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Abstract: It is very important to analyze and monitor agricultural drought to obtain high
temporal-spatial resolution soil moisture products. To overcome the deficiencies of passive microwave
soil moisture products with low resolution, we construct a spatial fusion downscaling model (SFDM)
using Moderate Resolution Imaging Spectroradiometer (MODIS) data. To eliminate the inconsistencies
in soil depth and time among different microwave soil moisture products (Advanced Microwave
Scanning Radiometer on the Earth Observing System (AMSR-E) and its successor (AMSR2) and the
Soil Moisture Ocean Salinity (SMOS)), a time series reconstruction of the difference decomposition
(TSRDD) method is developed to create long-term multisensor soil moisture datasets. Overall,
the downscaled soil moisture (SM) products were consistent with the in situ measurements (R > 0.78)
and exhibited a low root mean square error (RMSE < 0.10 m3/m3), which indicates good accuracy
throughout the time series. The downscaled SM data at a 1-km spatial resolution were used to
analyze the spatiotemporal patterns and monitor abnormal conditions in the soil water content
across North East China (NEC) between 2002 and 2018. The results showed that droughts frequently
appeared in western North East China and southwest of the Greater Khingan Range, while drought
centers appeared in central North East China. Waterlogging commonly appeared in low-terrain areas,
such as the Songnen Plain. Seasonal precipitation and temperature exhibited distinct interdecadal
characteristics that were closely related to the occurrence of extreme climatic events. Abnormal SM
levels were often accompanied by large meteorological and natural disasters (e.g., the droughts of
2008, 2015, and 2018 and the flooding events of 2003 and 2013). The spatial distribution of drought in
this region during the growing season shows that the drought-affected area is larger in the west than
in the east and that the semiarid boundary extends eastward and southward.

Keywords: soil moisture; passive microwave; downscaled; anomaly analysis

1. Introduction

Soil moisture (SM) is the primary indicator of climate change and has been defined as an
essential climate variable by the Global Climate Observing Systems [1]. SM has been widely used to
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elucidate the water and energy cycles [2], predict meteorological conditions [3], monitor drought or
flood disasters [4], and provide insights for water resource and agricultural irrigation management
programs [5]. Although temporal and spatial information on SM can be obtained through multiple
approaches, such as in situ measurements and remote sensing (RS) methods. However, the accuracy of
in situ measurements of SM is limited by the number of field stations around the world. Measuring SM
at a single location does not necessarily represent the conditions of the entire region, only RS can
provide real-time dynamic observations at regional to global scales [6,7]. Over the past several decades,
RS has become a practical method for deriving SM information, especially in remote countryside areas
with limited ground measurements [8]. Several approaches for retrieving SM based on RS data exist,
such as those based on visible/infrared (IR) and microwave observations [9].

Temperature/vegetation indexes for indirect SM detection based on visible/IR observations have
been developed. The vegetation condition index (VCI) developed by Kogan (1990) has been used to
describe drought conditions by comparing the current and vegetation conditions with those in the
same period in previous years [10]. The anomaly vegetation index (AVI) is more accurate than the
VCI because the AVI decreases the time lag between vegetation and precipitation measurements [11].
The temperature condition index (TCI), which was proposed by Kogan (1995), combines the VCI and
the TCI to estimate soil drought from brightness temperature values [12]. Additionally, the vegetation
supply water index (VSWI) is based on the relationship between the normalized difference vegetation
index (NDVI) and the land surface temperature (LST) [13]. Sandholt et al. (2002) utilized the NDVI-LST
triangular space and developed the temperature-vegetation dryness index (TVDI) and found that
the TVDI was significantly negatively correlated with SM [14]. Although optical sensors can reflect
the dry and wet conditions of the soil on local and basin scales, they are affected by factors such
as the atmosphere, clouds, vegetation coverage, and terrain fluctuations [15]. Microwave RS data
can estimate SM information through the stark contrast in microwave bands between the dielectric
constant of soil and water [16]. Microwave RS data can estimate SM information through the stark
contrast in microwave bands between the dielectric constant of soil and water. Microwave RS not
only is less affected by cloud coverage but also can be used to obtain high-precision SM data over
bare soil and low vegetation coverage areas [17–20]. Low-frequency microwaves can work in the
dark, providing a basis for studying the diurnal changes in SM and the resulting impacts. Since the
late 1970s, various microwave radiometers [e.g., the scanning multichannel microwave radiometer
(SMMR), the special sensor microwave/imager (SSM/I), tropical rainfall measuring mission (TRMM)
microwave imager (TMI), Sentinel-1 and the Advanced Microwave Scanning Radiometer on the
Earth Observing System (AMSR-E) and its successor (AMSR2)], which operate in the C-band (or at a
higher frequency), have been utilized to retrieve SM data [21–23]. The SMOS and soil moisture active
passive (SMAP) sensors operate in the L-band to estimate SM [16,24,25]. However, microwave SM
products with coarse spatial resolution (especially passive microwave sensors with spatial resolutions
typically less than approximately 25 km) may not have been suitable for regional-scale applications
(agriculture, etc.), which typically require SM products with fine spatial resolution (1~10 km) [26,27].
To improve the spatial resolution of SM data, several disaggregation approaches have been developed
to downscale the coarse-spatial-resolution SM data obtained from passive microwave satellites [28,29].
One downscaling method uses active microwave backscatter observations to downscale passive
microwave SM products [30,31]. The principle behind this method is based on the relationships among
the brightness temperature, backscattering coefficient and surface SM and the vegetation status to
establish a forward model, thereby determining the difference between simulated data and satellite
observations and minimizing the cost function through an iterative process [32,33]. In addition, several
studies have used the relationship between high-resolution visible/IR data and coarse-resolution
passive microwave SM data for downscaling [34–37]. The well-known universal triangle formed by the
feature space of LST over areas with heterogeneous NDVI has been confirmed as a feasible approach
for downscaling SM data [38]. Ray et al. (2010) adopted a similar method to downscale 25-km AMSR-E
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SM products to a 1 km spatial resolution in Cleveland Corral, California [39]. Peng et al. (2016) also
downscaled low-resolution SM estimates using a vegetation temperature condition index (VTCI) [40].

The abovementioned studies are mostly based on a single microwave sensor that is limited to
a specific area within a restricted time, as determined by the life of the satellite sensor. Therefore,
it is very difficult to acquire accurate long-term SM data over a relatively large area at fine spatial
resolution. Here, to obtain long-term and high-resolution multisensor SM datasets, we construct a
downscaling model that directly uses MODIS LST/NDVI data as the input. A time series reconstruction
of the difference decomposition (TSRDD) method is developed to capture long-term multisensor SM
datasets to ensure the consistency of long-term sequence data at different times. The downscaled SM
results were evaluated by ground measurements. Furthermore, we analyzed the monthly daytime and
nighttime 1-km SM anomalies from 2002 to 2018 in North East China based on the downscaled products.

2. Materials and Methods

2.1. Study Area

North East China (38◦42′N~53◦34′N, 117◦16′E~135◦21′E) is located in the high-latitude region of
eastern Eurasia, spanning four provinces, including Heilongjiang, Jilin, Liaoning and the northeastern
part of Inner Mongolia (Figure 1), and covers an area of 16.13× 105 km2. North East China belongs to the
moderate-temperature and cold-temperate monsoon climate zones, with a mean annual temperature
ranging from approximately −4 to 11 ◦C. The mean annual rainfall decreases from the southeast
(1000 mm) to the northwest (300 mm), spanning from the wet zone to the semihumid and semiarid
zones [41]. All of these annual averages were derived from weather stations in the study area in
2016. The soil types in North East China are dominated by high-fertility black soil (the average
organic content is between approximately 3% and 10%). The vegetation types include cold-temperate
coniferous forests distributed in the northern part of the Greater Xing’an Mountains, coniferous
and broad-leaved mixed forests in the eastern mountains, and temperate forests and grasslands in
the central plains. The main land cover types in the region are forestland, dryland, paddy fields,
and grassland, accounting for 41.50%, 27.78%, 3.62%, and 18.53% of the total area, respectively [42].
The study area is centered on the Songnen Plain, and a horseshoe-shaped landform pattern is formed in
the east, north, and west. The northern part of the Greater Xing’an Mountains in the northwest includes
a series of mountain ranges: Xiaoxing’anling in the north, Daheishan in the middle, Hadaling in Jilin
Province, and Zhangguangcailing, Laoyeling, Wandashan, and Changbai in the south. Typical dry-wet
differentiation, a unique vegetation distribution, and relatively complete natural geographic regions,
combined with seasonal interdecadal features of seasonal precipitation and temperature, are closely
related to the occurrence of extreme weather events (such as droughts and floods); thus, North East
China has become a hot spot for global climate change and ecological geography research [43].
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Figure 1. The location and topography of the study area and 262 ground meteorological sites in the
study area where data were collected.

2.2. Datasets

2.2.1. LST and NDVI

We used the LST and NDVI RS products retrieved from MODIS, which is onboard the Aqua satellite;
these products have been widely used to monitor surface, oceanic, and atmospheric conditions [44,45].
Aqua passes over North East China at approximately 01:30 a.m. (descending) and 01:30 p.m. (ascending).
In this study, the MODIS products were obtained from National Aeronautics and Space Administration’s
(NASA’s) Earth Observing System Data and Information System. The 1-km, 8-day composite LST
(day/night) product MYD11A2 and the 1-km 16-day composite NDVI product MYD13A3 were used as
inputs in the TVDI model.

2.2.2. Soil Moisture (SM)

The soil moisture data (humidity unit: m3/m3) were mainly derived from the Level-3 products
of AMSR-E, SMOS, and AMSR2, with resolutions of 25, 25, and 10 km, respectively. The AMSR-E
sensor is mounted on the Aqua satellite, and its orbital parameters are consistent with those of MODIS.
Hence, the AMSR-E Level 3 products were included in the analysis for both day (01:30 p.m.) and
night (01:30 a.m.) overpasses. The time span was from July 2002 to September 2011, and the data were
provided by the Japan Aerospace Exploration Agency (JAXA, http://global.jaxa.jp/projects/sat/gcom_w/

index.html). The AMSR-E SM products were retrieved using the vertically and horizontally polarized
brightness temperature (Tb) from the C-band (7.3 GHz) and the X-band (10.7 GHz). The AMSR2
instrument is onboard the Global Change Observation Mission–Water 1 (GCOM-W1) satellite, which

http://global.jaxa.jp/projects/sat/gcom_w/index.html
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was launched by JAXA in May 2012 and measures C-band and X-band emissions with overpass times
of 01:30 a.m. and 01:30 p.m. [46]. As a successor to AMSR-E, AMSR2 provides near-real-time passive
microwave observations [47]. The AMSR2 Level 3 SM data were provided by JAXA’s GCOM website
(http://suzaku.eorc.jaxa.jp/).

The European Space Agency’s (ESA’s) SMOS mission, which was launched in 2009 as part of the
Living Planet Programme, was used to study the L-band (1.4 GHz) emissions. The transit times of the
ascending and descending orbits are at approximately 06:00 a.m. and 06:00 p.m., respectively, in local
time (~3 days), and the study period spanned from October 2011 to June 2012. While the original
resolution of the SMOS SM data is 35 to 55 km, the Level 3 products were provided on the Equal Area
Scalable Earth (EASE) grid, with a 25-km sampling interval [48]. The data were acquired from ESA’s
official website (https://earth.esa.int/). The monthly 25-km resolution SMOS Level-3 product integrates
the averages of daytime and nighttime data but does not include individual values for day and night.
To make the products consistent, the AMSR-E, AMSR2, and SMOS products were corrected with the
time series reconstruction method.

2.2.3. Meteorological Data

In situ SM records were collected from 24-h field stations in North East China from the Soil
Moisture on the Growth and Development of Crops in China dataset (http://data.cma.cn/site/index.html,
last access: 28 February 2019) provided by the China Meteorological Science Data Service Network
(CMSDSN). The in situ SM data were compared with the results of the downscaled SM calculation,
and weather anomalies and nonrepresentative data were excluded (Figure 1). Ground SM data were
measured at approximately 1:30 p.m. and 1:30 a.m. (local solar time), corresponding to the satellite
overpass time. These data were used and compared with the corresponding downscaled daytime and
nighttime SM data. The ground-based SM measurements were matched with the grid points of the
downscaled SM data using the nearest neighbor approach. In this study, the verification work was
carried out on a monthly scale, so the monthly ground station aggregate data were averaged from the
daily meteorological site data that were selected.

3. Methods

A summary of the downscaling method is shown in Figure 2, and additional details are described
in the following sections.
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3.1. Calculation of the TVDI

Theoretically, the temperature will decrease by 6 ◦C for every 1-km increase in elevation [49],
and the elevation difference between the highest and lowest areas in North East China is greater than
2 km. Therefore, we need to correct the MODIS surface temperature products to reduce the impact of
elevation on the surface temperature inversion before calculating the TVDI:

Tm = Ts + a * h (1)

where Tm is the LST after topographic correction, Ts is the surface temperature before topographic
correction, and h is the elevation value at the LST pixel. The temperature variables are in ◦C. The variable
a is the average influence coefficient of elevation on the LST inversion process (the common value is
6 ◦C/km).

In practice, due to weather conditions, there are some missing deviations in some time series
data; to compensate for data errors caused by weather conditions, a Savitzky-Golay (S-G) filter timing
reconstruction method is applied in this study to improve the quality of the data. The formula for
processing the data via S-G filtering is as follows:

Y∗j =
i=m∑

i=−m

CiY j+1

N
(2)

where Yj
* is the filtered reconstructed data, Yj+1 is the original time series data, m is the size of the

moving filter window, Ci is the fitting coefficient of the S-G filter polynomial, that is, the i-th weight
index starting from the filter header of each value, and N is the length of the filter processing data.

The TVDI values were calculated as follows [47]:

TVDI = Tm − Tsmin/(Tsmax − Tsmin) (3)

where TVDI is the temperature-vegetation dryness index, Tm represents the LST after topographic
correction, Tsmax is the highest surface temperature on the dry edge corresponding to the NDVI,
and Tsmin is the lowest surface temperature on the wet edge corresponding to the NDVI. We can
calculate Tsmax and Tsmin as follows:

Tsmax = a1 + b1 * NDVI (4)

Tsmin = a2 + b2 * NDVI (5)

where a1 and b1 represent the slope and intercept on the “dry edge”, respectively, and a2 and b2
represent the slope and intercept on the “wet edge”, respectively. NDVI is the normalized difference
vegetation index in the study time series (from 2002 to 2018).

3.2. Time Series Reconstruction of Difference Decomposition (TSRDD) Method

The SMOS Level 3 products used in this study are monthly averages of the daytime and nighttime
values, and the SMOS and AMSR series satellites have different descending and ascending times.
To ensure data consistency and integrity, the time series reconstruction with difference decomposition
(TSRDD) method is developed according to the time series principles to capture long-term daytime
and nighttime SM series datasets at different times. The TSRDD method includes a consistency
correction and generates the daytime and nighttime data from the SMOS series data, thereby obtaining
a long-term, high-precision SM dataset that ensures consistency among the multisensor SM data at
different times.

Ẑ(x, j) day = Ẑ(x, j)average + ∆Fj (6)

Ẑ(x, j) night = Ẑ(x, j)average − ∆Fj (7)
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∆F j =

∑w
2
i=1

(
Fday i − Fnight i

)
+

∑w
i=1+w

2

(
Fday i − Fnight i

)
w− 1

(8)

where Ẑ(x,j)day is the reconstructed daytime SM in month j of year x and Ẑ(x,j)night is the reconstructed
nighttime SM in month j of year x. ∆F j represents the difference between daytime and nighttime
(day minus night) in month j. Ẑ(x, j)average is the average value in month j of year x, and w is the
selected year window size.

3.3. Spatial Fusion Downscaling Model (SFDM) of SM

The TVDI is significantly negatively correlated with SM, as shown in previous studies [14].
According to this correlation, the high-resolution TVDI is used to perform the pixel-by-pixel weighting
of low-resolution SM data. Then, the weight is used to divide the low spatial resolution SM product
into high-spatial-resolution SM products, and the downscaling relationship is as follows:

SMi = SMk ×
1− TVDIi

1− TVDIaverage
(9)

where SMi is the SM value for a pixel after downscaling and SMk represents the low-resolution SM
data input. TVDIi is the TVDI value for a pixel that corresponds to the downscaled SM. TVDIaverage is
the average of all the TVDI values corresponding to the SMk pixels.

3.4. The Calculation of the Trend of the Variation in SM

To analyze the change (increase or decrease) in the spatial pattern and the amplitude of the SM
from 2002 to 2018, the variation rates and correlation coefficient were calculated based on the SM
values of the pixels over the study area as follows:

Slope =
n
∑n

i=1(i× pi) ×
(∑n

i=1 i
)
×

(∑n
i=1 pi

)
(
n×

∑n
i i2

)
−

(∑n
i=1 i

)2 (10)

R =
n
∑n

i=1(i× pi) −
(∑n

i=1 i
)
×

(∑n
i=1 pi

)
√(

n
∑n

i i2
)
−

(∑n
i=1 i

)2
×

√(
n
∑n

i pi2
)
−

(∑n
i=1 pi

)2
(11)

where Slope is the trend in the SM during the study time series, i represents the number of years,
n represents the number of time series, and pi represents the SM value of the i-th year. If Slope is
positive, then the SM has increased from the previous time point. If Slope is negative, then the SM has
decreased from the previous time point. If Slope = 0, then there is no change from the previous time
point. R is the correlation coefficient between the change in the SM and the time in the time series.
The larger the absolute value of R is, the stronger the correlation.

3.5. Soil Moisture Anomaly (SMA) Index

The soil moisture anomaly (SMA) index is used to describe dramatic changes in the SM in the
study region (too low or too high), and the SMA index can be derived from the following formula [27]:

SMAi(x, y) = (SMi(x, y) − SMmin(x, y))/(SMmax(x, y) − SMmin(x, y)) × 100% (12)

where SMAi(x, y) is the SMA index of pixel (x, y) at time i, SMi(x, y) is the SM value of pixel (x, y) at
time i, SMmax(x, y) is the maximum SM value of pixel (x, y) during the study period, SMmin(x, y) is the
maximum SM value of pixel (x, y) during the study period, and SMaverage(x, y) is the average SM value
of pixel (x, y) during the study period.
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3.6. Drought and Flood Degree

To characterize the spatiotemporal distribution of drought and waterlogging over the 198 months
from 2002 to 2018 (excluding January to June 2002), the SMA index was divided into seven grades based
on the literature concerning drought and waterlogging classification standards: slight waterlogging
(SLW), moderate waterlogging (MOW), normal (no disasters), severe waterlogging (SEW), slight
drought (SLD), moderate drought (MOD), and severe drought (SED), as shown in Table 1.

Table 1. Definitions of disaster levels.

Disaster Type SMA Values Description

Slight waterlogging 90%–100% The soil is very damp/extremely wet, and the color is dark

Moderate waterlogging 80%–90% The soil is damp and brown, and there is water in
low-lying places

Severe waterlogging 70%–80% The soil is moist, and the color is brown
Normal 40%–70% The soil moisture is within the normal range

Slight drought 30%–40% Less soil moisture, and there is a risk for drought
Moderate drought 20%–30% The soil is semidry

Severe drought 10%–20% The soil is dry, and drought will occur

4. Results

4.1. Verification

4.1.1. TSRDD Verification

To ensure the consistency of the data between different sensors and obtain the SMOS daytime and
nighttime data, the most suitable timing window is selected. The SM value is normally distributed in the
study area, which satisfies the basic conditions for the correlation analysis between the simulated, corrected,
and original values. The relationship between the corrected variables and explanatory variables (original
value) varies significantly for different window sizes (w). The regression coefficients (root mean squared
error (RMSE), mean absolute error (MAE), and R2) of the TSRDD are presented in Table 2.

Table 2. The mean RMSE, MAE, and R2 values between the corrected values of variable z and
explanatory variables (original value) in the time series reconstruction of the difference decomposition
(TSRDD) for different window sizes.

Day Night

w 1 RMSE (m3/m3) MAE (m3/m3) R2 RMSE (m3/m3) MAE (m3/m3) R2

3 2.13 1.51 0.92 2.07 1.56 0.95
5 2.11 1.46 0.96 2.12 1.54 0.95
7 2.10 1.54 0.96 2.14 1.62 0.96
9 2.15 1.54 0.92 2.05 1.51 0.96
11 2.16 1.61 0.95 2.12 1.53 0.96
13 2.25 1.61 0.94 2.14 1.59 0.91
15 2.16 1.49 0.96 2.12 1.54 0.95
17 2.25 1.56 0.96 2.07 1.56 0.95
Average 2.16 1.54 0.95 2.10 1.56 0.95

1 W is the window size for the selected year from formula (8).

For daytime, the indexes are best matched when w is 5: the RMSE (m3/m3), MAE (m3/m3), and R2

are 2.11, 1.46, and 0.96, respectively. For nighttime, the indexes are best matched when w is 3: the RMSE
(m3/m3), MAE (m3/m3), and R2 are 2.07, 1.56, and 0.95, respectively. Therefore, these two windows are
used to decompose the SM data from the SMOS daytime and nighttime data.



Sensors 2019, 19, 3527 9 of 18

4.1.2. Downscaled SM Verification

To quantitatively evaluate the performance of daytime and nighttime downscaling, considering
the effects of weather factors, we compared the downscaled passive microwave SM values (at the 1-km
scale) with meteorological in situ SM observations scattered throughout the North East China area for
daytime and nighttime, and the R2, RMSE, and bias values were used for the comparison. The results
showed that the downscaled and in situ observed SM were strongly correlated, with mean R2 values of
0.61 and 0.73 for daytime and nighttime, respectively (Figure 3). The mean RMSE and bias values were
0.10 m3/m3 and 0.07 m3/m3 for daytime and 0.12 m3/m3 and 0.06 m3/m3 for nighttime, respectively.
The results indicated a significantly high correlation between the downscaled passive microwave and
in situ measured SM data during the daytime (Figure 3a) and nighttime (Figure 3b).
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Figures 3 and 4 display the accuracy analysis and show significant spatiotemporal differences between
day and night. First, the R2 values of the nighttime observations were slightly higher than those of the
daytime observations. Second, the points were more aggregated at night than during the day. One possible
reason for the increased nighttime accuracy may be the difference in the time lag between the downscaled
SM and in situ observations. Similar results were reported for LST and measured temperature [50].
The accuracy analysis also presented a certain spatial differentiation: The RMSE was high along rivers and
coasts, as well as in some mountainous areas (>0.3), in the daytime, and the RMSE was low (<0.1) in the
plain regions. Moreover, the spatial differentiation characteristics at night were less obvious than those
during the day (except for several stations along the boundary).

4.2. Spatiotemporal Variation in the SM

The downscaled SM showed significant spatiotemporal variations spanning different seasons and
regions. We aggregated the downscaled SM by month for four regions in North East China (Figure 5).
The mean monthly daytime SM in the four regions ranged from approximately 0.03 m3/m3 (February in
Heilongjiang) to 0.16 m3/m3 (June in Heilongjiang). Similarly, the mean monthly nighttime SM ranged
from 0.03 m3/m3 (February in Heilongjiang) to 0.20 m3/m3 (June in Heilongjiang). The downscaled
SM also showed significant temporal patterns. First, there were apparent seasonal variations in the
SM values, with high values in summer and low values in winter (Figure 5). There was an east-west
distribution pattern, and in the eastern region, there was a valley in July (summer). One possible
reason for the “bimodal” distribution in the eastern region could be that the distance between land and
sea and the sinking airflow from the Greater Xing’an Mountains reduced precipitation in the coastal
areas in July.
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Figure 5. Mean monthly daytime and nighttime downscaled SM from January to December in various
parts of North East China (NEC). 1: Liaoning, 2: Jilin, 3: Heilongjiang, 4: northeastern Inner Mongolia.

To obtain the spatiotemporal rate of change in the downscaled SM in North East China in detail,
formulas (9) and (10) were utilized to calculate the monthly changes using every pixel from 2002 to 2018
(Figures 6 and 7 represent the Slope values for daytime and nighttime, respectively; Figures 8 and 9
represent the R values for daytime and nighttime, respectively). As shown in Figure 6, the SM in
the North East China region significantly increased over the past 17 years, with obvious monthly
differences. The SM distribution in North East China was more stable at night than during the day.
The most significant changes in SM during the day occurred in spring (April) and autumn (October),
and the two trends were consistent. This “correspondence phenomenon” is thought to be related
to the interaction between vegetation and climate (this trend is present during both the day and
night). The SM variation in North East China exhibited obvious seasonality. In spring (March, April,
and May), the southwestern region (particularly in the Inner Mongolia area) suffered from the highest
increasing trend, with an increasing Slope of more than 0.3 (R > 0.20) that extended over 35.7% of
the Xiaoxing’anling area. The increase was also greater than 0.3 (R > 0.25) in the Songnen Plain and
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the Sanjiang Plain in April (in the daytime). The variation in summer (June, July and August) was
relatively uniform, and the Slope value of the change was within 0.2 (in the daytime and nighttime).
Almost everywhere across North East China, except for a few mountain areas, the Slope value decreased,
including in the southern Greater Xing’an Mountains (less than −0.2), while the Slope value south
of Xiaoxing’anling increased (greater than 0.2), and the Slope was slightly higher in summer than in
other seasons. There were dramatic changes in the spatial patterns of the SM values during autumn
(September, October, and November). The SM values increased in the northwest (Slope > 0.20, R >

0.20) and decreased in the southeast (Slope < −0.20, R < −0.10). In winter (November, December,
and January), the southern region centered at the Horqin Sandy Land exhibited an increase in Slope
(>0.4), and the opposite was observed in summer (May: Slope < −0.3).
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Overall, the consistencies of the daytime and nighttime changes in autumn and winter were
better than those in spring and summer, and the consistency in the western region (northeastern Inner
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Mongolia) was better than that in the eastern region (Liaoning, Jilin, Heilongjiang). One possible
reason for this phenomenon is that the vegetation density is high and complex in the east, the river
network is dense, and the soil evapotranspiration changes greatly between day and night, so there will
be large differences between daytime and nighttime.

4.3. Spatiotemporal Variations in SMA

Although the monthly variations in Slope and the correlation coefficient R show the spatial
trends of SM (Figures 6–9), some annual abnormalities need to be further analyzed. As shown in
Figures 10 and 11, the SMAs are mapped to investigate the spatial distribution of soil water anomalies
during the daytime and nighttime over 17 years. The large-scale severe drought phase mainly occurred
in three periods, 2008, 2015, and 2018. In 2008, a large-scale rain and snow disaster occurred in
southern China, and the Wenchuan earthquake caused intense crustal movement. According to the
SMA analysis, SLD conditions were mainly concentrated in the northern part of Inner Mongolia and
the Hulunbeier Plateau in the west of Heilongjiang (daytime), and the area with SED conditions
accounted for more than 80% of the total study area (average of daytime and nighttime). In this survey,
the area with SED conditions accounted for 75% in 2015, that is, more than 3/4 of the total drought and
drought risk area. In 2015, a large-scale drought occurred in the northeastern region. The drought in
2018 was consistent with the agricultural drought in the spring and summer (daytime and nighttime
means). The large-scale and severe waterlogging phases mainly occurred in two periods, 2003 and
2014. The waterlogging situation in 2003 did not exhibit a wide spatial distribution, but it still caused
abnormal changes within Bohai Bay (the affected area exceeded 4.82 × 104 km2). The SMA value of
some regions increased in 2014, such as the Changbai Mountain area, but the flood trends became more
obvious. Combined with a large amount of snowfall in the winter of 2013, there were some impacts on
the accuracy of SM extraction in this area. Additionally, the daytime SMA exhibited increased variation,
especially in the mountain areas, and this variation was greater than that in the nighttime SMA areas.
The radiation is greater and active vegetation evapotranspiration and soil water evaporation are higher
during the day than at night; however, these values also exhibit greater changes during the day than
at night.

Snow (ice) coverage and low temperatures are mutually influential processes in winter.
Snow accumulation leads to an increase in surface reflectivity, which reduces the radiant energy
absorbed by the surface and decreases the temperature. The decreased temperature will reduce the
speed of snow melting. Therefore, the large amount of snowfall in winter in recent years can be
considered one of the main causes of spring disasters in North East China. Second, the increase in
the amount of spring rainfall further increases the severity of spring floods, resulting in increased
SM on the surface, the formation of stagnant water in low-lying areas, and delays in spring plowing
(especially in the Songnen Plain). Other studies have shown that Mongolia’s high-pressure systems
and subtropical high-pressure belts, the main wind circulation of the westerly belt and the southwest
water vapor transmission rate have all been weakened. We have greatly improved the spatiotemporal
monitoring of SM, and the trends and disaster distributions based on the downscaled SM could provide
references for the creation of climate change policies and monitoring of extreme weather.
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5. Discussion and Conclusions

In this paper, an SFDM is constructed using passive microwave SM data and MODIS LST/NDVI
data, and a time series reconstruction with the TSRDD method is used to ensure the continuity
and consistency of long-term SM data sequences. By comparing the relative precision of different
time series windows, the optimal window is selected to decompose the SM data with coarse spatial
resolution into a high-resolution, continuous, monthly daytime and nighttime SM dataset (spanning
2002~2018, ~1 km). The in situ validation analysis resulted in R2 values of 0.61 and 0.73 for daytime
and nighttime, respectively, and the average RMSE and bias values were 0.10 m3/m3 and 0.07 m3/m3

for daytime and 0.12 m3/m3 and 0.06 m3/m3 for nighttime, respectively. These results demonstrated
that the method for downscaling the SM to 1-km resolution could reliably capture the variability in the
daytime and nighttime soil water contents in North East China. We calculated the spatiotemporal
distribution of the SM trends and statistically investigated the characteristics and patterns of droughts
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and floods in various regions of North East China with the SMA index. In the next step of this study,
the response relationship between global meteorological phenomena and local disasters need to further
quantitatively explored.
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