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Abstract: This study developed a systematic approach with machine learning (ML) to apply the
satellite remote sensing images, geographic information system (GIS) datasets, and spatial analysis
for multi-temporal and event-based landslide susceptibility assessments at a regional scale. Random
forests (RF) algorithm, one of the ML-based methods, was selected to construct the landslide
susceptibility models. Different ratios of landslide and non-landslide samples were considered in the
experiments. This study also employed a cost-sensitive analysis to adjust the decision boundary of the
developed RF models with unbalanced sample ratios to improve the prediction results. Two strategies
were investigated for model verification, namely space- and time-robustness. The space-robustness
verification was designed for separating samples into training and examining data based on a single
event or the same dataset. The time-robustness verification was designed for predicting subsequent
landslide events by constructing a landslide susceptibility model based on a specific event or period.
A total of 14 GIS-based landslide-related factors were used and derived from the spatial analyses.
The developed landslide susceptibility models were tested in a watershed region in northern Taiwan
with a landslide inventory of changes detected through multi-temporal satellite images and verified
through field investigation. To further examine the developed models, the landslide susceptibility
distributions of true occurrence samples and the generated landslide susceptibility maps were
compared. The experiments demonstrated that the proposed method can provide more reasonable
results, and the accuracies were found to be higher than 93% and 75% in most cases for space-
and time-robustness verifications, respectively. In addition, the mapping results revealed that the
multi-temporal models did not seem to be affected by the sample ratios included in the analyses.

Keywords: GIS; landslide susceptibility; machine learning; remote sensing; spatial analysis

1. Introduction

Landslide risk assessment and management are critical and extensive tasks that provide systematic
and rigorous processes for slope engineering practice and management [1], making them important tools
for addressing landslide hazards [2]. The framework of landslide risk assessment and management
consists of several subtasks, such as susceptibility, hazard, and risk assessments. In addition,
van Westen et al. [3,4] proposed a landslide risk assessment procedure that was mostly consistent
with Dai et al. [2]. The term landslide susceptibility represents the likelihood (0 to 1) or degree (e.g.,
low, moderate, or high) of landslide occurrences in an area with given local terrain attributes [5].
Although landslide susceptibility assessment is a fundamental and essential task within the landslide
risk assessment and management framework, there is no general consensus at present as to which is
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the best procedure and algorithm to evaluate it [6,7]. Therefore, landslide susceptibility assessment
must be studied and explored further to improve results of the subsequent tasks.

With the development of computing power, geospatial data, and technologies, a growing number
of studies have explored the potential of using machine learning (ML) based algorithms with geographic
information system (GIS) datasets and remote sensing images for constructing landslide susceptibility
models on the regional scale, such as decision trees (DT) [8–10], entropy- and evolution-based
algorithms [11–14], fuzzy theory [15–17], neural network [12,18–22], neural-fuzzy systems [23,24], and
support vector machines [20,21]. Random forests (RF) has received increased attention in the ML
domain in recent years because of the following advantages: (1) Excellent accuracy [25], (2) processing
speed [26,27], (3) few parameter settings [28,29], (4) availability of high-dimensional data analysis (e.g.,
hyperspectral image cubes) [30,31], and (5) insensitivity to imbalanced training data [32]. Nevertheless,
the performance of RF for landslide susceptibility assessments has seldom been explored, compared
with traditional methods such as Logistic regression.

Both landslide inventory and landslide-related factors are critical components for constructing
regional landslide susceptibility models. In the modeling process, sampling ratio (or called proportion
in this study) is an important setting resulting in the model performance. An assumption of equal
sampling ratio is not reasonable in many real-world applications (e.g., diagnosis and landslide
prediction). Heckmann et al. [33] indicated that the proportion of landslide to non-landslide samples
for data-driven analysis (i.e., statistical and data mining or ML approaches) often ranges between 1:1 and
1:10. Berry and Linoff [34] also proposed an oversampling strategy for significantly imbalanced cases,
where the ratio of occurrence to non-occurrence samples ranged between 10% and 40%. According
to the above experiments, proportions of 1:1, 1:4 (i.e., 25%, the middle of the oversampling range),
1:7, and 1:10 with the corresponding landslide-related factors have been considered in this study for
constructing GIS-based landslide susceptibility models. To address the unbalanced prediction results
caused by unequal sampling ratios or spatial and temporal uncertainties, the model was constructed
with an extremely false alarm or missing error (called over-fitting effect), and the decision boundary
was adjusted using cost-sensitive analysis to improve the RF algorithm.

Traditionally, landslide area and susceptibility were evaluated by extracting remote sensing
images and by using related techniques for a period (called multi-temporal landslide inventory
and susceptibility assessment). The areas of landslide triggered by a single event can be detected
automatically or semi-automatically because of increased access to remotely sensed images with high
spatial and temporal resolutions [35–42]. Subsequently, landslide vulnerability and risk assessments can
be made [43] based on the event-based landslide inventory mapping and susceptibility assessment [43,44].

Two strategies are generally used for model verification, namely testing space-robustness and
testing time-robustness [45]. The former method separates the data sample based on a single event
or the same dataset into training and check datasets and the latter method predicts (classify) later or
different landslide events or periods, with a landslide susceptibility model constructed from a specific
event or period. However, results on time-robustness verification are relatively few and less reliable
compared with those related to space-robustness [6,46].

The main purpose of this study was to integrate GIS datasets and multi-temporal remote sensing
inventory with ML to improve multi-temporal and event-based landslide susceptibility assessments of
Shimen reservoir watershed in northern Taiwan and compare the results with those obtained using
DT, Bayes network algorithm, and logistic regression algorithm, which are commonly used in the
related field [6,10,46]. The definition of landslide in this study was the same as that in the study
by Highland and Bobrowsky [47], that is, landslides include the downslope movement of soil, rock,
and organic masses under the influence of gravity as well as the landform that results from such
movement. In addition, the size of materials was ignored because this was a regional assessment.
This study also explored the impact of sampling proportions during the modeling process. Furthermore,
cost-sensitive analysis was applied to adjust the decision boundary for reduction of the over-fitting
issue. All experimental results were evaluated through space- and time-robustness verifications.
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2. Materials and Methods

2.1. Study Site and Data Preprocessing

The Shimen reservoir watershed (Figure 1), which is located in northern Taiwan, was selected
as the study site because of numerous typical shallow landslide cases in this area. The total area
of the study site covered approximately 764 km2 of the mountainous terrain. The average annual
precipitation in the watershed was approximately 2500 mm/year. The elevation measured from the
digital elevation model (DEM) ranged from 250 to 3500 m above sea level. More than 60% of the study
area had a slope degree greater than 16◦, and approximately 29% of the above area had a slope degree
between 16◦ and 28◦. The used DEM was generated by the Ministry of the Interior in Taiwan during
2002 to 2004. According to the geological and soil maps published by the Central Geological Survey of
Taiwan, the watershed comprised nine geological categories (e.g., argillite, shale, quartzitic, and etc)
and six primary soil types (e.g., clay, sand, loam and mixed soils). The collected soil map had some null
values in the northern region, which were ignored in the landslide susceptibility assessments in this
study. The primary land-cover in the watershed was forest but had limited agricultural activities near
a few tribal areas. Detailed information regarding geology and soil as well as the spatial distribution of
river, road, and fault within the study site has been mentioned in Tsai et al. [10].

Figure 1. Study area and SPOT-5 satellite image. (a) Location with a false-color image, (b) zoomed-in
image of the location.

The landslide inventory used in this study consisted of shallow landslide as identified with
multi-temporal satellite remote sensing images and pixel-based change detection analysis from 2004 to
2008 [48]. Most of the detected landslides were also verified through field investigation. A summary
of landslides detected after typhoons is listed in Table 1. They were rasterized into 10 m ×10 m cells to
be compatible with other datasets for modeling. The deposition regions in the landslide samples were
already eliminated using an empirical criterion [49], that is, the slope of landslide samples must be
larger than 10◦, otherwise they were considered the deposition area (non-landslide region). The spatial
distribution of the landslide inventory can be also found in Tsai et al. [10].
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Table 1. Typhoon events and the number of landslide samples used from the landslide inventory.

Typhoon Date Accumulated Precipitation (mm) No. of Landslide Samples

Mindulle 2004/7/1–7/2 57–188 184
Aere 2004/8/25–8/26 85–1100 32,020

Nock-ten 2004/10/25 119–399 <50
Haitang 2005/7/18–7/20 278–799 100
Matsa 2005/8/4–8/5 188–636 2,112
Talim 2005/9/1 135–535 201
Bilis 2006/7/13–7/15 44–151 <50

Kaemi 2006/7/24 6–96 109
Bopha 2006/8/9 9–108 <50
Sepat 2007/8/16–8/19 38–340 331
Wipha 2007/9/18–9/19 104–360 309
Korsa 2007/10/6–10/7 265–512 430

Kalmaegi 2008/7/17–7/18 265–512 83
Fung-wong 2008/7/28–7/19 65–251 330

Sinlaku 2008/9/14–9/15 235–515 943
Jangmi 2008/9/28–9/29 258–473 308

A total of 14 landslide factors (Table 2) were collected or derived from the vector and raster
GIS datasets. In addition, all factor data sets were resampled to a 10 m × 10 m raster format
regardless of their original scale or spatial resolution to be compatible with the modeling system. For
example, aspect, curvature, and slope factors were derived from the DEM. Furthermore, the vegetative
factor normalized difference vegetation index (NDVI) was derived from the multispectral SPOT-4
and SPOT-5 satellite images, which were acquitted before the typhoon events (second column in
Table 1) during 2004 to 2008, and provided by the Center for Space and Remote Sensing Research in
National Central University of Taiwan. The NDVI values acquired at different times can be used to
quantitatively represent the multi-temporal vegetation characteristics of the study site. To address the
NDVI variations of the same surface due to difference in topographic, radiometric, and atmospheric
conditions, this study adopted pseudo invariant feature (PIF) normalization [50,51] and Minnaert
topographic correction [52] to minimize temporal and spatial differences. To obtain the rainfall
distributions, this study applied the commonly used algorithms of inverse distance weighting (IDW)
and Kriging interpolation. These methods are used to generate event-by-event accumulative and
maximum hourly rainfall maps based on the rainfall-gauge data. The non-landslide samples were
randomly extracted, and the numbers of samples were equal to 1, 4, 7, and 10 times the landslide
samples in this study. Then these landslide and non-landslide samples can be used to extract the
corresponding landslide factors to produce datasets. The data preprocessing and sampling steps show
in Figure 2 in detail.

Table 2. Landslide factors used in the study.

Original Data Original Resolution/Scale Used Factor (Raster Format)

DEM

20 m × 20 m Aspect
Curvature
Elevation

Slope
Geology map 1/50,000 Geology

Land-cover map 1/5000 Land-cover
Soil map 1/25,000 Soil

Fault map 1/50,000 Distance to fault

Rainfall-gage
Accumulative hourly rainfall maps (IDW)

Accumulative hourly rainfall maps (Kriging)
Maximum hourly rainfall maps (IDW)

River map 1/5000 Distance to river
Road map 1/5000 Distance to road

Satellite imagery 10 m × 10 m NDVI

Abbreviations: IDW, inverse distance weighting; NDVI, normalized difference vegetation index.
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2.2. Developed Machine Learning Based Model

A three-phase study was developed for development of multi-temporal and event-based landslide
susceptibility models. In the first phase, RF-based landslide susceptibility models were constructed as
shown in Modeling of Figure 2. In the second stage, the cost-sensitive analysis was used to avoid the
over-fitting predictions as also shown in Modeling of Figure 2. Finally, the developed models were
verified using space- and time-robustness strategies to generate the landslide susceptibility map as
shown in Assessment of Figure 2 and Section 2.3.

Figure 2. Procedure for the developed machine learning based landslide susceptibility assessments.

This study employed the RF algorithm [53], which is one of the ML-supervised methods, to
construct the multi-temporal and event-based landslide susceptibility models. The concept of RF was
similar to the DT algorithm, a classical and popular approach in the related domains. Both methods
apply the information gain (IG) measure or Gini index to evaluate the degree of impurity of landslide
factors or variables. A landslide-related variable, which has a larger IG or Gini value, must be selected
because it has a higher priority for construction of a conditional node, and further, this factor should
be ignored in the next computation. After several iterations, a sequence of rules was constructed that
can be used to classify other instances. Unlike DT, the RF algorithm randomly separates training data
into many subsets using the bootstrap algorithm to build many trees for optimization. Therefore, more
favorable results can be obtained using the RF classifier than using the DT algorithm. Discrete (or
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nominal) and continuous (or numeric) formats are commonly used in the geospatial field. For nominal
data, entropy theory is used to compute IG [10], as described in Equations (1)–(3), where E(A) indicates
the entropy of all training data; p and n represent the numbers of positive (landslide) and negative
(non-landslide) labels, respectively; E’(a) and v indicate the entropy and subset amounts of a specific
landslide factor, respectively; E(aj) is the entropy of the subset in a specific landslide factor computed
by Equation (1); and IG(a) means the IG of a specific landslide factor. For numeric data, the Gini
index was applied to evaluate the IG [10] as described in Equations (4) and (5), where C indicates a
segmented point for a specific landslide factor used to divide numeric data into two parts and N1 and
N2 represent the numbers of a ≤ C and a > C, respectively.

E(A) = −
p

p + n
log2

p
p + n

−
n

p + n
log2

n
p + n

(1)

E′(a) =
v∑

i=1

pi + ni

p + n
E(ai) (2)

IG(a) = E(A) − E′(a) (3)

Gini(a ≤ C or a > C) = 1−
m∑

i = 1

ni

N
(4)

IG(a, C) =
N1

N
Gini(a ≤ C) +

N2

N
Gini(a > C) (5)

According to cost matrix, the cost-sensitive analysis or learning can be used to adjust the decision
boundary of a developed model, which reclassifies training samples to reduce and to balance the
omission or commission error of certain classes [54–56]. The size of the cost matrix is equal to that
of the confusion matrix. A confusion matrix consists of true positive (TP), false negative (FN), false
positive (FP), and true negative (TN). In the cost matrix, diagonal values (i.e., TN and TP) represent
the cost of correct classification, and remainder values (i.e., FN and FP) describe the misclassification
costs between various classes. In general, the costs of diagonal and other elements are set to 0 and
1, respectively. The decision boundary can be changed by adjusting the cost of incorrect elements to
include or exclude more samples for balancing the classification result of a certain class. However, a
positive or negative effect on the results of other classes might occur. To balance the false alarm and
missing rates and to maintain the reliability and veracity of the overall results, different costs were
tested for the target class in this study. More precisely, the optimal prediction (R) for an instance x in
class i can be expressed as in Equation (6), where P(j|x) is the probability for estimation of classification
of an instance into class j and C represents the cost. The optimal prediction is class 1 (landslide) if and
only if the expected cost of this prediction is less than or equal to the expected cost of predicting class
0 (non-landslide), as presented in Equation (7). Given p = P(1|x) and C00 = C11 = 0, Equation (7) is
equivalent to Equation (8), and a threshold p* can be defined as Equation (10) based on Equation (9),
which classifies an instance x as positive if the P(1|x) is larger than or equal to the threshold [57].

R(i|x) =
∑

j

P(j
∣∣∣x)Cji (6)

P(0 |x )C10 + P(1 |x )C11 ≤ P(0 |x )C00 + P(1 |x )C01 (7)

(1− p)C10 ≤ p C01 (8)

(1− p∗)C10 ≤ p∗C01 (9)

p∗ =
C10

C10 + C01
(10)
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2.3. Verification and Mapping

To verify the constructed landslide susceptibility models, the quantitative results of
space-robustness and time-robustness verifications, which compare the output and reference labels
(e.g., landslide or occurrence and non-landslide or non-occurrence) of the check or prediction datasets
as identified by a threshold, are derived from the confusion matrix. In most cases, a sample is assigned
into the non-landslide class when the landslide likelihood is smaller than 0.5, otherwise, the sample is
not classified the non-occurrence label (landslide). The threshold was equal to p* after cost-sensitive
analysis was conducted. Further, a landslide susceptibility map can be generated instance by instance
based on the landslide likelihoods or output categories (e.g., low, medium and high susceptibilities) of
the constructed model, if the verified results are acceptable.

This study adopted four commonly used quantitative indices for verification, namely overall
accuracy (OA), precision (also called as the user’s accuracy, UA), recall (also called as the producer’s
accuracy, PA), and area under the receiver operating characteristic (ROC) curve. The PA and UA as
described in Equations (11) and (12) can reflect the errors class by class [10], where M is a component
in a confusion matrix, Nc represents the number of classes, and i and j indicate the indices for columns
and rows in a confusion matrix, respectively. Moreover, 1-recall and 1-precision can reflect the omission
(missing) and commission (false alarm) errors, respectively. The OA presents the percentage of correctly
classified samples [10], as described in Equation (13). The area under the curve (AUC) for ROC was
also commonly used for evaluation of landslide susceptibility models [12,15,58–60], and generally, the
value ranged from 0.5 to 1. A larger AUC represents higher reliability.

PAj =
Mjj∑Nc

i=1 Mij
=

Mjj

M+j
(11)

UAi =
Mii∑Nc

j=1 Mij
=

Mii

Mi+
(12)

OA =

∑Nc
i=1 Mii∑Nc

i=1

∑Nc
j=1 Mij

=
Mdiag

Mtotal
(13)

3. Results

The modeling process and accuracy assessments in this study were performed using the WEKA
platform (http://www.cs.waikato.ac.nz/ml/weka/), which is a free and open-source tool. The main
parameter for RF-based computation was the number of trees (Ntree). Du et al. [26] mentioned
that 10–200 Ntree did not have any influence on the results, but an increase in Ntree increased the
computation loading. Therefore, in this study, 100 trees were used, which was suggested by WEKA,
for executing RF-based landslide susceptibility assessments. The developed models were compared
with the commonly used methods, namely DT, Bayes network, and logistic regression.

3.1. Multitemporal Landslide Susceptibility Assessments

The multi-temporal dataset used in the study included all landslide samples extracted after
typhoon events between 2004 and 2008. The non-landslide samples of the same period were randomly
extracted, and the numbers of samples were equal to 1, 4, 7, and 10 times the landslide samples in
the test cases. These samples can be used to extract the corresponding landslide factors to produce
multi-temporal datasets. For modeling, two-thirds of the samples from 2004 to 2007 (referred to as
training data) were randomly selected from the multi-temporal dataset to construct the models, and
the remainder (referred to as check data) were used for space-robustness verification. The constructed
models were also used to predict the time-robustness verification of samples from 2008. Two prediction
datasets were used in this study, namely multiple- and single-event samples. The multiple-event

http://www.cs.waikato.ac.nz/ml/weka/
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dataset indicated that the samples included all instances of 2008. On the contrary, the single-event
dataset indicated that the collected records were extracted from a single typhoon event.

3.1.1. Space-robustness Verification

The quantitative evaluations of space-robustness verification are presented in Figure 3. The OA
may not fully represent the overall results of the unbalanced sample proportion cases, especially when
the large sample class is easily detected, leading to an optimistic evaluation. Thus, the OA measure
was only applied in equal sample proportion cases. Three important findings are illustrated in Figure 3.
First, the space-robustness verification results revealed that the constructed models can provide flexible
or acceptable results in all cases. In other words, the patterns of landslide occurrence from 2004 to 2007
can be described effectively. Second, in cases of unequally proportioned samples, the deterioration was
observed in the landslide detection results obtained using the Bayes network and logistic regression
algorithms, but the RF-based results were stable. More precisely, the Bayes network—and logistic
regression–based models had lower UA and PA accuracies because of the increase in the unbalanced
sample proportions. Third, in terms of the modeling performances, the RF-based results outperformed
others in all cases.

Figure 3. Space-robustness accuracies (Y axis) of multi-temporal landslide susceptibility assessments,
considering different algorithms and proportions of landslide (L) and non-landslide (N) classes, where
RF, DT, BN, Logistic, OA, UA, and PA represent random forests, decision tree, Bayes network algorithms,
and logistic regression, overall accuracy, user’s accuracy, and producer’s accuracy, respectively.
(a) L:N = 1:1; (b) L:N = 1:4; (c) L:N = 1:7; (d) L:N = 1:10.
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3.1.2. Time-Robustness Verification with Multiple-Event Samples

The prediction results of quantitative evaluation of the multiple-event samples of 2008 dataset
are presented in Figure 4. The accuracies were significantly lower than those for the space-robustness
results. Comparing Figure 4 with Figure 3, two points should be emphasized. First, although the
landslide’s PA was slightly lower in the equal sample proportion case, the prediction capability based
on the logistic regression algorithm yielded acceptable results. The RF-based model had higher
commission and omission errors in terms of non-landslide and landslide detection, but the PA and
UA accuracies were the highest for detection of the non-occurrence and occurrence classes in this
case. The performance of the Bayes network algorithm was the lowest. Second, in the unequal sample
proportion cases, the non-landslide detection results were improved because of the increase in the
number of samples. However, although the logistic regression algorithm provided acceptable UA
accuracies in all cases, a smaller number of landslide samples in the modeling process can cause a
decrease in occurrence detection.

Figure 4. Time-robustness accuracies (Y axis) for predicting the 2008 dataset, considering different
algorithms and proportions of landslide (L) and non-landslide (N) classes, where RF, DT, BN, logistic,
OA, UA, and PA represent random forests, decision tree, Bayes network algorithms, logistic regression,
overall accuracy, user’s accuracy, and producer’s accuracy, respectively. (a) L:N = 1:1; (b) L:N = 1:4;
(c) L:N = 1:7; (d) L:N = 1:10.
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To address this issue, cost-sensitive analysis was employed to adjust the decision boundary during
the classification-based modeling. The confusion matrices and quantitative accuracies for predicting
the 2008 dataset were calculated using the RF algorithm after adjusting for the decision boundary.
The results of the cost-sensitive analysis for different sample proportions are illustrated in Figure 5.
The constructed model without cost-sensitive analysis (i.e., cost is equal to 1) had a high FN and low FP,
resulting in unbalanced predictions and high missing and low false alarms. To address this issue and
to reduce the problem of FN misclassification, the FN cost was increased for re-prediction of the 2008
dataset. A decrease in the TN and FN assignments was observed in the equal sample proportion case
(Figure 5a). The trends of FP and TP were obtained from the low cost. In addition, a cross over between
TN and TP as well as FN and FP occurred when the cost was 50. Figure 5b illustrates the optimal
quantitative result, which was obtained at a cost of 50, where all indices were close to 0.8. For the
unbalanced sample cases, an increase in TN values was observed with an increase in the number of
non-landslide samples (Figure 5c,e,g). A decreasing trend for TN and FN and an increasing trend for
FP and TP were observed with lower costs. A trade-off between landslide omission (missing) and
commission (false alarm) errors in the unbalanced sample proportion cases is presented in Figure 5d,f,h.
In the cases of unequal sample proportions, the results obtained based on costs of 100, 500, 1000, and
3000 (Figure 5d,f,h) exhibited higher performances, but produced unbalanced predictions between
landslide’s omission and commission errors.

Figure 5. Cont.
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Figure 5. Counts in confusion matrices (left columns, Y axis: counts) and quantitative accuracies (right
columns, Y axis: accuracies) of predicting the 2008 dataset using the RF algorithm with cost-sensitive
analysis in different sample proportion cases, where TN, FN, FP, TP, AUC, L, and N indicate true
negative, false negative, false positive, true positive, and area under ROC curve, landslide class, and
non-landslide class, respectively. (a), (b) L:N = 1:1; (c), (d) L:N = 1:4; (e), (f) L:N = 1:7; (g), (h) L:N = 1:10.

Same procedures of adjusting decision boundary were applied for the DT, Bayes network, and
logistic regression algorithms. Further, Figure 6 compares the representative results (i.e., arrows in
Figure 5) of all tests. Increasing PAs in unequal sample ratio cases was more critical than improving UAs
in this study because landslide susceptibility assessment was the preceding part of the landslide risk
assessment and management framework. Reducing commission errors (false alarm) can be expected
through further tasks (e.g., hazard and risk assessments). Therefore, for the unequal sample ratio
cases, the arrows in Figure 5 with lower omission errors (missing) were selected as the representative
results for the comparison. On the basis of Figure 6, it appeared that the RF method with cost-sensitive
analysis outperformed the other methods. In the 1:1 case, the RF model seemed to perform the best,
considering that all the accuracy indices were larger than 0.79. The trade-off between the landslide’s
UA and PA or preserving of the PA was also observed in the unbalanced sample proportion cases.
Overall, RF models with cost-sensitive analysis can predict the unbalanced samples most effectively,
although a certain degree of false alarms exists. To understand the interaction between the occurrence
samples and the models, susceptibility distributions of true occurrence samples were illustrated with
histograms in this study. Five susceptibility intervals were considered, namely very high (>80%),
high (60%–80%), medium to high (40%–60%), medium to low (20%–40%), and low (<20%), where the
higher likelihoods represented higher landslide occurrence potential. Ideally, all susceptibilities of
the true landslide occurrence samples should be close to 100%, indicating true occurrence. However,
the landslide susceptibility distributions obtained for the 2008 dataset on the basis of the model using
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the original RF algorithm were much lower than 100% (Table 3). These results also indicated that
performing cost-sensitive analysis resulted in more reasonable landslide susceptibility results.

Figure 6. Comparison of the representative results (Y axis: accuracies) of 2008 dataset prediction
obtained using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN,OA,
UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall
accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide
class, respectively. (a) L:N = 1:1; (b) L:N = 1:4; (c) L:N = 1:7; (d) L:N = 1:10.

Table 3. Landslide susceptibility distributions (Unit: %) of the 2008 occurrence samples based on the
random forest algorithm with cost-sensitive analysis.

L:N Cost Low Medium to Low Medium to High High Very High

1:1
1 42.0 28.5 21.0 8.2 0.3

50 2.9 6.7 26.9 26.7 36.8

1:4
1 71.4 15.6 11.6 1.4 0.0

500 2.7 7.8 27.7 26.5 35.3

1:7
1 73.1 18.9 7.1 0.9 0

1000 3.6 14.5 25.4 26.3 30.2

1:10
1 79.1 16.2 4.7 0.0 0.0

3000 2 2.8 12.5 32.6 50.1

Abbreviations: L, landslide class; N, non-landslide class.
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3.1.3. Time-robustness Verification with Single-event Samples

The scenario discussed in this section is similar to that discussed in Section 3.1.2, but each
prediction dataset consists of a single typhoon event. This type of verification was designed to explore
the event-based prediction capability of multi-temporal landslide susceptibility models. The models
were employed to predict landslides associated with Typhoon Fung-wong, Sinlaku, and Jangmi, which
occurred in 2008, with different numbers of non-landslide samples. Similar procedures were applied to
datasets from 2004 to 2007 for time-robustness verification of the models based on the abovementioned
single-event samples. Representative results for prediction for Typhoon Fung-wong, Sinlaku, and
Jangmi obtained using different algorithms are presented in Figures 7–9. Examination of these figures
revealed that the results produced by the RF method with cost-sensitive analysis were more favourable
in most cases. In the 1:1 case, all indices obtained with the RF model for prediction of Typhoon
Fung-wong, Sinlaku, and Jangmi were larger than 0.74, 0.73, and 0.82, respectively. A trade-off between
the landslide UA and PA or keeping of the landslide PA was also observed in the unbalanced sample
proportion cases.

Figure 7. Comparison of the representative results (Y axis: accuracies) of Typhoon Fung-wong
prediction using RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN,
OA, UA, PA, AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm,
overall accuracy, user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and
non-landslide class, respectively. (a) L:N = 1:1; (b) L:N = 1:4; (c) L:N = 1:7; (d) L:N = 1:10.
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Figure 8. Comparison of the representative results (Y axis: accuracies) of Typhoon Sinlaku prediction
using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA,
AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy,
user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class,
respectively.(a) L:N = 1:1; (b) L:N = 1:4; (c) L:N = 1:7; (d) L:N = 1:10.

This study also examined the landslide susceptibility distributions of the true occurrence samples
for Typhoon Fung-wong, Sinlaku, and Jangmi based on the RF algorithm with cost-sensitive analysis
(Table 4). Table 4 reveals that the developed models produced reasonable landslide susceptibility
values for the true occurrence samples.
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Figure 9. Comparison of the representative results (Y axis: accuracies) of Typhoon Jangmi prediction
using the RF, DT, BN, and logistic algorithm with cost-sensitive analysis, where RF, DT, BN, OA, UA, PA,
AUC, L, and N indicate random forests, decision tree, and Bayes network algorithm, overall accuracy,
user’s accuracy, producer’s accuracy, area under ROC curve, landslide class, and non-landslide class,
respectively.(a) L:N = 1:1; (b) L:N = 1:4; (c) L:N = 1:7; (d) L:N = 1:10.

Table 4. Landslide susceptibility distributions (Unit: %) of the single-event occurrence samples based
on the RF algorithm with cost-sensitive analysis.

Typhoon L:N Cost Low Medium to Low Medium to High High Very High

Fung-wong

1:1 10 0 9.1 54.2 29.1 7.6
1:4 500 0 3.6 14.2 39.4 42.8
1:7 500 0 7.2 56.4 15.8 20.6

1:10 1000 0 10.9 34.2 33.9 21

Sinlaku

1:1 50 5.2 8.8 33.1 20 32.9
1:4 500 4.9 8.1 30.5 22.4 34.1
1:7 3000 3.5 5.1 14.5 34.4 42.5

1:10 3000 5.7 5.4 32.4 22.8 33.7

Jangmi

1:1 50 0 9.1 23.4 27.6 39.9
1:4 500 0 13 24.7 25 37.3
1:7 3000 0 0 18.5 22.7 58.8

1:10 3000 0 8.7 28.9 23.4 39

Abbreviations: L, landslide class; N, non-landslide class.
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3.1.4. Susceptibility Mapping

The multi-temporal landslide susceptibility maps generated from the developed models are
presented in Figure 10. The RF models constructed without cost-sensitive analysis were too conservative
(close to training data of occurrence area) and led to large omission errors. By contrast, the RF models
with cost-sensitive analysis produced more stable and reasonable landslide susceptibility maps.

Figure 10. Cont.
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Figure 10. The multi-temporal landslide susceptibility maps generated (a) without cost analysis in the
1:1 case,(b) with cost = 50 in the 1:1 case, (c) without cost analysis in the 1:4 case, (d) with cost = 500 in
the 1:4 case, (e) without cost analysis in the 1:7 case, (f) with cost = 1000 in the 1:7 case, (g) without cost
analysis in the 1:10 case, and (h) with cost = 3000 in the 1:10 case.

3.2. Event-Based Landslide Susceptibility Assessments

To ensure that there were sufficient samples to predict other events, the Typhoon Aere, Matsa,
and Sinlaku samples, with the largest numbers of samples (Table 1), were selected to construct the
landslide susceptibility models for space- and time-robustness verifications. Two-thirds of samples
of each typhoon event were randomly extracted to develop the models, and the remainder samples
were the check data. For time-robustness verification, one of the constructed models was employed to
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predict the other two events. The RF, DT, Bayes network algorithm, and logistic regression algorithm
were also integrated with cost-sensitive analysis during the modeling process. In addition, sample
ratios of 1:1, 1:4, 1:7, and 1:10 were considered for landslide and non-landslide classes.

3.2.1. Space-Robustness Verification

Procedures similar to those discussed in Section 3.1.1 were applied to the selected typhoon events.
The evaluation results are presented in Figure 11. Three important points were observed. First, the
results in the equal sample proportion cases presented accuracies greater than 0.85. Second, there
was an increase in the number of landslide commission (Typhoon Aere) and omission (Typhoon Aere
and Sinlaku) errors in the Bayes network and logistic regression results for some typhoons in the
unbalanced sample proportion cases. Third, the results from the RF- and DT-based models remained
stable in all cases, especially those of the RF algorithm–based model.

Figure 11. Cont.
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Figure 11. Space-robustness accuracies (Y axis) of event-based landslide susceptibility assessments,
considering different algorithms and proportions of landslide and non-landslide classes, where RF,
DT, BN, and logistic indicate random forests, decision tree, Bayes network algorithm, and logistic
algorithm, respectively. (a) Non-landslide detections for Typhoon Aere; (b) Landslide detections for
Typhoon Aere; (c) Non-landslide detections for Typhoon Matsa; (d) Landslide detections for Typhoon
Matsa; (e) Non-landslide detections for Typhoon Sinlaku; (f) Landslide detections for Typhoon Sinlaku.

3.2.2. Time-robustness Verification

A procedure similar to that detailed in Section 3.1.3 was applied for Typhoon Matsa, Sinlaku, and
Aere predictions. An overall comparison of the best prediction results for Typhoon Matsa, Sinlaku,
and Aere is presented in Table 5. On the basis of this table, the accuracies were higher than 0.7
in the 1:1 cases, 0.63 in the 1:4 cases, 0.63 in the 1:7 cases, and 0.6 in the 1:10 cases, except for the
landslide UAs of the unequal sample proportion cases. The results also indicated that the RF algorithm
with cost-sensitive analysis performed better than the other algorithms. The evaluated landslide
susceptibility results of the true occurrence samples for RF models with cost-sensitive analysis are
presented in Table 6. Most of the true landslide samples were correctly labeled with high susceptibility.

Table 5. Best results of the event-based landslide susceptibility assessments.

P L:N T Method. Cost OA
(%) AUC UA

(N)
PA
(N)

UA
(L)

PA
(L)

Matsa

1:1

Sinlaku

RF 50 73.48 0.83 0.72 0.77 0.75 0.70
1:4 BN 500 0.82 0.98 0.71 0.45 0.95
1:7 DT 50 0.78 0.95 0.94 0.59 0.63
1:10 DT 100 0.78 0.96 0.93 0.48 0.65

Sinlaku

1:1

Aere

Logistic 5 76.62 0.8 0.78 0.74 0.75 0.79
1:4 RF 1000 0.86 0.90 0.86 0.53 0.63
1:7 RF 3000 0.86 0.95 0.88 0.43 0.65
1:10 RF 5000 0.84 0.96 0.89 0.36 0.60

Aere

1:1

Sinlaku

RF 50 83.43 0.9 0.8 0.89 0.88 0.78
1:4 RF 300 0.89 0.92 0.95 0.78 0.68
1:7 Logistic 70000 0.92 0.96 0.96 0.74 0.73
1:10 RF 700 0.89 0.97 0.96 0.65 0.66

Abbreviations: AUC, area under ROC curve; BN, Bayes network algorithm, DT, decision tree; L, landslide class;
N, non-landslide class; OA, overall accuracy; P, prediction events; PA, producer’s accuracy; RF, random forests; T,
training events; UA, user’s accuracy.
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Table 6. Landslide susceptibility distributions (Unit: %) of the event-based occurrence samples on the
basis of RF algorithm with cost-sensitive analysis.

P T L:N Cost Low Medium
to Low

Medium
to High High Very

High

Matsa Sinlaku

1:1 50 0 0.7 6.8 83.1 9.4
1:4 700 0 1.7 34.6 60.1 3.6
1:7 3000 0 0.2 28.1 50 21.7

1:10 3000 0 8.2 64.5 20.8 6.5

Sinlaku Aere

1:1 100 5.1 13.9 29 27 25.1
1:4 1000 4.7 17.6 27.6 25.1 25
1:7 3000 5.7 17.3 22.7 25 29.3

1:10 5000 8.1 20.3 28.7 19.3 23.6

Aere Sinlaku

1:1 50 1.8 11.4 23.8 62.5 0.5
1:4 300 6 19.3 26.5 48.2 0
1:7 500 10.2 14.4 17.9 56.4 1.1

1:10 700 16.5 8.8 21.4 52.7 0.6

Abbreviations: L, landslide class; N, non-landslide class; P, prediction events; T, training events.

3.2.3. Susceptibility Mapping

The event-based landslide susceptibility maps generated based on the constructed models and
Typhoon Sinlaku sample, as an example, are presented in Figure 12. The figures reveal that the equal
sample ratio produced reasonable spatial patterns for event-based landslide susceptibility modeling,
whereas the extremely unbalanced ratios seemed to cause over-fitting of the models because these
patterns were close to the training data of occurrence area.

Figure 12. Cont.
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Figure 12. The landslide susceptibility maps generated for Typhoon Sinlaku (a) with cost = 50 in the
1:1 case, (b) with cost = 300 in the 1:4 case, (c) with cost = 500 in the 1:7 case, and (d) with cost = 700 in
the 1:10 case.

4. Discussion

The purpose of constructing multi-temporal and event-based landslide susceptibility models
was to explore the capability of developed procedures for spatial pattern description and temporal
prediction. Experimental results based on space- and time-robustness verifications as well as mapping
results demonstrated the feasibility and stability of the developed algorithm (i.e., RF with cost-sensitive
analysis). The reason was probably that the bootstrap and optimization steps in the RF algorithms and
decision boundary adjustments in the cost-sensitive analysis improved the performance because they
can help reduce the problem of over-fitting. However, the extremely unbalanced sample ratio was not
suggested for event-based modeling due to the serious over-fitting issue.

In terms of the landslide and non-landslide samples, it was assumed that for most algorithms,
misclassification errors have an equal cost. However, in many real-world applications, this assumption
is not true. In this study, the results of time-robustness verification of unequal sample proportion
cases and quantitative evaluation without cost-sensitive analysis revealed that the FN errors (i.e.,
missing or omission rates) were more serious than FP errors (i.e., false alarm or commission rates).
This result was consistent with a previous study by Desai and Jadav [54]. From a statistical point
of view, the low accuracies suggested a significant disagreement between the constructed models
and prediction datasets. Two scenarios may have caused prediction errors. First, the predicted
landslide samples revealed that similar conditions occurred in the past, but these locations in the
prediction data were presently stable. Second, some landslide areas may have been classified into
the non-landslide class because the models did not have similar occurrence situations derived from
previous experience (training data). These may be the reasons for accuracies lower than those in the
space-robustness verification.

The effectiveness of cost-sensitive analysis was explored to deal with landslide susceptibility
assessments with balanced and imbalanced class distributions. Reducing omission (missing) errors
in unequal sample ratio cases was more important than decreasing commission (false alarm) errors
in this study because landslide susceptibility assessment was a preceding part of landslide risk
assessment and management framework. Reducing commission errors was expected through further
tasks. The experiments demonstrated that the accuracies of the developed models were better than
93% and 75% in most cases for space- and time-robustness verifications, respectively. It has been
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demonstrated that elaborate back analysis of past landslides gives insight of critical factors affecting
their triggering [61,62]. Thus, back analysis on a number of observed past landslides of the region
considered may give insight of critical factors affecting landslides and thus verify or adjust the machine
learning based models and the factors used. On the basis of generated maps, Figures 10b,d,f,h, and 12a
are suggested to be used for landslide risk assessment because the susceptibility distributions are
reliable as listed in Tables 3, 4 and 6. Future studies can further include other information to achieve
more accurate results of landslide risk assessments and management and to assist in land planning
and policy making.

5. Conclusions

The development, which integrated the RF algorithm and cost-sensitive analysis with the GIS
datasets and remotely sensed images, is presented to evaluate multi-temporal and event-based
landslide susceptibilities for the Shimen reservoir watershed and is compared with three commonly
used algorithms in the related field (i.e., DT, Bayes network, and logistical regression). The experimental
results of space-robustness verification indicated that the RF algorithm outperformed the others, and
all RF accuracies for the multi-temporal and event-based landslide susceptibility models were higher
than 0.93 (Figures 3 and 11). However, using such models to predict other events (time-robustness
verification) may not produce plausible results because of the over-fitting issue. It is similar to the
results of Rossi et al. [6], Tsai et al. [10] and Chang et al. [46].

To address the over-fitting issue and to improve the prediction capability, cost-sensitive analysis
was conducted to adjust decision boundaries. The constructed multi-temporal and event-based models
were evaluated and verified. The results in most cases indicated that the developed models produced
better and more stable accuracies (Figures 6–9 and Table 5). Regarding the unequal sample ratios in
this study, reducing missing error was critical and the commission error was expected to decrease
through further tasks in landslide risk assessment and management framework. The accuracies of the
constructed models were greater than 0.75 in most cases for time-robustness verifications. To further
examine the developed models, the landslide susceptibility distributions of true occurrence samples
(Tables 3, 4 and 6) and the generated landslide susceptibility maps (Figures 10 and 12) were compared.
They demonstrate that using cost-sensitive analysis can provide more reasonable results than the
original algorithms. Furthermore, landslide susceptibility map generated through the results of the
developed method revealed that the multi-temporal models were unaffected by the sample ratios, but
use of extremely unbalanced sample ratios for event-based modeling was not suggested.

The developed landslide susceptibility modeling framework also contributes to decision and
policy making for better land planning and watershed management, and for better understanding
of the eco-environmental impacts in the affected areas. In practice, collecting detailed field data
is usually costly and time-consuming at a regional scale and may further reduce the effectiveness
of knowledge-driven approaches. In such cases using geo-spatial technologies for data acquisition,
processing and analysis may provide a more economic and efficient alternative for landslide assessments.
On the other hand, in the knowledge-driven approaches, the stability can be determined accurately
for specific slope sites, and these results are valuable for other cases. The outcomes of data-driven
approaches are usually suitable for areas with long-term observation and data collection. Therefore,
combining data- and knowledge-driven approaches for multi-scale landslide analysis and mapping
can help support land planning and policy marking. Finally, the effect of the quality of landslide
susceptibility models on the consequent tasks could be also examined in the future.
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