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Abstract: Electronic nose (E-nose), a kind of instrument which combines with the gas sensor and
the corresponding pattern recognition algorithm, is used to detect the type and concentration of
gases. However, the sensor drift will occur in realistic application scenario of E-nose, which makes a
variation of data distribution in feature space and causes a decrease in prediction accuracy. Therefore,
studies on the drift compensation algorithms are receiving increasing attention in the field of the
E-nose. In this paper, a novel method, namely Wasserstein Distance Learned Feature Representations
(WDLFR), is put forward for drift compensation, which is based on the domain invariant feature
representation learning. It regards a neural network as a domain discriminator to measure the
empirical Wasserstein distance between the source domain (data without drift) and target domain
(drift data). The WDLFR minimizes Wasserstein distance by optimizing the feature extractor in
an adversarial manner. The Wasserstein distance for domain adaption has good gradient and
generalization bound. Finally, the experiments are conducted on a real dataset of E-nose from
the University of California, San Diego (UCSD). The experimental results demonstrate that the
effectiveness of the proposed method outperforms all compared drift compensation methods, and the
WDLFR succeeds in significantly reducing the sensor drift.
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1. Introduction

Electronic nose (E-nose) is known as machine olfaction, consisting of the gas sensor array and
corresponding pattern recognition algorithms, and is used to identify gases. Zhang et al. [1] and
Wang et al. [2] used E-nose for air quality monitoring. Yan et al. [3] utilized E-nose to analysis disease.
Rusinek et al. [4] used it for quality control of food. An increasing number of E-nose systems are being
developed into actual applications because the E-nose systems are convenient to use, fast, and cheap.
However, the sensor drift of E-nose still is a serious problem which decreases the performance of
E-nose system and is receiving more and more attention. For most chemical sensors, sensor sensitivity
may be influenced by many factors, such as environmental factors (temperature, humidity, pressure),
self-aging and poisoning, etc. The change of sensor sensitivity will result in the fluctuation of sensor
responses when the E-nose exposed to the same gas in different time, which is called the sensor drift [5].
In this paper, we mainly focus on the drift compensation of the sensor.

A number of methods have been applied to cope with the sensor drift of E-nose. From the
perspective of signal preprocessing methods [6,7], frequency analysis and baseline manipulation have
been adopted to compensate each sensor response. From the perspective of component correction,
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Artursson et al. [8] proposed the principal component analysis (PCA) method to correct the entire
sensor response and suppress the sensor drift. The orthogonal signal correction (OSC) was proposed
in [9,10] for the drift compensation of the E-nose. From the angle of the classifier, Vergara et al. [5].
proposed an ensemble strategy to enhance the robustness of the classifier and address the sensor
drift. Dang et al. [11] proposed an improved support vector machine ensemble (ISVMEN) method,
which improved classification accuracies and dealt with the sensor drift. In addition, some adaptive
methods also are used to solve the problem of the sensor drift, such as the self-organizing map
(SOM) [12], domain adaption methods [13], etc.

The above methods can suppress the drift to a certain extent, but the effects of these methods
are limited due to the weak generalization of drift data. The sensor drift will make a variation of
data distributions between the collected samples previously (data without drift) and the collected
samples later (drift data). It will cause a great decrease in classification accuracies when the model
trained with the data without drift is directly applied in testing samples with the drift. Therefore, in the
sensor researches and pattern recognition communities, it is challenging to find a drift compensation
algorithm with good robustness and adaptability.

In these cases, domain adaption techniques are a proper solution to deal with the problem of
inconsistent data distributions between the source and the target domain samples. These techniques
also have broad applications in many research fields, including natural language processing, machine
vision, etc. [14–16]. In the drift compensation of the sensor, it is assumed that the data without drift is
viewed as the source domain, and the drift data is considered as the target domain. At present, some
scholars have performed domain adaption techniques on drift compensation algorithms. An intuitive
idea is to reduce the difference of distributions among domains in the feature level, i.e., to learn
domain-invariant feature representations. The geodesic flow kernel (GFK) method for the drift
compensation was presented by Gong et al. [17], and it aimed to model the domain shift by integrating
an infinite number of subspaces that describe the change in geometric and statistical properties from
the source domain to the target domain. The advancement of the GFK for the drift compensation was
presented in [18], namely domain adaption by shifting covariance (DASC). The mentioned methods
have reduced the sensor drift to a certain extent. However, these domain adaption methods project
the source and the target samples into a separate subspace, and the one domain, as a subspace, is not
sufficient to represent the difference of distributions across domains. In this paper, we are committed
to learn domain invariant feature representations in the common feature space, and some scholars
performed made relevant researches. A domain regularization component analysis (DRCA) method
was proposed by Zhang et al. [19] to map all samples from two domains to the same feature subspace,
and it measured the distribution discrepancy between the source and the target domain using the
maximum mean discrepancy (MMD). However, a linear mapping technique cannot seriously ensure
“drift-less” properties in the E-nose. Ke Yan, Lu Kou et al. [20] minimized the distance between
the source and target domain feature representations by maximizing the independence between
data features and domain features (device label and acquisition time of a sample), which solved the
issue of the sensor drift. A domain correction, based on the kernel transformation (DCKT) method,
was proposed in [21]. It aligned the distributions of the two domains by mapping all samples to a
high-dimensional reproducing kernel space and reduced the sensor drift. Some algorithms that have
appeared in deep learning in recent years are applicable to guide feature representation learning.
The representative features of the E-nose were extracted with autoencoders [22,23]. In addition,
some adversarial domain adaption methods were also adopted to reduce the discrepancy across
domains [24–26]. Arjovsky et al. [27] utilized Wasserstein distance to achieve a great breakthrough in
the fields of common sentiments and images. However, there are few relative researches on Wasserstein
distance to reduce the drift in E-nose.

Inspired by Wasserstein GAN (WGAN) [26] and spectral normalized GANs (SN-GANs) [27], a new
drift compensation algorithm called Wasserstein Distance Learned Feature Representations (WDLFR)
is proposed in this paper. First, the WDLFR measures the distribution discrepancy across domains
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using Wasserstein distance, and it estimates the empirical Wasserstein distance between feature
representations of the source and the target domain by learning an optimal domain discriminator.
Then, WDLFR minimizes the estimated empirical Wasserstein distance by constantly updating a
feature extractor network in an adversarial manner. Finally, in order to make the extracted feature
representations class-distinguished, the WDLFR incorporates the supervision information of the source
domain samples into the feature representation learning. That is, the learned feature representations
are domain-invariant and class-distinguished. Empirical studies on a dataset of E-nose from the
University of California, San Diego (UCSD) demonstrate that the effectiveness of the proposed WDLFR
outperforms the comparison approaches.

The rest of this paper is organized as follows. The basis of the proposed method is presented in
Section 2. Section 3 details the proposed WDLFR approach based on the domain invariant feature
representation learning. The experiments and results are discussed in Section 4. Finally, Section 5
concludes this paper.

2. Related Work

In this section, a brief introduction of the Wasserstein distance will be given. It is the basis of the
proposed method.

Wasserstein Distance

Wasserstein distance is used to measure the distance between two probability distributions and is
defined as

W[P, Q] = inf
γ∈

∏
[P,Q]

x
γ(x, y)ρ(x, y)dxdy (1)

where ρ(x, y) is a cost function representing the cost of transportation from the instance x to y, and the
common cost function is based on l norm, such as 1-norm ‖x− y‖1 and 2-norm ‖x− y‖2. Due to
the equivalence property of norm, the final result of Wasserstein distance is closed. γ ∈

∏
(P, Q)

shows that γ is a joint distribution, satisfying constraint
∫
γ(x, y)dy = P(x) and

∫
γ(x, y)dx = Q(y)

simultaneously, and P, Q are marginal distributions. In fact, Wasserstein distance metric appears in the
problem of optimal transport: γ(x, y) is considered as a randomized scheme for transporting goods
from a random location x to another random location y, and it satisfies the marginal constraint x ∈ P
and x ∈ Q. If the cost of transporting a unit of goods from x ∈ P to x ∈ Q is given by ρ(x, y), W[P, Q] is
the minimum expected transport cost.

The Kantorovich-Rubinstein theorem shows that the dual form of Wasserstein distance [28] can
be written as follows

W[P, Q] = sup
‖ f ‖L≤1

Ex∼P[ f (x)] − Ex∼Q[ f (x)], (2)

where the Lipschitz constraint is used to limit the change of function value and is defined as
‖ f ‖L = sup

∣∣∣ f (x) − f (y)
∣∣∣/ρ(x, y). In this paper, for simplicity, Equation (2) is viewed as the final

Wasserstein distance, and [29] has showed that Wasserstein distance has a good gradient and
generalization bound for domain adaption under the Lipschitz constraint.

3. Wasserstein Distance Learned Feature Representations (WDLFR)

3.1. Problem Definition

In domain adaption techniques, the source and the target domain are defined by describing “S”

and “T”, respectively. We have the training set XS =
{(

xs
i , ys

i

)}ns

i=1
of ns labeled samples from the source

domain DS, and the testing set is defined as Xt =
{(

xt
j

)}nt

j=1
of nt unlabeled samples from the target

domain DT. It is assumed that the source and the target domain share the same feature space, but
the marginal distributions are different (Pxs and Pxt respectively). The purpose of domain adaption is
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to reduce the divergence between the two domains, and the classifier of the source domain can be
directly applied to the target domain.

3.2. Domain Invariant Feature Representation Learning

The sensor drift of the E-nose leads to inconsistent data distributions between the previously
collected samples (source domain) and the later collected samples (target domain), which means that
the model trained with source domain samples may be highly biased in the target domain. To solve
this problem, a new method (WDLFR) is proposed in this paper. The learned feature representations
are invariant to the change of domain by minimizing the empirical Wasserstein distance between the
source and the target feature representations through an adversarial training manner.

The adversarial method is composed of two parts, including the feature extractor and the domain
discriminator implemented by a neural network. The feature extractor network is used to learn the
feature representations of the source and the target domain, and domain discriminator is used to
estimate the empirical Wasserstein distance between the feature representations of both domains.
First, considering a sample of any domain x ∈ Rm, the feature extractor network learns a function
fg : Rm

→ Rd that maps the sample to a d-dimensional representation with the network parameters θg.
The feature representations can be calculated by h = fg(x), and the feature representation distributions
of the source and the target domain are Phs and Pht , respectively. Therefore, the Wasserstein distance
between the feature representation distributions Phs and Phs can be expressed by Equation (2)

W[Phs , Phs ] = sup
‖ f ‖L≤1

Eh∼Phs [ f (h)] − Eh∼Pht [ f (h)]. (3)

For the function f, we can train a domain discriminator, as suggested in [28], to learn a function
fw : Rd

→ R that maps feature representations to a real number with corresponding network parameters
θw. The Wasserstein distance can be reformulated as

W[Phs , Phs ] = sup
‖ f ‖L≤1

Eh∼Phs [ fw(h)] − Eh∼Pht [ fw(h)]. (4)

According to the feature extractor network, the feature representations of the source and the target
domain are hs = fg(xs) and ht = fg

(
xt
)
, respectively. The Wasserstein distance between the feature

representation distributions of the source and the target domain can, again, be written as follows

W[Phs , Phs ] = sup
‖ f ‖L≤1

Eh∼Phs [ fw(h)] − Eh∼Pht [ fw(h)]

= sup
‖ f ‖L≤1

Ex∼Pxs

[
fw

(
fg(x)

)]
− Ex∼Pxt

[
fw

(
fg(x)

)] (5)

If the function of the domain discriminator fw satisfies the Lipschitz constraint, and the Lipschitz
norm is bounded to 1, the empirical Wasserstein distance can be approximated by maximizing the
domain discriminator loss lwd with respect to parameters θw

max
θw

lwd, (6)

where the domain discriminator loss lwd is represented as

lwd(xs, xt) =
1
ns

∑
xs∈Xs

fw( fg(xs)) −
1
nt

∑
xt∈Xt

fw( fg(xt)). (7)

Here, the question of enforcing the Lipschitz constraint is raised. A weight clipping method was
presented in [26], aiming to limit all weight parameters of domain discriminator to the range of [−c,c]
after each gradient update. However, [30] pointed out that it is easy to cause the problem of gradient
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disappearances and gradient explosions. Gulrajani et al. [30] proposed a more appropriate gradient
penalty method to make the domain discriminator satisfy the Lipschitz constraint, and the method
can obtain a good result in most cases. However, the linear gradient interpolation method can only
ensure that the Lipschitz constraint is satisfied in a small space, and the interpolation between different
label samples may not satisfy the Lipschitz constraint. The disadvantages are pointed out in [27].
As suggested in [27], a more reasonable method is to update the weight parameters θw by the spectral
normalization method after each gradient update. The merit of the spectral normalization method
is that the domain discriminator fw can satisfy the Lipschitz constraint no matter how the domain
discriminator parameters θw change. Therefore, the spectral normalization method will be used to
make the domain discriminator fw satisfy the Lipschitz constraint.

Now, the Wasserstein distance is continuous and differentiable almost everywhere, and an optimal
domain discriminator can be trained first. Then, by fixing the optimal network parameters of domain
discriminator and minimizing the Wasserstein distance, the feature extractor network can learn the
feature representations with the domain discrepancy reduced. Therefore, the feature representations
can be estimated by solving the minimax problem

min
θg

max
θw

lwd (8)

Finally, by iteratively learning feature representations with lower Wasserstein distance,
the adversarial objective function can learn domain invariant feature representations.

3.3. Combing with Supervision Signals

The final purpose of this paper is to ensure that the classifier of the source domain will have a
good performance in the target domain. Considering the above domain adaption method, it may be
impossible to learn the optimal feature representations. Because the WDLRF method can learn domain
invariant feature representations and guarantees transferability of the learned feature representations,
the source domain classifier is feasible to the target domain. However, the learned domain invariant
feature representations are not enough class-distinguished. Therefore, the supervision information of
the training set denoted by the source domain will be integrated into the domain invariant feature
representation learning as suggested in [24]. The overview framework of the algorithm is shown in
Figure 1.
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Figure 1. Wasserstein Distance Learned Feature Representations (WDLFR) combined with the classifier.

Next, the combination of the feature representation learning and the classifier will be introduced.
Several layers can be added as the classifier after the feature extractor network. The objective of the
classifier fc : Rd

→ Rl is to compute the Softmax prediction with the network parameters θc, where l is
the number of classes. The Softmax prediction is mainly used in multi-classification problems, and it
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will divide the entire space according to the number of classes to ensure that the classes are separable.
Finally, the empirical loss of the classifier in the source domain is given by

lc(xs, ys) = min
θc

ns∑
i=1

L( fc(xs
i ), ys

i ), (9)

where L
(

fc(xs
i ), ys

i

)
is the cross-entropy between the predicted probabilistic distribution and the one-hot

encoding of the class labels given the labeled source data

L( fc(xs
i ), ys

i ) = −
l∑

k=1

1(ys
i = k)· log fc( fg(xs

i ))k. (10)

1
(
ys

i = k
)

is an indicator function, and log fc( fg(xs
i ))k corresponds to the k-th dimension value of the

distribution fc( fg(xs
i )). Therefore, the final empirical loss of the source domain classifier is expressed as

lc(xs, ys) = min
θc
−

1
ns

ns∑
i=1

l∑
k=1

1(ys
i = k)· log fc( fg(xs

i ))k. (11)

Finally, the final objective function is obtained by combining the Equations (8) with (11)

min
θg,θc

(lc + λmaxlwd
θw

), (12)

where λ is a coefficient parameter used to control the balance between class-distinguished and
transferable feature representation learning. The process of the WDLFR is shown in Algorithm 1.

Algorithm 1 The Proposed WDLFR Method: Asserstein Distance Learned Feature Representations Combining
with Classifier

Require: Labeled source data XS, unlabeled target data Xt, mini-batch size m, total training iterations n,
training step of domain discrimination k, coefficient parameter λ, learning rate of domain discrimination α,
learning rate of features representations learning and classifier β.
1. Initialize feature extractor, domain discrimination, classifier with random weights θg, θw, θc

2. Repeat: (total training iterations n)
3. Sample m instances

{
(xs

i , ys
i )
}m

i=1
from XS

Sample m examples
{
(xt

i)
}m

i=1
from Xt

4. For i = 1, . . . , k do
5. hs

← fg(xs) , ht
← fg(xt)

6. θw ← θw + α∇θw [lwd(xs, xt)]

7. Calculate spectral normalization weights WSN
8. θw ← θw + α∇θw [lwd(xs, xt)]

9. End for
10. θc ← θc − β∇θc [lc(x

s, ys)]

11. θg ← θg − β∇θg [lc(x
s, ys) + lwd(xs, xt)]

12. Until θg, θw, θc converge

The WDLFR algorithm can be implemented using the standard back-propagation with two
iterations. In a mini-batch size including labeled source data and unlabeled target data, the domain
discriminator can firstly be trained to optimal point by gradient ascent. The mini-batch gradient
ascent method divides all samples of two domains into several batches and updates the network
parameters of the neural network in each batch way, which can reduce the computational complexity.
In other words, the mini-batch gradient ascent method divides the training set into several small
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training sets. Then, in order to reduce the distribution discrepancy across domains, we simultaneously
minimize the estimated empirical Wasserstein distance across domains and the classification loss
computed by labeled source samples to update the feature extractor network. Finally, the learned
feature representations are domain-invariant and class-distinguished, since the parameter θg receives
the gradients from both the domain discriminator and the classifier.

The sensor drift changes the features of the collected data. Furthermore, it also makes data
distributions different. Domain adaption techniques can reduce the difference of distributions among
domains. Therefore, the proposed WDLRF method can be used to reduce the drift of the E-nose.

4. Experiments

In this section, the real sensor drift benchmark dataset of the E-nose from UCSD is used to evaluate
the effectiveness of the WDLFR method, and the experimental results of the proposed WDLFR method
are compared with that of other drift compensation algorithms in E-nose.

4.1. Sensor Drift Benchmark Dataset

The real sensor drift benchmark dataset, consisting of data from three years, was collected by
Vergara et al. [5] at UCSD. The sensor array of the E-nose was composed of 16 chemical sensors, each
of which extracted 8 features of the sample. Consequently, each sample had a total of 128 (16 × 8)
dimensional feature vectors. The E-nose was utilized to measure six gases (acetone, acetaldehyde,
ethanol, ethylene, ammonia, and toluene) at different concentrations. A total of 13,910 samples were
gathered over a course of 36 months from January 2008 to February 2011, which were split into
10 batches according to the chronological order. The sensor response information of the tenth batch
was collected deliberately after the E-nose was powered off for five months. These sensors were
susceptible to serious pollution during the five months, and the pollution was irreversible so that the
operating temperature of the chemical sensor array in the sensor chamber was not able to resume to a
normal extent. In this situation, serious drift will happen on the collected samples. Therefore, the tenth
batch will suffer from the most serious drift compared to other batches. The period of collection
and the number of samples for each class, with respect to each batch, are summarized in Table 1.
More information on the real sensor drift benchmark dataset can be found in [5].

Table 1. Sensor drift benchmark dataset.

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene

Batch 1 1, 2 90 98 83 30 70 74
Batch 2 3~10 164 334 100 109 532 5
Batch 3 11~13 365 490 216 240 275 0
Batch 4 14, 15 64 43 12 30 12 0
Batch 5 16 28 40 20 46 63 0
Batch 6 17~20 514 574 110 29 606 467
Batch 7 21 649 662 360 744 630 568
Batch 8 22, 23 30 30 40 33 143 18
Batch 9 24, 30 61 55 100 75 78 101
Batch 10 36 600 600 600 600 600 600

To more intuitively observe the data distribution discrepancy of all batches, the two-dimensional
principle component scatter points of the original data are plotted in Figure 2. From Figure 2, it is
clearly observed that the 2D subspace distribution between Batch 1 and the other batches is significantly
inconsistent due to the impact of the sensor drift. If Batch 1 is considered as the source domain for
training model, test on Batch b, b = 2, . . . , 10 (i.e., target domain), the recognition accuracy will
create a great bias. One possible reason is that it violates the basic assumptions of machine learning:
The training set and the test set should maintain the same or similar probability distribution. In this
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case, the distributions between the two domains can be aligned by learning the domain invariant
feature representations.
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4.2. WDLRF Implementation Details

In this paper, all experiments are performed using Tensorflow and the training model is optimized
using Adam optimizer. The advantage of the Adam optimizer is that each iteration of the learning
rate has a clear range, and it makes the change of parameters very stable. Under the situation of
the best experimental results, the constructions of the WDLRF method are as follows. The feature
extractor network contains an input layer of 128 neuron nodes and an output layer of 200 neuron nodes.
The domain discriminator is designed with an input layer of 200 nodes, one hidden layer of 10 nodes,
and an output layer of 1 node. The classifier is composed with an input layer of 200 nodes and an
output layer of 6 nodes. All the activation functions adopt the ReLU function, except a Softmax function
for the classifier. After normalizing all samples from source and target domains, the samples from the
source and target domain are first inputted into the feature extractor network. Then, the extracted
source domain features are inputted into the classifier, and the source and target domain features
are inputted into the domain discriminator to evaluate the Wasserstein distance. Finally, it updates
the feature extractor network by learning the classifier and the domain discriminator at the same
time. Therefore, the extracted features from the feature extractor network have domain invariant
characteristics, and the distribution consistencies of source and target domain are greatly improved.

4.3. The Experiment Results and Analysis

The classification accuracies are used as a criterion to judge the drift reduction. A goal that
the WDLFR method aligns with the distribution of the source and target domain is to improve
the performance of the classifier. Therefore, all experiments are conducted under Experimental
Setting 1 and Setting 2. In order to better verify the effectiveness of the proposed WDLFR method
in this paper, the proposed approach compares with principal component analysis (PCA) [8], linear
discriminant analysis (LDA) [31], domain regularized component analysis (DRCA) [19], and SVM
ensemble (SVM-rbf, SVM-comgfk).

Setting 1: Take Batch 1 as the source domain for training model, and test on Batch b, b = 2, 3, . . . , 10.
Setting 2: Take Batch b as the source domain for training model, and test on Batch (b + 1),

b = 1, 2, 3, . . . , 9.
Under the setting 1, the first batch with labeled data is used as the source domain, and the b-th

(b = 2, 3, . . . , 10) batch with unlabeled data is considered as the target domain. If the process of
learning domain invariant feature representations from the both domains is regarded as a task, a total
of nine tasks with pair-wise batches (Batch 1 vs. Batch b) (b = 2, 3, . . . , 10) are implemented in this
Experimental Setting 1. Inspired by PCA scatter points in Figure 2, the 2D principle component scatter
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points of nine tasks after using the proposed WDLFR method are shown in Figure 3. Comparing the
PCA scatter points in Figures 2 and 3, the distribution discrepancy between the source and target data
has been greatly reduced in a certain extent, and the distribution consistencies have been improved
greatly. Therefore, the classifier trained with source data is feasible to target data.
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Figure 3. Two-dimensional principle component scatter points of the source and target domain feature
representations after using the proposed WDLFR method.

In order to represent the effect of the proposed WDLFR method on drift suppression intuitively,
the recognition results of all comparison algorithms under Experimental Setting 1 are reported in
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Table 2. First, it can be found that the average recognition accuracy of the WDLFR is the best, reaching
82.55%. The average recognition accuracy is 4.92% higher than the second-best performance method
(i.e., DRCA). Second, the recognition accuracy of Batch 10 is the lowest, rather than other batches.
One possible reason is that the data of Batch 10 are gathered after the E-nose is powered off for five
months, which will cause the data of Batch 10 to experience the more serious drift. Therefore, it is
difficult to align the marginal probability between Batch 10 and Batch 1. Overall, the proposed WDLFR
method is feasible for drift compensation. In addition, in order to reflect the effectiveness of each
method intuitively, the recognition accuracy bar chart of each method under Experimental Setting 1 is
drawn in Figure 4a. From Figure 4a, it can be clearly seen that the recognition accuracy for the most of
batches is much higher than other compared approaches. Since the proposed WDLFR method adopts
the mini-batch gradient ascent training way, the mini-batch size setting under the highest accuracy of
each task is given in Table 3.
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Figure 4. Recognition accuracy bar chart under Experimental Setting 1 and Setting 2.

Table 2. Recognition Accuracy (%) under Experimental Setting 1. The bold font represents the highest
recognition accuracy of a batch in all compared algorithms.

Methods
Batch ID

Average
2 3 4 5 6 7 8 9 10

PCASVM 82.40 84.80 80.12 75.13 73.57 56.16 48.64 67.45 49.14 68.60
LDASVM 47.27 57.76 50.93 62.44 41.48 37.42 68.37 52.34 31.17 49.91
SVM-rbf 74.36 61.03 50.93 18.27 28.26 28.81 20.07 34.26 34.47 38.94

SVM-comgfk 74.47 70.15 59.78 75.09 73.99 54.59 55.88 70.23 41.85 64.00
DRCA 89.15 92.69 87.58 95.94 86.52 60.25 62.24 72.34 52.00 77.63

WDLRF 86.41 93.38 80.75 93.40 94.48 74.65 79.59 77.66 62.64 82.55

Table 3. Corresponding Parameter Setting (mini-batch size) of the WDLFR under Experimental
Setting 1.

BatchID 2 3 4 5 6 7 8 9 10

Mini-batch size 12 12 32 16 32 64 14 16 16

Under Experimental Setting 2, the b-th batch of dataset is used as source data, and the (b + 1)-th
batch of dataset is viewed as target data, b = 1, 2, 3, . . . , 9, i.e., the classification model is trained on
Batch b and tests on Batch (b + 1). The experimental comparison results of recognition accuracy for
each algorithm are reported in Table 4, and the corresponding parameters (mini-batch size) are shown
in Table 5. From Table 4, it can be clearly observed that the proposed algorithm achieves the highest
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average recognition accuracy, reaching 83.08%. The average recognition accuracy is 8.86% higher than
the second-best performance method (i.e., DRCA). The recognition accuracy bar chart of each method
is drawn in Figure 4b. From Figure 4b, the WDLFR attains the highest performance for the most of
batches. Overall, the experimental comparison results under Setting 1 and Setting 2 confirm the fact
that the proposed WDLFR method has a great advancement for reduction drift. At the same time,
the effectiveness and competitiveness of the proposed WDLFR method are demonstrated.

Table 4. Recognition Accuracy (%) under Experimental Setting 2. The bold font represents the highest
recognition accuracy of a batch in all compared algorithms.

Methods
Batch ID

Average
1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 10

PCASVM 82.40 98.87 83.23 72.59 36.70 74.98 58.16 84.04 30.61 69.06
LDASVM 47.27 46.72 70.81 85.28 48.87 75.15 77.21 62.77 30.25 60.48
SVM-rbf 74.36 87.83 90.06 56.35 42.52 83.53 91.84 62.98 22.64 68.01

SVM-comgfk 74.47 73.75 78.51 64.26 69.97 77.69 82.69 85.53 17.76 69.40
DRCA 89.15 98.11 95.03 69.54 50.87 78.94 65.99 84.04 36.31 74.22

WDLFR 86.41 92.13 96.89 90.36 74.57 83.70 89.12 84.68 46.42 83.08

Table 5. Corresponding Parameter Setting (mini-batch size) of the WDLFR under Experimental
Setting 2.

Batch ID 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 10

Mini-batch size 12 16 32 32 12 64 14 12 16

5. Conclusions

In order to solve the issue of inconsistent distributions caused by the sensor drift in the
E-nose, a novel drift compensation algorithm (WDLFR) is proposed in this paper. The WDLFR
can effectively reduce the distribution discrepancy by taking the merit of the good gradient property
and generalization bound of Wasserstein distance. Furthermore, the WDLFR can reduce the drift of
the E-nose. The characteristics of the WDLFR are as follows: (1) The feature extractor network and
the domain discriminator are trained by an adversarial manner, so that the extracted features by the
feature extractor network can eventually cheat the domain discriminator to generate domain invariant
feature representations; (2) It combines the feature extractor with classifier to make the learned domain
invariant feature representations class-distinguished. Finally, in order to verify the effectiveness of the
WDLFR, we experiment on the dataset of the E-nose from USCD, and the classification accuracy is
better than other comparison algorithms using the proposed WDLFR method.

In the future, we will continue to expand the work from the perspective of adaption classifier.
It establishes a residual relationship between the source and the target domain classifier, and combines
the feature extractor network with the adaption classifier to compensate the drift.
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