN, decision tree (C4.5), and SVM, whose
implementation in Java and C++ [51–53] enable learning and evaluation capabilities in miniature
boards or mobile devices. We evaluated the approach in a mid-range mobile device (Samsung
galaxy J7), where the classifiers were integrated using Weka [52] and the learning time of the classifier
was measured.
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Figure 6. Data from heterogeneous sensors. The top-left shows the location in meters from a UWB
device. The top-right shows acceleration from a wearable device. The bottom-left shows acceleration
in the inhabitant’s cup. The bottom-right shows the activation of the microwave. Some inhabitant
behaviors and the impact on sensors are indicated in the timelines.

3.2. Baseline Features

In this section, we present the results of baseline features in AR using raw data provided by
sensors. Therefore, first we applied the classification of raw data collected by middleware for each
second and activity label. Second, in order to evaluate the impact of aggregating raw data in a temporal
range, we included an evaluation of several sizes of temporal windows, which summarized sensor
data using maximal aggregation. The configurations were: (i) [t+, t−] = [0, 1], (ii) [t+, t−] = [1, 3],
and (iii) [t+, t−] = [2, 5], where [t+, t−] configure the given temporal window [t∗ + t+, t∗ − t−] for
each evaluation time t∗ in the timeline. The number of features corresponds to the number of sensors
|S|. Results and learning time in mobile devices for each activity and classifier are shown in Table 3;
the confusion matrix with the best configuration [t+, t−] = [0, 1] and SVM is shown in Figure 7.

Table 3. Results with baseline features: precision (Pre), recall (Rec) and F1-score (F1-sc).

[t+, t−] = [0, 1] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 94.73 77.08 85.00 94.73 77.08 85.00 65.45 83.33 73.31
Toilet 95.83 54.71 69.66 68.75 88.67 77.45 86.27 90.56 88.36
Cooking 66.38 89.69 76.29 58.02 75.25 65.52 50.48 67.01 57.08
Eating 81.43 92.02 86.40 80.36 93.86 86.59 76.97 77.30 77.13
Watching TV 100 94.44 97.14 94.73 94.44 94.59 91.17 91.66 91.42
Phone 100 93.47 96.62 100 100 100 97.22 95.65 96.43
Dressing 90.00 94.20 92.05 93.24 97.10 95.13 88.00 76.81 82.02
Brushing Teeth 97.36 73.68 83.88 76.27 89.47 82.34 70.96 50.87 59.26
Drinking 56.25 45.71 50.43 32.25 57.14 41.23 32.85 80.00 46.58
Enter/Exit 100 88.23 93.75 78.94 94.11 85.86 86.66 94.11 90.23
Average 88.20 80.32 83.12 77.73 86.71 81.37 74.60 80.73 76.23
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Table 3. Cont.

[t+, t−] = [1, 3] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 90.47 77.08 83.24 90.47 77.08 83.24 75.00 56.25 64.28
Toilet 66.67 64.15 65.38 72.13 88.67 79.55 64.06 83.01 72.31
Cooking 80.95 87.62 84.15 63.88 61.85 62.85 63.63 56.70 59.96
Eating 84.65 93.86 89.02 82.53 92.02 87.01 88.28 71.16 78.80
Watching TV 94.87 97.22 96.03 94.87 97.22 96.03 47.05 36.11 40.86
Phone 94.44 100 97.14 97.72 93.47 95.55 97.82 93.47 95.60
Dressing 94.73 100 97.29 90.36 100 94.93 84.61 68.11 75.47
Brushing Teeth 82.22 68.42 74.68 73.91 71.92 72.90 93.87 84.21 88.78
Drinking 34.61 28.57 31.30 22.85 28.57 25.39 38.15 85.71 52.80
Enter/Exit 89.47 82.35 85.76 89.47 100 94.44 76.00 100 86.36
Average 81.31 79.92 80.40 77.82 81.08 79.19 72.85 73.47 71.52

[t+, t−] = [2, 5] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 90.47 77.08 83.24 90.90 77.08 83.42 92.85 29.16 44.39
Toilet 66.10 71.69 68.78 67.18 86.79 75.74 82.05 64.15 72.00
Cooking 78.21 85.56 81.72 73.03 79.38 76.07 45.78 52.57 48.94
Eating 89.01 94.47 91.66 87.57 93.25 90.32 91.83 58.89 71.76
Watching TV 88.09 100 93.67 77.78 77.78 77.78 79.16 100 88.37
Phone 95.74 93.47 94.59 97.56 86.95 91.95 85.41 86.95 86.17
Dressing 92.95 94.20 93.57 93.05 95.65 94.33 75.00 62.31 68.07
Brushing Teeth 86.20 87.71 86.95 80.00 77.19 78.57 64.38 84.21 79.97
Drinking 58.33 40.00 47.45 48.14 40.00 43.69 30.00 74.28 42.73
Enter/Exit 0 0 0 71.42 64.70 67.90 69.23 47.05 56.03
Average 74.51 74.42 74.46 78.67 77.87 78.27 71.57 65.96 68.65

Learning Time SVM kNN C4.5

Average time in
mobile device (in ms) 998 25 1980

We can observe that the use of one temporal window with baseline features was only suitable
when the window size fit the short-term sensor activation [t+, t−] = [0, 1].

3.3. Fuzzy Spatial-Temporal Features

In this section, we detail the extraction of fuzzy spatial-temporal features from the sensors of the
case study. First, in order to process the data from the UWB and acceleration sensors (in wearable
devices and inertial objects), we applied a normalized linguistic scale Li with granularity g = 3,
where the proposed linguistic terms fit naturally ordered within the domain of discourse of the
environmental sensor.

The number of features correspond to the number of sensors times granularity |S| × g.
The linguistic scale of UWB location was defined in the domain [0, 6] m since the the smart lab
is less than six meters in size, and the linguistic scale of acceleration data was between the normalized
angles defined in [−1, 1]. Binary sensors which are represented by the values 0, 1, one in the case of
activation, have the same straightforward representation as a fuzzy or crisp value.

In Table 4, we present the results and learning time in a mobile device for each activity and
classifier; the confusion matrix with the best configuration [t+, t−] = [2, 5] and kNN are shown in
Figure 7. We note the stability of the results in the different windows compared to the previous results
without fuzzy processing.

Second, we applied two configurations of FTWs to represent middle- and short-term activation
of sensors: (i) [t+, t−] = [3, 5] → T−1 = {−5,−5,−3,−2}, T0 = {−3,−2, 2, 3}, T+

1 = {0, 0, 2, 3}
and (ii) [t+, t−] = [8, 13]→ T−1 = {−13,−13,−3,−2}, T2 = {−3,−2, 2, 3}, T+

1 = {0, 0, 3, 8}, where T1

represents a past fuzzy temporal window, T2 a fuzzy temporal window closer to current time t∗, and T3
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a delayed temporal window from the current time t∗. The first and second configurations contained
a further temporal evaluation of 8 s and 21 s, respectively. The number of features corresponds to the
number of sensors times granularity and the number of temporal windows |S| × g× |T|.

Table 4. Results with fuzzy features (spatial): precision (Pre), recall (Rec) and F1-score (F1-sc).

[t+, t−] = [0, 1] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 90.24 77.08 83.14 92.30 77.08 84.01 79.62 91.66 85.22
Toilet 84.90 86.79 85.83 89.58 84.90 87.18 88.00 92.45 90.17
Cooking 63.02 86.59 72.95 60.97 73.19 66.52 44.71 75.25 56.09
Eating 90.38 91.41 90.89 82.05 92.63 87.02 85.08 71.77 77.86
Watching TV 100 94.44 97.14 97.05 94.44 95.73 96.96 91.66 94.24
Phone 100 91.30 95.45 100 95.65 97.77 87.17 93.47 90.21
Dressing 93.15 98.55 95.77 83.75 97.10 89.93 73.21 73.91 73.56
Brushing Teeth 95.74 82.45 88.60 86.27 91.22 88.68 83.67 82.45 83.06
Drinking 50.00 71.42 58.82 44.73 62.85 52.27 32.14 77.14 45.37
Enter/Exit 100 88.23 93.75 82.35 94.11 87.84 55.55 94.11 69.86
Average 86.74 86.83 86.23 81.90 86.32 83.69 72.61 84.39 76.56

[t+, t−] = [1, 3] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 92.68 77.08 84.16 86.66 77.08 81.59 75.00 68.75 71.73
Toilet 71.66 83.01 76.92 91.11 79.24 84.76 88.09 71.69 79.05
Cooking 79.79 91.75 85.35 79.74 83.50 81.58 54.71 40.20 46.35
Eating 94.80 92.63 93.70 87.80 93.86 90.73 87.96 62.57 73.12
Watching TV 94.87 97.22 96.03 94.87 97.22 96.03 97.22 94.44 95.81
Phone 95.65 93.47 94.55 95.45 91.30 93.33 97.95 100 98.96
Dressing 89.61 100 94.52 87.65 98.55 92.78 68.25 69.56 68.90
Brushing Teeth 88.46 84.21 86.28 85.45 85.96 85.70 78.00 68.42 72.89
Drinking 57.14 62.85 59.86 58.06 60.00 59.01 24.07 80.00 37.01
Enter/Exit 90.00 100 94.73 87.50 82.35 84.84 77.27 100 87.17
Average 85.46 88.22 86.61 85.43 84.90 85.03 74.85 75.56 73.10

[t+, t−] = [2, 5] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 87.17 72.91 79.41 92.30 95.83 94.03 81.39 72.91 76.92
Toilet 63.79 69.81 66.66 77.04 90.56 83.26 66.66 75.47 70.79
Cooking 81.72 88.65 85.04 80.88 73.19 76.84 61.67 45.36 52.27
Eating 94.00 90.18 92.05 90.96 93.25 92.09 88.88 55.21 68.11
Watching TV 92.68 100 96.20 88.88 100 94.11 92.85 100 96.29
Phone 97.91 97.82 97.87 97.95 100 98.96 100 67.39 80.51
Dressing 92.75 95.65 94.18 90.27 95.65 92.88 88.09 55.07 67.77
Brushing Teeth 86.95 73.68 79.77 84.74 91.22 87.86 72.72 19.29 30.50
Drinking 64.28 80.00 71.28 59.09 74.28 65.82 28.43 82.85 42.33
Enter/Exit 81.25 94.11 87.21 88.88 94.11 91.42 80.95 88.23 84.43
Average 84.25 86.28 85.25 85.10 90.81 87.86 76.16 66.18 70.82

Learning Time SVM kNN C4.5

Average time in
mobile device (in ms) 2676 23 5382

Finally, in Table 5, we present the results and learning time in a mobile device for each activity and
classifier; the kNN confusion matrix is shown in Figure 7. We note the increase of performance when
including several fuzzy temporal windows highlighting the learning time, efficiency, and f1-score
of kNN.
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Table 5. Results with fuzzy features (spatial and temporal): precision (Pre), recall (Rec) and F1-score (F1-sc).

[t+, t−] = [3, 5] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 90.24 77.08 83.14 92.30 77.08 84.01 79.62 91.66 85.22
Toilet 84.90 86.79 85.83 89.58 84.90 87.18 88.00 92.45 90.17
Cooking 63.02 86.59 72.95 60.97 73.19 66.52 44.71 75.25 56.09
Eating 90.38 91.41 90.89 82.05 92.63 87.02 85.08 71.77 77.86
Watching TV 100 94.44 97.14 97.05 94.44 95.73 96.96 91.66 94.24
Phone 100 91.30 95.45 100 95.65 97.77 87.17 93.47 90.21
Dressing 93.15 98.55 95.77 83.75 97.10 89.93 73.21 73.91 73.56
Brushing Teeth 95.74 82.45 88.60 86.27 91.22 88.68 83.67 82.45 83.06
Drinking 50.00 71.42 58.82 44.73 62.85 52.27 32.14 77.14 45.37
Enter/Exit 100 88.23 93.75 82.35 94.11 87.84 55.55 94.11 69.86
Average 86.74 86.83 86.23 81.90 86.32 83.69 72.61 84.39 76.56

[t+, t−] = [8, 13] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 93.02 89.58 91.27 91.83 93.75 92.78 59.25 66.66 62.74
Toilet 84.09 75.47 79.54 85.10 77.35 81.04 71.87 47.16 56.95
Cooking 94.38 91.75 93.04 94.56 93.81 94.18 72.09 40.20 51.62
Eating 97.87 86.50 91.83 90.11 93.25 91.65 83.69 58.89 69.13
Watching TV 90.00 75.00 81.81 95.23 100 97.56 91.66 55.55 69.18
Phone 97.82 95.65 96.72 92.45 100 96.07 100 100 100
Dressing 95.65 97.10 96.37 93.93 92.75 93.34 83.67 57.97 68.49
Brushing Teeth 87.23 73.68 79.88 89.28 89.47 89.37 35.96 68.42 47.14
Drinking 75.67 77.14 76.40 80.55 80.00 80.27 27.38 65.71 38.65
Enter/Exit 100 100 100 73.07 100 84.44 100 82.35 90.32
Average 91.57 86.18 88.80 88.61 92.04 90.29 72.56 64.29 68.17

Learning Time SVM kNN C4.5

Average time in
mobile device (in ms) 2128 24 4308.5

A

B
Figure 7. Cont.
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C
Figure 7. Confusion matrix for the best classifiers. (A) SVM + [t+, t−] = [0, 1] in the baseline, (B) KNN
+ [t+, t−] = [2, 4] with fuzzy spatial features, and (C) KNN + [t+, t−] = [8, 15] with fuzzy spatial
temporal features.

3.4. Representation with Extended Baseline Features

In this section, we evaluate the impact of including an advanced representation of sensors as
baseline features. For inertial sensors, we included the aggregation function: maximal, minimal,
average, and standard deviation, which are identified as a strong representation of acceleration
data [27]. In the case of binary sensors, we included the last activation of the sensors and the current
activation to represent the last status of the smart environment, which has brought about encouraging
results in activity recognition [28,54]. These new features were computed to obtain an extended
sensor representation.

First, we computed the performance of the extended representation when used as baseline
features within one-second windows [t+, t−] = [0, 1], which can be compared with Table 3 to see
how the results correspond with the non-extended features. Second, we evaluated the impact of
applying the fuzzy spatial-temporal methodology to the extended features with the configurations
for FTW [t+, t−] = [8, 13] and [t+, t−] = [3, 5], which can be compared with Table 5 to see how the
results correspond with the non-extended features. The results with the performance of the extended
representation are shown in Table 6.

Table 6. Results with extended baseline features: precision (Pre), recall (Rec) and F1-score (F1-sc).

[t+, t−] = [0, 1] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 84.44 77.08 80.59 77.08 77.08 77.08 80.64 56.25 66.27
Toilet 78.57 62.26 69.47 67.85 79.24 73.11 93.02 86.79 89.79
Cooking 76.04 84.53 80.06 68.57 69.07 68.82 55.20 82.47 66.13
Eating 85.22 95.09 89.88 81.81 93.25 87.16 85.71 77.30 81.29
Watching TV 94.73 94.44 94.59 85.71 94.44 89.86 97.14 94.44 95.77
Phone 100 91.30 95.45 100 93.47 96.62 78.18 93.47 85.14
Dressing 92.10 100 95.89 86.58 100 92.81 86.41 100 92.71
Brushing Teeth 88.63 74.54 80.98 69.64 78.18 73.66 66.67 47.27 55.31
Drinking 74.19 76.47 75.31 61.22 94.11 74.18 43.28 91.17 58.70
Enter/Exit 84.61 88.23 86.38 84.21 94.11 88.88 80.00 94.11 86.48
Average 85.85 84.39 84.86 78.27 87.29 82.22 76.62 82.33 77.76
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Table 6. Cont.

[t+, t−] = [5, 3] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 86.66 87.50 87.08 82.69 91.66 86.94 76.74 68.75 72.52
Toilet 83.78 58.49 68.88 93.61 83.01 88.00 80.48 62.26 70.21
Cooking 88.37 86.59 87.47 91.02 82.47 86.53 57.30 65.97 61.33
Eating 95.27 90.79 92.98 88.63 95.09 91.75 85.57 61.96 71.88
Watching TV 85.00 94.44 89.47 85.71 97.22 91.10 82.85 86.11 84.45
Phone 97.72 93.47 95.55 93.75 95.65 94.69 100 100 100
Dressing 94.20 98.55 96.32 85.18 98.55 91.38 94.24 94.20 93.30
Brushing Teeth 91.48 90.90 91.19 86.67 87.27 87.97 87.17 69.09 77.08
Drinking 85.71 94.11 89.71 86.48 97.05 91.46 55.31 91.17 68.85
Enter/Exit 95.00 100 97.43 79.16 100 88.37 100 100 100
Average 90.32 89.48 89.90 87.49 92.80 90.07 81.78 79.95 80.86

[t+, t−] = [15, 8] SVM kNN C4.5

Activity Pre Acc F1-sc Pre Acc F1-sc Pre Acc F1-sc

Sleep 84.61 68.75 75.86 88.67 95.83 92.11 64.00 66.66 65.30
Toilet 92.50 71.69 80.78 90.69 75.47 82.38 84.44 77.35 80.74
Cooking 95.45 89.69 92.48 95.23 86.59 90.71 49.07 56.70 52.71
Eating 96.07 90.18 93.03 89.28 92.02 90.63 71.83 37.42 49.20
Watching TV 94.44 94.44 94.44 86.04 100 92.49 100 44.44 61.53
Phone 100 93.47 96.62 90.38 100 94.94 100 100 100
Dressing 94.52 97.10 95.79 89.85 92.75 91.28 95.23 62.31 75.33
Brushing Teeth 89.74 63.63 74.46 92.45 90.90 91.67 73.80 56.36 63.91
Drinking 97.05 100 98.50 81.17 100 93.15 76.19 94.11 84.21
Enter/Exit 100 100 100 82.60 100 90.47 100 82.35 90.32
Average 94.44 86.89 90.51 89.24 93.35 91.25 81.45 67.74 73.98

3.5. Impact on Selection by Type of Sensor

In this section, we evaluate the impact of selecting a subset of the sensors of the case study
on activity recognition. For this, we started with the best configuration, which utilized fuzzy
spatial-temporal extended features with FTW [t+, t−] = [8, 13]. From this configuration, we evaluated
four subsets of sensors by type:

• (S1) removing binary (using inertial and location) sensors.
• (S2) removing location (using binary and inertial) sensors.
• (S3) removing inertial (using binary and location) sensors.
• (S4) removing binary and location (using only inertial) sensors.

In Table 7, we show the results of selecting the four subsets of sensors by type.

Table 7. S1: Non Binary (inertial + location) sensors. S2: non-location (binary + inertial), S3: non-inertial
(binary + location), S4: only inertial.

[t+, t−] = [8, 13] S1 S2

Activity Pre Acc F1-sc Pre Acc F1-sc

Sleep 91.30 89.58 90.43 85.71 91.66 88.59
Toilet 76.47 66.03 70.98 90.90 77.35 83.58
Cooking 92.68 82.47 87.28 93.75 80.41 86.57
Eating 91.19 90.79 90.99 90.06 92.63 91.33
Watching TV 92.30 97.22 94.70 83.33 97.22 89.74
Phone 90.19 97.82 93.85 87.03 100 93.06
Dressing 71.01 79.71 75.11 88.00 97.10 92.32
Brushing Teeth 92.59 90.90 91.74 91.11 81.81 86.21
Drinking 72.34 100 83.95 84.61 100 91.66
Enter/Exit 73.07 100 84.44 82.60 100 90.47
Average 84.34 89.45 86.82 87.71 91.82 89.72
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Table 7. Cont.

[t+, t−] = [8, 13] S3 S4

Activity Pre Acc F1-sc Pre Acc F1-sc

Sleep 79.62 85.41 82.42 66.12 89.58 76.08
Toilet 76.92 75.47 76.19 47.54 60.37 53.19
Cooking 97.77 94.84 96.28 66.66 61.85 64.17
Eating 87.57 93.86 90.60 91.91 82.20 86.78
Watching TV 82.22 97.22 89.09 50.00 52.77 51.35
Phone 96.00 95.65 95.82 87.50 91.30 89.36
Dressing 88.31 97.10 92.49 38.59 39.13 38.86
Brushing Teeth 70.00 85.45 76.95 95.45 78.18 85.95
Drinking 100 97.05 98.50 49.18 97.05 65.28
Enter/Exit 90.47 100 94.99 81.25 82.35 81.79
Average 86.89 92.20 89.47 67.42 73.48 70.32

3.6. Discussion

Based on the results shown in the case study, we defend that the use of fuzzy logic to extract
spatial-temporal features from heterogeneous sensors constitutes a suitable model for representation
and learning purposes in AR. First, spatial representation based on fuzzy scales increased performance
regarding crisp-raw values. Second, the impact of including multiple fuzzy temporal windows as
features, which enables middle- and short-term representation of sensor data, brought about a relevant
increase in performance. Moreover, two configurations of FTWs were evaluated showing similar
results, suggesting that window size definition is not critical in modeling FTW parameters, unlike with
crisp windows and baseline features. Third, fuzzy spatial-temporal features showed encouraging
performance from raw sensor data; however, we evaluated an advanced representation for inertial
sensors and binary sensors. The use of extended features increased performance slightly by around
1–2%. Fourth, we evaluated the impact of removing some types of sensors in the deployment of the
smart lab. The combination of all types of sensors provided the best configuration, and we note: (i) the
use of inertial sensors and smart objects only by the inhabitant reduced performance notably; (ii) the
combination of binary sensors with location or inertial sensors was closer to the best approach, which
featured all of them.

Finally, it is noteworthy that kNN showed encouraging results, together with SVM. The shorter
learning time and the high f1-sc of kNN in AR suggest that it is the best option as a classifier to be
integrated in learning AR within miniature boards. Decision trees had lower performance due to poor
capabilities in analyzing continuous data.

4. Conclusions and Ongoing Works

The aim of this work was to describe and fuse the information from heterogeneous sensors in an
efficient and lightweight manner in order to enable IoT devices to compute spatial-temporal features
in AR, which can be deployed in fog computing architectures.

On the one hand, a case study with a combination of location, inertial, and binary sensors
was performed in a smart lab where an inhabitant carried out 10 daily activities. We included the
integration of inertial sensors in daily objects and high-precision location sensors as novel aspects
using middleware based on MQTT.

On the other hand, we showed the capabilities of fuzzy scales and fuzzy temporal windows to
increase the spatial-temporal representation of sensors. We highlighted that the results showed stable
performance with fuzzy temporal windows, which helped with the window size selection problem.
On spatial features, we applied the same general method based on linguistic scales to fuse and describe
heterogeneous sensors. We evaluated the impact of removing the sensors by type (binary, location, and
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inertial), which provided relevant feedback on which ones performed better for activity recognition in
a smart lab setting.

Finally, we note the high representativeness of fuzzy logic in describing features, which was made
the most of by the use of straightforward and efficient classifiers, among which the performance of
kNN stood out.
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FTW Fuzzy Temporal Window

Appendix A. Linguistic Scale of Fuzzy Terms by Means of Triangular Membership Functions

A linguistic scale for a given environmental sensor si is defined by: (i) interval values [L1, . . . Lg]

and (ii) granularity g. Each term Ai
l, l ∈ [1, g] is characterized by using a triangular membership function

µĀi
l
(x) [55], which is defined by the interval values Li−1, Li, Li+1 as µĀi

l
(x) = TRS(x)[Li−1, Li, Li+1], where:

TRS(x)[li−1, li, li+1] =


0 x ≤ li−1

(x− li−1)/(li − li−1) li−1 < x < li
(li+1 − x)/(li+1 − li) li < x < li+1

0 li+1 ≤ x

(A1)

Appendix B. Aggregating Fuzzy Temporal Windows and Terms

For a given fuzzy term Vr and a fuzzy temporal window Tk defined over a sensor stream Si = {vi
t},

we define the aggregation Vr ∪ Tk in a given current time t∗ as:

Vr ∩ Tk(vi
t, t∗) = Vr(vi

t) ∩ Tk(∆t∗), ∆t∗ = t∗ − t ∈ [0, 1]

Vi
r ∪ Ti

k(t
∗) = Vi

r ∪ Ti
k(S

i, t∗) =
⋃

v̄i
t∈Si

Vr ∩ Tk(vi
t, t∗) ∈ [0, 1] (A2)

Using max-min [35] as an operation to model the t-norm and co-norm, we obtain:

Vi
r ∪ Ti

k(t
∗) == max

t∈Si
(min(Vr(vi

t), Tk(∆t))) ∈ [0, 1] (A3)

Appendix C. Representation of Fuzzy Temporal Windows using Trapezoidal
Membership Functions

Each TFW Tk is described by a trapezoidal function based on the time interval from a previous
time tj to the current time t∗: Tk(∆tj)[l1, l2, l3, l4] and a fuzzy set characterized by a membership
function whose shape corresponds to a trapezoidal function. The well-known trapezoidal membership
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functions are defined by a lower limit l1, an upper limit l4, a lower support limit l2, and an upper
support limit l3 (refer to Equation (A4)):

TS(x)[l1, l2, l3, l4] =



0 x ≤ l1
(x− l1)/(l2 − l1) l1 < x < l2
1 l2 ≤ x ≤ l3
(l4 − x)/(l4 − l3) l3 < x < l4
0 l4 ≤ x

(A4)
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