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Abstract: Text representation is one of the key tasks in the field of natural language processing (NLP).
Traditional feature extraction and weighting methods often use the bag-of-words (BoW) model,
which may lead to a lack of semantic information as well as the problems of high dimensionality and
high sparsity. At present, to solve these problems, a popular idea is to utilize deep learning methods.
In this paper, feature weighting, word embedding, and topic models are combined to propose an
unsupervised text representation method named the feature, probability, and word embedding
method. The main idea is to use the word embedding technology Word2Vec to obtain the word vector,
and then combine this with the feature weighted TF-IDF and the topic model LDA. Compared with
traditional feature engineering, the proposed method not only increases the expressive ability of the
vector space model, but also reduces the dimensions of the document vector. Besides this, it can be
used to solve the problems of the insufficient information, high dimensions, and high sparsity of BoW.
We use the proposed method for the task of text categorization and verify the validity of the method.

Keywords: word embedding; latent Dirichlet allocation; feature weighting; text representation

1. Introduction

Massive amounts of data are created on the Internet every day. It is clearly the best choice to
process these data with computers. Transforming these texts written with natural languages into the
forms that computers can understand has been one of the core goals of NLP. It is time consuming
and labor intensive to label data sets, which generally requires a great deal of much more manual
work. Therefore, unsupervised text representation is becoming becomes more and more practical.
Many tasks need it, such as text classification and sentiment analysis [1–3].

The simplest text representation is the model is bag-of-words (BoW) model. It regards each word
as a separate individual. It represents a document d as d = (w1, w2, . . . , wl), where wi represents the ith
word appearing in document d, and l represents the number of words in document d. If a corpus C
contains m documents, the vocabulary V of C is the length of the document vector. Obviously, when the
corpus is relatively large, the BoW model will have the problem of high dimensional sparsity. Since the
BoW model does not consider the relationship between words, semantic information such as word
meanings and context association are also ignored [4].

Taking as an example a sentence s, “I have an Apple phone”—suppose BoW incorporates the
terms {have, apple, phone} into the calculation, then the vector expression of s is s = [0, 1, 0, 1, 1].
In this model, words are simply expressed with single values. Many classic feature weighting methods
of BoW are statistics of words in different ranges of the corpus, and then these statistics are used to
calculate the weight of words to construct the document vectors. Due to weight calculations, the final
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document matrix is no longer monotonously constructed by 0 and 1. These statistics may include the
number of occurrences of a word in a single text, in all texts, or the number of occurrences in different
categories of the corpus.

It is beneficial to use more abundant values than 0 and 1 to characterize the vectors. Some classic
methods can accomplish feature selection while performing feature weighting. Calculating by
algorithms such as mutual information (MI) [5] or information gain (IG) [6], one can give different
weights to features. Based on these weights, feature selection is possible. Feature selection can reduce
the dimensions of the document vectors. After the feature selection is completed, no further weighting
work is performed, and vector representations of texts can be obtained.

Feature engineering obtains shallow models. Shallow models have a bottleneck because the texts
contain more semantics than the models’ hypothesis [1]. In recent years, some approaches for the
research into deep learning have involved NLP. On the whole, there are five major types of models:
word embedding (e.g., Word2Vec [7], FastText [8], Glove [9]), convolution neural network feature
extraction [10,11], the context mechanism [12], memory storage mechanism [13], and the attention
mechanism [14].

Thus, there are usually two basic kinds of models that can be used for text representation.
They are shallow models such as feature engineering and the deep models based on deep learning.
Concomitantly, there are three schemes that can be used for text representation:

1. Improve the shallow models: The shallow models also have a great deal of room for improvement
through the idea of dimension reduction and improved weighting methods. The works [15–19]
introduced in Section 2 have achieved good results.

2. Develop deep models: This is a major research direction, and deep learning models such as
Bidirectional Encoder Representations from Transformers (BERT) [20] have achieved excellent
results. Deep models can capture semantic information better [7,21]. For example, the Embeddings
from Language Model (ELMo) [22] considers the used context to train word vectors. It can
obtain different word vectors for one word. Different word meanings correspond to different
vectors, while general word vector models, such as GloVe, can get one fixed word vector for one
input word.

3. Combine the achievements of the shallow models and the deep models: Some researchers [1,23,24]
have tried this route on different tasks. Although feature engineering generally does not introduce
deep learning models and deep learning-based models do not need feature engineering, they can
work together as long as words or documents can be expressed as vectors. The effect of these
methods can also be compared by the same classification task.

Therefore, this paper considers the introduction of word embedding. The new models we propose
can create document vectors for short texts. They are unsupervised, simple, easy to understand and
can be used even if there is only a small data set.

Furthermore, this paper also attempts to use topic models for document modeling. Topic models are
also shallow models, but they are completely different from the feature engineering. Feature engineering
traditionally gives zero value to words that are not included in a text. These locations, which are
originally 0, can be utilized with the help of topic models. A word in a corpus may not appear in
the text, but this does not mean that the words of the text have no association or similarity to it.
By clustering the words in the corpus into several clusters, the similarity between words could be
discovered. Words clustered into one cluster can be regarded as a topic. Usually, a document only
discusses a few topics, and a sentence in the document is also around the topic. For the sentence s
mentioned above, suppose that the probability that belongs to the ‘phone’ topic is 0.9, for a collection
of words {I, have, an, Apple phone}, if the probability of these words belongings to the ‘phone’ topic is
{0.1, 0.1, 0.5, 0.1, 0.2}, then sentence s could be represented as s = [0.09, 0.09, 0.45, 0.09, 0.18].

If a document representation matrix is formed by sentence vectors such as s, it would not have
many 0 values. However, compared with the matrix obtained by the traditional feature engineering,
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topic models only change the value itself but do not represent the word as a multi-dimensional vector.
Therefore, this paper considers using the method of word embedding [7,25], which can address the
issue of lack semantic information in BoW by conversing words into vectors.

Assuming the word embedding vector matrix shown in Figure 1 is utilized, the representation of
sentence s can be obtained as FW= [1.6, 0.6, 1.5] or PW = [0.47, 0.07, 0.41]. According to the result of the
operation, the original five dimensional sentence vector becomes three dimensions, but there is no loss
of information either obtained from the feature weighting or topic model. Furthermore, the semantic
information of the word itself is also added. As our experiments show in the next section, the proposed
model that combines the traditional methods and deep learning is optimal for text representation.
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In this paper, the core idea of text representation is shown in Figure 1. The models shown are
the feature and word Embedding (FW) model, topic probability and word embedding (PW) model.
Based on these two models, we propose the feature, probability and word embedding (FPW) model.

At the same time, this paper proposes a text representation model for splicing FW and PW, named
the FW and PW conjunction (FPC) model. In addition, with reference to the work of lda2vec [26],
we propose a text representation model that combines the FW model and the second kind of topic
probability model (FP2). The details of all models will be described in Section 3. The work related to
this paper will be described in Section 2.

2. Related Work

Currently, word embedding vectors have become a popular research object. The idea of the word
vector was first proposed by Hinton [27] in 1986. The core idea is to make a distributed representation
of a word, expressing each word as an n-dimensional dense, continuous vector. The main advantage
of distributed representation is the fact that it has very powerful feature representation capabilities,
such as k values of n-dimensional vectors per dimension, which can represent kn concepts. In fact,
both the hidden layer of the neural network and the probabilistic subject model of multiple latent
variables are distributed representations. In 2003, Bengio proposed the neural probabilistic language
model (NNLM) [28], which was used to represent each word as a dense vector.

After that, the word vector became a popular research object until the release of Word2Vec by
Google in 2013. Word2Vec proposes two models, namely continuous bag-of-words (CBoW) model and
Skip-Gram, which are similar in structure to NNLM. However, they use a different vector coding idea,
namely a one-hot encoding vector space. Each vector has only one dimension of 1, and the rest are
0. According to Mikolov’s work [25], the accuracy of the Skip-Gram model is superior to the CBoW
model. The Skip-Gram model can achieve an accuracy of about 60% in various experiments, but CBoW
can only reach about 40%. Thus, this paper adopts the Skip-Gram model, which predicts the context of
a given input word. Once the model is built and trained, the weight matrix of the hidden layer of a
linear neural network in the model can be obtained. This weight matrix is the word vector matrix.
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The word vector obtained by Word2Vec can be used for various tasks, such as calculating the
similarity of words and finding the relationship between words based on semantics. This paper
uses these vectors to express texts. The main idea is to combine new technologies with traditional
technologies, so it also needs to rely on traditional text representation methods.

Feature selection and feature weighting are common tasks for traditional text representation
methods. This paper chooses the most basic and simple feature weighting algorithm, namely the term
frequency—inverse document frequency (TF–IDF) [29], where TF refers to the word frequency and
IDF refers to the inverse document frequency. Its equation is (1)

t f id fw = t fw × log2(
n(D)

n(Dw)
) (1)

where t fw indicates the frequency of word w, n(D) indicates the amount of texts in set D, and n(Dw)

indicates the amount of texts that contain w.
The number of statistical words appearing in texts and the corpus can represent the importance of

words. The importance of a word increases proportionally with the number of times it is contained
in a document, but it also decreases inversely with the frequency it appears in the corpus. As an
unsupervised feature weighting method, TF–IDF can complete text representation even for data sets
without label categories. However, as noted in Section 1, traditional feature weighting techniques,
such as TF–IDF, are inclined to represent multiple texts as a large sparse matrix, which may cause
high-dimensional representation [30–33].

Depending on the idea of feature weighting, many researchers have proposed different feature
selection methods. For example, Zhou [15] proposed the interclass and intraclass relative contributions
of terms (IIRCT) model, introducing the concept of intra-class and inter-class frequencies. Chen [16]
proposed the term frequency and inverse gravity moment (TF–IGM) to examine the influence of
features on different categories. Researchers have proposed some feature selection methods for specific
tasks. For instance, Parlar’s query expansion ranking (QER) method [17] is suitable for sentiment
analysis. Zheng [18] introduced lexical and syntactic information to supplement the selection of
features. In addition, it is also feasible to optimize existing feature selection methods [19].

These new methods have achieved satisfactory results. As far as the core idea is concerned,
all the above methods use feature weighting to perform feature selection. We also perform feature
engineering, but we want to reduce the dimensionality of the eigenvectors. Moreover, many of these
new feature-based engineering methods incorporate category information, which is supervised learning
because of the need to count the frequency of features appearing in different categories. The goal of
this paper is to obtain unsupervised methods, so we do not add category information. In order to make
the models easy to understand, we have not attempted to introduce lexical or syntactic information.

Another technique that can be utilized to represent documents is the topic model. The idea of
the topic model is conceptually different from feature engineering. In the perspective of the topic
model, there is a hidden hierarchy named ‘topics’ from words to chapters. As latent Dirichlet allocation
(LDA) [34], a classical topic model, believes, documents are usually talking about one or several
topics, so the words involved will be mostly focused on these topics. As long as the appropriate
algorithm is used, the words appearing in the document can be clustered to understand the topic being
discussed. For example, an article about an Apple mobile phone may have several words regarding
appearances, speed, screen size, clarity of the photo, overall cost performance, etc. If we put together
and observe these words, we can generally determine what the article mainly says about the mobile
phone. Structures of the document—topic distribution and the topic—word distribution of LDA are
set out in Figure 2.
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Since all of the words are involved in modeling, the dimension of the LDA topic—word matrix
is the size of the vocabulary V; that is, all words in the vocabulary will have a probability value for
each topic. Although LDA is usually used to cluster words, it can also be used for text representation.
Numerous studies have attempted to improve LDA in order to make those words belonging to a topic
have a greater probability under the topic while a lower probability under other topics. Such approaches
can increase the discrimination of different topics. These studies have also achieved considerable
results, but we consider the complexity of the actual operation only using the basic LDA model.

In this paper, the reason to use LDA for document modeling lies in the essence of LDA topic
modeling. LDA concerns how an article is written from a topical point of view, unlike feature
engineering. Although it is usually only used for topical clustering, it has a different perspective.
This kind of modeling can obtain some information that traditional feature engineering does not care
about. Traditional feature engineering generally does not care about words that are not included in a
specific text. However, in the LDA topic model, even if a word w is not mentioned in an document d,
as long as d discusses topics related to w, it can be considered that d has a certain relationship with w.
Therefore, after the concept of a ‘topic’ is introduced, documents will be represented as probability
vectors of topics. Through the probability vectors of topics and words, the degree of association
between documents and words can be obtained.

As mentioned above, we also refer to the idea of an advanced work lda2vec [26] of LDA. Lda2vec is
a model that combines LDA and Word2Vec to construct context vectors. It considers that the document
vectors are added to the word vectors to obtain the context vectors. In LDA, if we want to visualize
what an article is discussing, we are required to sort the probability values of the words in each topic,
find the words with higher probability and print them out. Lda2vec uses an algorithm similar to LDA,
but unlike LDA, the topic–word matrix is truncated after being sorted. The resulting document vector
dimension is only comparable with the word vectors by Word2Vec, such as 300 dimensions [35]. This is
intended to facilitate the calculation of the context vectors.

This is an inspiring idea of dimensionality reduction: retaining more important information and
deleting less-worthy parts, then matching with the results of other methods, finally obtaining a better
model. Text categorization has made many advances in the era of deep learning, but it still requires
model selection, parameter optimization, coding, and preprocessing (one-hot, n-gram), as well as time
factors. Therefore, it is necessary to find a simple and effective model with fewer parameters to be
easily adjusted.

In addition to the above basic methods, some researchers have proposed some methods which
combine deep and shallow models. For example, Zhao [1] proposed a fuzzy bag-of-words model.
With the help of a simple TF—feature weighting algorithm and Word2Vec, a good text representation
method is obtained. Another example is Lan’s method [36], which combines traditional similarity
calculations with word embedding. It uses WordNet for word similarity calculation. WordNet is a
knowledge base. Feature weighting and word vector combinations can also accomplish some key
words extraction tasks, such as in the work of Chen [23] and Hu [24]. Methods of combining topic
models with word vectors have also been studied. For example, WE-LDA [37] is used for word
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clustering. The lda2vec mentioned above considers the context vectors to improve topic extraction.
The G-LDA [38] model combines Gaussian LDA with word embedding and is also used for topic
extraction. This paper deems that the combined models can be used for a variety of purposes, and so
we try to create some for text representation as well.

3. Models

This section introduces our proposed models. They all depend on word embedding, so we start
with the word embedding vector.

According to Google Word2Vec, words can be presented as multidimensional vectors. Based on
the training data, a neural network is constructed, and a word vector model is trained to obtain the
weight matrix of the hidden layer of the neural network. These weight values form the word vector.
The dimensions of the vector can be set to a fixed value, and Google sets this value to 300 in some
experiments, which mean that each word is represented by 300 features.

The word vector wi of one word wi can be expressed as in Equation (2)

wi =
[
vec1 |wi , vec2 |wi , . . . , vecn|wi

]
(2)

where vect|wi is the value of the tth dimension of the word vector representing word wi, and n is the
dimension size of the vector. If we set a 300-dimensional word vector, the value of n is 300. This paper
uses bold forms to represent matrices or vectors.

There is a total of v different words in the corpus C as training data to form the word list V.
Every word in the word list V is encoded. Assuming that the word vector of each word is used as a
row vector, and there are a total of v words in the vocabulary, a word vector matrix W with v rows can
be formed. This word vector matrix W of the corpus C is described as in Equation (3)

W =


w1

w2

. . .
wv

 (3)

In the experiment, the word vector is trained according to the default parameters recommended
by Google, words with a frequency less than 5 in the entire corpus are filtered out, and the word
vector is not calculated. Therefore, if we need these vectors of words with a lower frequency in
the experiment, the system should randomly generate an n-dimensional vector to participate in the
operation. We do not choose to change the recommended parameters because we believe this helps to
judge the versatility of our approach.

3.1. The FW Text Representation Model

In this paper, the feature weighting technique is first used to represent the text with the word
vector. The feature weighting part adopts the TF–IDF method as mentioned above. Supposing the
corpus C consists of m documents as a text set, based on the word vector and the feature weighted text
representation model, the vector fwi of the document di is obtained by Equation (4)

fwi = tfidfi•W (4)

where W, as mentioned above, is a word vector matrix obtained by Word2Vec, usually fixed in
hundreds of dimensions. tfidfi is the TF–IDF representation of document di, which can be formed as
in Equation (5)

tfidfi = [t f id fw1i , t f id fw2i , . . . , t f id fwvi ] (5)

where t f id fwi can be calculated as (1). The strategy of TF–IDF is to observe the entire vocabulary V and
text set D, calculate the word frequency (TF) and the inverse document frequency (IDF) of words in D.
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The words that do not appear in the document di are represented as 0 in the tfidfi vector. Therefore,
the dimension of this vector is v, the length of the vocabulary V. This may have many zero values.
Since the entire text set D has m documents, we will obtain m vectors to form a TF–IDF vector matrix.

After the calculation by (5), the dimension of the document vector fwi is equal to the dimension
of the word vector matrix W. This approach can solve the dimensional problem of high-dimensional
sparse matrices well. There is no requirement to perform complex clustering operations or special
dimensionality reduction operations. As long as the matrix obtained by feature weighting is multiplied
by the word vector matrix calculated by Word2Vec, the traditional feature weighting technique can
be combined with new word embedding. The vector dimension of each text can be low, in the range
of tens to hundreds, but in theory it does not sacrifice information obtained from any of the feature
weighting or word vectors. Then, the text matrix FW of the entire text set D can be expressed by
Equation (6)

FW =


fw1

fw2

. . .
fwl

 (6)

In experiments, in order to use it with the subsequent models, the TF–IDF vector matrix is
normalized, as in Equation (7)

f winew =
f wi − f wmin

f wmax − f wmin
(7)

where f winew represents each value in the normalized FW matrix, f wi represents each value in the
original FW matrix, f wmin represents the global minimum of the FW matrix, and f wmax represents the
maximum value in the FW matrix.

3.2. The PW Text Representation Model

The core idea of the topic model is to assume that a document will focus on one or several
fixed topics, and we can discover these topics by aggregating words in the document. A number of
documents in a field can also be summarized as such. There are a variety of topic models which can be
used for topic discovery tasks.

The LDA we used is a well-known topic model and has been widely accepted by academics and
industry. Using the LDA algorithm and performing Gibbs sampling [39], the topic distribution θ of
documents and the word distribution ϕ of topics can be obtained with Equation (8)

θ =
n¬i

m,ki
+α∑K

i=1 n¬i
m,i+Kα

ϕ =
n¬i

k,wi
+β∑V

i=1 n¬i
k,i+Vβ

(8)

where i indicates the sequence number, m denotes the document label, k denotes the topic label,
w denotes the label of the word, K is the total number of topics, V is the total number of words, α and β
are hyper parameters. In experiments in this paper, the topic number K is set to 20. According to the
convention, α = 1.0, β = 0.1, and the number of iterations is set as 1000.

Both θ and ϕ create a probability matrix. From θ, we can see weights of different topics in each
document. From ϕ, we can see the weights of different words under each topic. If a document focuses
on a few topics, the value of the corresponding position is larger in the θmatrix. Although LDA is also
based on BoW, it does not consider the connection between semantics and neighboring words, but it
can find words that often appear under a certain topic. In view of this, if we can determine the core
topic of a document, even if some words that appear frequently belong to the topic do not appear in
the document, we can believe that this document is relevant to these words.
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After obtaining the relation matrix of the document and words, we can get the document vector
by using Word2Vec. According to this idea, we can obtain a simple text representation model PW,
such as in Equation (9)

PW = θ•ϕ•W (9)

In the lda2vec model, some changes are made to the ϕmatrix. This paper refers to its idea and
also gets a document representation model without using Word2Vec. The ϕ matrix expresses the
probability of a word under each topic, which can be seen as the weight of each word belonging
to a topic. In any topic, a large probability value indicates that the corresponding word is more
representative of the topic. LDA takes all the words into consideration. However, in fact, each topic
will only have some representative words. Therefore, we consider extracting these words to form a
new topic—word matrix. Therefore, we can reduce the dimension of the ϕmatrix.

We traverse the ϕmatrix by row, sort from large to small, and put the words with the highest
probability under each topic in the front row, intercept the vector of fixed dimension, and obtain the
new matrix ϕ′. That is a new text representation model P2, as shown in Equation (10)

P2 = θ•ϕ
′

(10)

In experiments, the dimension of ϕ′ will be set to the same as the word vector from Word2Vec to
facilitate a comparison with other models.

3.3. The FP2, FPW, and FPC Models

By combining word vectors with feature weighting and topic models, we obtain two different
models of text representation. Now, we let the two models cooperate with each other to obtain the
final text representation models. The combination is expected to outperform each model separately.

Currently available text representation models, combined with vectors of two different strategies,
are commonly in conjunction or extending. For example, some similar words of a word are added
to the document matrix as extended dimensions. If the FW model is added to the document vector
calculated by the P2 model, a document vector representation model FP2 can be obtained, as shown
in (11)

FP2 = FW + P2 (11)

We note that Word2Vec and lda2vec all mention one opinion about word vectors; that is,
the addition of word vectors can also represent semantic combinations. Based on this, we propose a
new document vector combination model FPW, as shown in Equation (12)

FPW = FW + PW (12)

The document vectors obtained by FW and PW are summed to obtain a set of document vectors
that can cover the two models. In addition, this paper also tries a conjunction model FPC, as shown in
Equation (13)

FPC = [FW, PW] (13)

The overall ideas of the above models are demonstrated in Figures 3 and 4.
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4. Experiments and Discussion

In this part, we use the common algorithms of text categorization to evaluate our models. The text
representation models we proposed are unsupervised, but in order to prove their validity, experiments
are carried out using already labeled data sets.

With regard to the task of text classification, some current research is carried out on very large data
sets and involves extreme multi-label text classification [40–43]. When an article may have multiple
category labels, it is necessary to conduct specialize research in classification algorithms. The portion
of the text representation can still utilize the TF–IDF algorithm, but the category labels may also require
a vector representation. It may also be necessary to train a linear classifier for each label. In order to
focus on the text representation method, this paper adopts the experiment of single label classification.

4.1. Corpus

There are various corpora of text classification. This paper selects corpora of public data sets in
Chinese and English. They are also used to train word vectors. These data sets are not too large in
scale, but they all have practical value. In realistic applications, although people can obtain a large
amount of text data without limiting their scope, it may be necessary to collect data for a specific topic
within a certain period of time. For example, if reviews are collected for a definite product of a brand,
the amount of data obtained in a single category may be small. Therefore, it is still necessary to test the
method of this paper on general-scale data sets.

Amazon_6 [44] is a corpus for sentiment analysis tasks, which are used for classification.
This corpus has six categories, namely cameras, laptops, mobile phones, tablets, TV, and video
surveillance. There are differences in the corpus size under different classes in the original corpus.
This problem still exists after preprocessing. For example, the tablet category has only 896 texts, while
the camera category has 6819 texts. We select the camera and mobile phone categories to experiment.
In order to keep balance, we sort the shorter 4000 texts according to length. Then there are 2000 texts
in each category, and a total of 17,565 different words involved in the operation. The text data of the
other four classes are lower in number than the camera and mobile phone. In order to test the effect of
our method on the unbalanced but real dataset, we experiment with short texts in these four classes.
Considering that the data is stored in ‘txt’ files, the short texts of this experiment refer to texts that are
shorter than 50 KB in size. The total number of texts participating in the experiment is 5705, and the
vocabulary size is 48,926.

FudanNLP [45] is an available corpus for the Chinese text classification task disclosed by Fudan
University, China. It contains 20 categories. The number of texts in each category is different. In order
to maintain balance, this paper chooses three categories: computer, economy and sports. Five hundred
texts are selected from each category for experiment. In addition, similar to the Amazon_6 corpus, we
use the remaining 17 classes of data to do the unbalanced experiment. In the case of a comparable
amount of information, Chinese articles usually take up less space than English, so a small portion of
the texts in the data set with a capacity greater than 15 KB were not included in the experiment. A total
of 4117 texts were included in the experiment, and the vocabulary size was 78,634. The difference in
the number of texts in the 17 categories is large. For example, there are only 59 texts in the transport
class but 617 texts in the space class. However, due to the large number of classes, the vocabulary is
still large.

ChnSentiCorp [46] is a sentiment analysis corpus released by the Beijing Institute of Technology.
It contains data in the fields of laptops and books. Each field contains 4000 short texts, which are
marked with positive and negative emotions. In each class, the number of texts is 2000. All the data
are used for experiments. The vocabulary of laptops is 8257 and the class of books is 22,230.

In summary, this paper selects two kinds of Chinese and English data sets, which are the corpora of
general classification and sentiment classification. The corpora selected by the sentiment classification
task are different from general texts, and usually contain subjective emotional expressions of human
beings, while there is less content of the general character. In this way of labeling, the corpus for
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sentiment analysis may also different from the general corpus. It is possible to label positive and
negative emotional polarities for each field, which is unnecessary for general text data sets. Thus,
this paper selected these different data sets for the experiments to prove the applicability of the models.

4.2. Preprocess

For the English corpus, we use the NLTK library with Python for preprocessing. The preprocessing
includes the usual removal of punctuation and stop word processing, as well as root restoration.
The English stop words list comes from NLTK. Raw Amazon_6 texts are json files, so we extracted the
content parts of the json files. These parts are comments of commodities. Then we made txt files for
experiments. One json file corresponds to one txt file.

For the Chinese corpora, we use a java version of the word segmentation tool developed by the
Chinese Academy of Sciences ICTCLAS [47] to segment words, and then remove stop words and
punctuation. The Chinese stop words list comes from CSDN [48]. It contains 1208 stop words. Before
the text representation calculation, it is considered that ordinary words in Chinese include generally
less than five Chinese characters, so words with a length greater than five are removed.

Regarding the setting of word embedding, Word2Vec can set the dimension of word vectors.
We set dimensions of 200, 300, 500, 800, etc., to compare the effects of the models in different vector
dimensions. Three hundred is a common setting for Word2Vec papers [7,35]. Our specific test values
are 200, 500 and 800, with increments of 300.

In addition to the change in dimensions, other parameters are always maintained in the
conventional settings of the Word2Vec tool. Since Word2Vec does not calculate word vectors for those
words used less than 5 times, we randomly generate vectors with values between (0, 1) for these words.

In this paper, the k-nearest neighbor algorithm (KNN) classifier [49] and linear support vector
machine (SVM) classifier [50] were used to classify texts and perform a 5-fold cross-validation with
an average accuracy rate. SVM is a well-recognized classifier. KNN has very good classification
effects on the LDA document models, but it may behave generically with the feature weighting
models. By observing the performance of two different classifiers, we can better evaluate our models.
We adopted the Sklearn tool to randomly set the k value for testing. In Linear SVM, we set the parameter
C as 1.

4.3. Measure of Performance

This paper uses the accuracy and F1-score [51] to measure the effect of classification. Accuracy is a
common metric in deep learning research, and F1 is a common criterion for classification tasks. When it
comes to multi-classification, this paper uses F1-macro.

Suppose there are two classes labeled positive and negative: TP indicates the number of documents
correctly classified into the positive class, TN indicates the number of documents correctly classified into
the negative class, FP indicates the number of documents classified into the positive class incorrectly,
and FN indicates those that are assigned to the negative class incorrectly. Then the algorithm of
accuracy is shown in Equation (14)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Among the two classification problems, there are two evaluation criteria of precision and recall [52],
as shown in Equations (15) and (16)

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)
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The F1-score can take these two criteria into account

F1_score =
2 ∗ P ∗R
P + R

(17)

In the multi-class problem, we can first count precision and recall for each class, and then calculate
the arithmetic average to obtain the F1-macro. This is a recognized and convincing evaluation criteria:

Macro_P = 1
n

n∑
C=1

PC

Macro_R = 1
n

n∑
C=1

RC

Macro_F = 1
n

n∑
C=1

FC

(18)

Therefore, this paper uses both accuracy and F1-macro to measure classification effects.

4.4. Experimental Results and Discussion

This part gives the experimental results and the corresponding analysis. First, we analyze a
single set of experiments performed on each corpus, and then give an overall discussion. The baseline
methods are TF–IDF, LDA, and Word2Vec. Word2Vec refers to the method of simply adding the vectors
of words to represent an entire document. The results of the different dimensions are averaged and
presented in tables. The best results in each column are shown in bold.

Experimental results of Amazon_6 corpus are shown in Tables 1 and 2. The results are good
overall, but the models proposed in this paper add a certain accuracy rate and F1-value compared
with the baseline.

Table 1. Results of Amazon_6 in two classes for 4000 texts by k-nearest neighbor (KNN).

Model
Accuracy and F1 of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.924 0.9239 0.923 0.9229 0.9125 0.9124 0.9003 0.9001

P2 0.9078 0.9075 0.9075 0.9073 0.9078 0.9075 0.9083 0.908

PW 0.9555 0.9554 0.9543 0.9542 0.9548 0.9547 0.955 0.9549

FP2 0.9335 0.9334 0.9273 0.9272 0.9208 0.9207 0.907 0.9069

FPW 0.9593 0.9592 0.9555 0.9549 0.9585 0.9584 0.958 0.9579

FPC 0.9565 0.9564 0.957 0.957 0.9557 0.9557 0.9575 0.9574

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.7798 0.7683

LDA 0.954 0.9539

Word2Vec 0.9538 0.9537

Table 1 shows that the FPW model maintains a relatively high accuracy, and the FPC model is close
behind. Since the FPC model is a conjunction of two matrices of FW and PW, its vector dimensions
are more than marked in the table, which are 400, 600, 1000, and 1600, respectively. If we consider
comparing the accuracy in approximately equal dimensions, then the FPW model is still better, and it
only uses hundreds of vectors to get better results.

Table 2 gives the experiments of the Amazon_6 corpus by SVM. FPW and FPC have excellent
overall effects. The results of FPW are stable and the best. The global maximum value appears in the
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500-dimensional experiment of FPW. The PW model has an improvement compared to the baseline
LDA, but FW is slightly worse than TF–IDF, which may occur on some corpora. The classification
decision function of SVM is determined by only a few support vectors, not the dimensions of vector
space. After reducing the dimensions of the vector space, the resulting new vector incorporates
more information, but it may also increase the difficulty of classification to some extent. However,
after further integrating the vector information of PW, a better classification effect can still be obtained.

Table 2. Results of Amazon_6 in two classes for 4000 texts by support vector machine (SVM).

Model
Accuracy and F1 of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.89 0.8888 0.9038 0.9030 0.9218 0.9196 0.914 0.9168

P2 0.6845 0.6831 0.6853 0.6839 0.6853 0.6838 0.6853 0.6837

PW 0.959 0.9589 0.96 0.96 0.9595 0.9594 0.9605 0.9604

FP2 0.91 0.9003 0.9105 0.9099 0.9285 0.9282 0.9218 0.9218

FPW 0.971 0.971 0.972 0.9719 0.9743 0.9737 0.972 0.9737

FPC 0.967 0.968 0.9685 0.9687 0.9705 0.9717 0.9715 0.9732

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.955 0.9607

LDA 0.9488 0.9487

Word2Vec 0.9587 0.967

At the same time, in this set of experiments, P2 has lost a great deal of information because
the part with fewer probabilities in the LDA ϕ matrix is cut off. The effect is not good. However,
after combining with word embedding, there is obvious improvement. It can be observed that the
information obtained by introducing more vectors is helpful for the vector representation of texts.
This is also evident in the experiments of the SVM classifier of the following corpus.

In the following Tables 3 and 4, this paper uses the data from the other four categories of the
Amazon_6. This set of experiments involves an unbalanced data set with a few more categories.

Table 3. Results of Amazon_6 in four classes for 5705 texts by KNN.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.9063 0.8818 0.8964 0.8721 0.9051 0.8817 0.9018 0.8786

P2 0.8676 0.8504 0.8678 0.8509 0.8676 0.8509 0.8826 0.851

PW 0.9438 0.9325 0.9442 0.9336 0.9437 0.9327 0.9449 0.9345

FP2 0.9167 0.8976 0.9078 0.8823 0.9167 0.8972 0.9125 0.8918

FPW 0.9427 0.931 0.9427 0.9312 0.9435 0.9319 0.9433 0.9326

FPC 0.9407 0.9283 0.9411 0.0295 0.9395 0.9276 0.9417 0.9304

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.8292 0.8064

LDA 0.9253 0.9103

Word2Vec 0.9404 0.9243
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Table 4. Results of Amazon_6 in four classes for 5705 texts by SVM.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.8038 0.7662 0.8068 0.7733 0.8334 0.8044 0.858 0.809

P2 0.6206 0.531 0.6205 0.5309 0.609 0.5348 0.6196 0.5294

PW 0.9468 0.9343 0.9442 0.9336 0.9465 0.9346 0.9472 0.9352

FP2 0.835 0.7993 0.8329 0.7969 0.8502 0.8213 0.8448 0.8197

FPW 0.9505 0.9391 0.9507 0.9394 0.9517 0.9399 0.9502 0.938

FPC 0.9488 0.9366 0.9493 0.9375 0.9497 0.9383 0.95 0.939

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.94 0.9366

LDA 0.936 0.9215

Word2Vec 0.9349 0.919

This set of experiments performed on the KNN classifier results in the best effect on the PW model.
The accuracy of FPW in the 500 and 800 dimensions exceeded the baseline methods, and FPW and FPC
both exceed the baseline methods on F1-macro. Since the values of the vectors obtained by TF–IDF
and Word2Vec are both positive and negative, it may happen that FW is slightly worse than TF–IDF or
Word2Vec. The vectors of LDA modeling are only positive, so in most experiments, the effect of PW
will be better than LDA or Word2Vec. In the next experiment, such a situation can also be observed.
In addition, P2 is also effective, and the impact of data imbalance is not very large. The FP2 model is
unexpected but has improved over the P2 model.

Table 4 shows that FPW performance is the best for SVM, followed by FPC. The effect of FW is
much lower than the baseline methods, which may be related to the imbalance of the data. The effect
of P2 is also poor. It can be seen that SVM does not adapt to the model truncated by topic modeling in
this corpus. However, the full PW still performs well, exceeding all baseline methods. The results of
the two classifiers above show that the method of this paper can also achieve a certain improvement
effect on the unbalanced data.

In the work of Zhao [1] mentioned in Section 2, the Amazon_6 corpus is also used. In order to
balance the data, Zhao randomly selected 1500 texts in 5 classes which contain more than 1500 texts,
with a total vocabulary of 10,790, and experimented with the SVM classifier. In the end, the fuzzy
bag-of-words model has proved very effective, with a classification accuracy of 92% to 93%, which was
1% to 2% higher than the baseline TF (BoW) and LDA. This paper does not select texts randomly and
the vocabulary is slightly larger. However, we also use LDA as a baseline method, and use TF–IDF as a
benchmark, which is better than TF. The above two sets of experiments show that the method of this
paper has a similar increase, which is about 1% to 2.5%.

Tables 5 and 6 gives the experimental results related to the FudanNLP corpus. This set of
experiments is still performed on FudanNLP.
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Table 5. Results of FudanNLP in three classes for 1500 texts by KNN.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.94 0.9383 0.9353 0.934 0.93 0.9267 0.9253 0.9221

P2 0.9127 0.9119 0.9227 0.9214 0.9147 0.9139 0.9153 0.9145

PW 0.96 0.9598 0.9527 0.9524 0.9607 0.9605 0.96 0.96

FP2 0.934 0.9383 0.934 0.9326 0.9307 0.9284 0.926 0.9228

FPW 0.9493 0.9489 0.96 0.9598 0.95 0.9496 0.9513 0.951

FPC 0.96 0.9482 0.9527 0.9605 0.9607 0.9516 0.96 0.9494

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.5047 0.581

LDA 0.9586 0.9584

Word2Vec 0.9467 0.9457

Table 6. Results of FudanNLP in three classes for 1500 texts by SVM.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.9393 0.9368 0.9387 0.9358 0.9387 0.9465 0.9473 0.9486

P2 0.602 0.5736 0.5647 0.5188 0.604 0.5774 0.6053 0.578

PW 0.9573 0.9569 0.9587 0.9585 0.9573 0.9568 0.9567 0.9561

FP2 0.938 0.9353 0.9393 0.9359 0.9493 0.9451 0.9513 0.9486

FPW 0.964 0.9635 0.9693 0.9685 0.9653 0.9649 0.9653 0.9649

FPC 0.9673 0.967 0.97 0.9699 0.9687 0.9677 0.968 0.9664

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.962 0.9613

LDA 0.9406 0.9397

Word2Vec 0.9567 0.9564

Table 5 shows that LDA is effective, while TF–IDF is general. Therefore, most of the better results
appear in PW, which means the combination of LDA and Word2Vec gives better results. The best
values for the accuracy and F1-macro of our models exceeded the baseline methods, but the best results
appeared in different methods. It can be observed from subsequent experiments that such a situation
occurs with FudanNLP more than once, but other data sets have no such phenomenon, so we speculate
that this situation is related to the data set.

In experiments with SVM on the FudanNLP corpus, FPW and FPC still achieve better results,
and the overall results are better than the baseline methods. The global maximum value appears in
the 300-dimensional experimental result of FPC. Similar to the results of experiments on Amazon_6,
the effect of FW decreases slightly, but PW gets better results. The P2 model is the worst, but FP2 can
significantly improve accuracy. In the experiments on P2 and FP2, the benefit of introducing more
information can be seen obviously.
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Tables 7 and 8 show the experimental results of the unbalanced data sets performed on the
FudanNLP corpus. There are 17 categories involved and the data is unbalanced. Among the three
baseline methods, except for the effect of TF–IDF on the KNN classifier, both LDA and Word2Vec have
a significant decline from the previous experiment. However, our models still show improvement.

Table 7. Results of FudanNLP in 17 classes for 4117 texts by KNN.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.7971 0.532 0.793 0.5306 0.8022 0.5328 0.7996 0.5316

P2 0.7566 0.3719 0.7575 0.3703 0.7583 0.3717 0.7585 0.3726

PW 0.796 0.4382 0.7964 0.4486 0.7928 0.4355 0.7921 0.4329

FP2 0.7973 0.5246 0.7938 0.5213 0.8023 0.5366 0.8001 0.5343

FPW 0.8303 0.6151 0.8353 0.6136 0.8337 0.6043 0.8366 0.6138

FPC 0.8321 0.5761 0.8351 0.517 0.8357 0.5612 0.8321 0.5308

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.6408 0.4968

LDA 0.7979 0.4211

Word2Vec 0.8153 0.5749

Table 8. Results of FudanNLP in 17 classes for 4117 texts by SVM.

Model
Accuracy and F1-Macro of Different Dimensions

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.7931 0.5369 0.8037 0.5552 0.8091 0.5583 0.8156 0.5856

P2 0.5317 0.3603 0.5486 0.3662 0.5563 0.3672 0.5108 0.3524

PW 0.8012 0.4436 0.8002 0.4431 0.8011 0.4437 0.8005 0.4434

FP2 0.7931 0.5356 0.804 0.5355 0.8094 0.5707 0.8152 0.5815

FPW 0.8323 0.6327 0.8396 0.6465 0.8432 0.6334 0.8493 0.6494

FPC 0.8352 0.6081 0.8425 0.6230 0.8461 0.6376 0.8491 0.6629

Accuracy and F1-Macro of Baselines

Model Acc F1

TF–IDF 0.7628 0.6325

LDA 0.7346 0.432

Word2Vec 0.828 0.606

Among the results of the KNN classifier, FPW and FPC are the best, and most of the results exceed
the baseline methods. Both FW and PW failed to exceed the baseline methods, but their combination
has made significant progress. Both P2 and FP2 have average effects, but are still acceptable in terms of
accuracy. The F1-macro is general and may be caused by too many categories.

In experiments conducted by SVM, FPW, and FPC exceed the baseline methods most of the time.
Word2Vec itself has achieved good results. TF–IDF also performs well on F1-macro. The effect of P2 is
still general. SVM is still unsuitable for such incomplete topic models. In the LDA method, the effect
of SVM is often not as good as KNN, which is related to the classifier. The SVM classification depends
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on the support vectors. The text representation models based on the topic models find it relatively
difficult to find the support vectors of the edges, while the KNN finds it easier to obtain the center of
categories, so the vectors close to the center are divided into one class.

In the work of Zhang [53], the FudanNLP corpus also used the methods with and without
normalization, and the accuracy reached 54% and 79.6%, respectively. It can be observed that this data
set is extremely unbalanced, so it is not easy to get better classification results. The effects of the models
of this paper are acceptable. Regarding accuracy as a standard, the models of this paper could reach
about 83%.

Tables 9 and 10 begin with the experimental results of the laptops domain of the ChnSentiCorp
corpus. Since this dataset is labeled with positive and negative emotional polarities for each field, we
have experimented in each field.

Table 9. Results of laptops in ChnSentiCorp by KNN.

Model
Accuracy and F1 of Different Dimension

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.8083 0.8079 0.813 0.8104 0.7833 0.7829 0.7633 0.7632

P2 0.7605 0.7602 0.7685 0.768 0.7623 0.762 0.7623 0.7619

PW 0.816 0.8157 0.8153 0.8147 0.8108 0.8105 0.8148 0.8144

FP2 0.81 0.8096 0.811 0.8083 0.7868 0.7864 0.7675 0.7675

FPW 0.8383 0.8378 0.8373 0.8358 0.823 0.8222 0.8185 0.8178

FPC 0.8288 0.8284 0.8343 0.8326 0.8108 0.8102 0.8095 0.8092

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.5973 0.5391

LDA 0.8065 0.8059

Word2Vec 0.8178 0.8173

Table 10. Results of laptops in ChnSentiCorp by SVM.

Model
Accuracy and F1 of Different Dimension

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.8575 0.8574 0.8805 0.8804 0.8548 0.8541 0.8598 0.8637

P2 0.6413 0.6405 0.6187 0.6184 0.6415 0.6407 0.6415 0.6335

PW 0.8305 0.8303 0.8425 0.8422 0.8288 0.8286 0.8308 0.8306

FP2 0.8562 0.8559 0.8825 0.8824 0.8545 0.8574 0.8608 0.8603

FPW 0.869 0.8694 0.8878 0.8886 0.8693 0.8687 0.871 0.8694

FPC 0.8703 0.8701 0.8895 0.8894 0.868 0.8679 0.8738 0.8712

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.8555 0.8552

LDA 0.8195 0.8185

Word2Vec 0.822 0.8235
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The corpus of laptops has 4000 texts and a vocabulary of 7892. In this set of experiments,
the performance of each model is stable. FPW is the best, FPC is second, and PW is third. This may be
related to the data in the corpus itself. There is a gap between the TF–IDF method as a baseline and
LDA. Similar to the experiment in which FudanNLP selected 1500 corpus in three categories, the effect
of the FW model on classification shows a significant improvement.

In the results of SVM on the laptop corpus shown in Table 10, FPC’s overall effect is better. FPW
achieves good results and is better than the baseline methods. In addition to the improvement of PW
compared to LDA, FW also improves in most dimensions compared to TF–IDF. The FP2 model also
yields mostly better results than the baseline methods. SVM is always effective for the vector space
models constructed by TF–IDF. Compared with the KNN experimental results, FW is not much better
than TF–IDF, but it can obtain some improvement.

Tables 11 and 12 begin with the experimental results of ChnSentiCorp. The data in the book field
in ChnSentiCorp is special. People may write some texts about the specific content of books when they
evaluate books, so even if the texts are purely positive, the content may be different.

Table 11. Results of books in ChnSentiCorp by KNN.

Model
Accuracy F1 of Different Dimension

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.9028 0.9026 0.8988 0.8987 0.8975 0.8974 0.9 0.8999

P2 0.7953 0.7932 0.77 0.7679 0.7945 0.7925 0.794 0.792

PW 0.8125 0.811 0.8208 0.8195 0.811 0.8097 0.8088 0.8074

FP2 0.902 0.9019 0.8975 0.8975 0.8983 0.8982 0.901 0.9009

FPW 0.8975 0.8974 0.8925 0.8924 0.8878 0.8877 0.8855 0.8853

FPC 0.8958 0.8957 0.8938 0.8937 0.8928 0.8927 0.8928 0.8927

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.5008 0.5004

LDA 0.7833 0.7778

Word2Vec 0.8825 0.8823

Table 12. Results of books in ChnSentiCorp by SVM.

Model
Accuracy and F1 of Different Dimension

200 300 500 800

Acc F1 Acc F1 Acc F1 Acc F1

FW 0.9203 0.9202 0.917 0.9169 0.9175 0.9174 0.9163 0.9162

P2 0.621 0.6204 0.5918 0.5912 0.6213 0.6204 0.6213 0.6204

PW 0.7783 0.778 0.785 0.7845 0.7778 0.7775 0.7778 0.7775

FP2 0.9195 0.9194 0.9168 0.9167 0.918 0.9179 0.9165 0.9162

FPW 0.9115 0.9114 0.9095 0.9094 0.9113 0.9112 0.9143 0.9145

FPC 0.91 0.9099 0.9153 0.9152 0.912 0.9117 0.9153 0.9152

Accuracy and F1 of Baselines

Model Acc F1

TF–IDF 0.9058 0.9056

LDA 0.7815 0.7812

Word2Vec 0.89 0.8123
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The effect of TF–IDF is general, and LDA works better, but the models we proposed obtain more
significant results and improve to nearly 90% accuracy. In the results of the baseline approaches,
unlike the previous Amazon_6 and FudanNLP, Word2Vec obtains a slightly worse effect. In most cases,
Word2Vec is often the best in the baseline methods, or the second only to the best, but this time it is
only slightly better than LDA. This occasional situation does not affect the validity of Word2Vec.

In the book field of the ChnSentiCorp, it is interesting that the best experimental results of SVM
in different dimensions are consistent with KNN, which are derived from FW and FP2. The global
maximum comes from the 200-dimensional experiment of FW. Similar to the conclusions obtained by
KNN, the dimensions of vectors do not have to be set as too large. Although neither FPW nor FPC
achieve the highest value, all the results are better than the baseline.

Table 12 shows that FW yields better results than the baseline methods in all dimensions, but PW
shows a lower accuracy rate in most dimensions than LDA. It can be seen that feature weighting and
topic models have different modeling ideas for texts. When FW can obtain good vector representations,
PW may not get better results, and vice versa. Different classifiers perform much quite differently
between TF–IDF and LDA.

In terms of the experiments in this paper, KNN can get useful classification results for the models
established by LDA, but not for the vectors obtained by TF–IDF. SVM is the reverse: It always gets
reliable results for TF–IDF and ordinary for LDA. These phenomena have a lot to do with the difference
between classifiers and corpora. However, in terms of vector representations, satisfactory vector
representation models can obtain satisfactory results on different classifiers, as with our FW model
of the last set of experiments, as well as the FPW and FPC models proposed here. At the same time,
related experiments of P2 and FP2 can also obtain similar conclusions on different classifiers.

Also using this ChnSentiCorp corpus, Zhai [54] proposed a text representation method for
extracting different kinds of features. Since this is a corpus for sentiment analysis, Zhai’s approach
considers extracting features that are related to sentimental tendencies. In addition, features such as
substrings, substring groups, and key substrings are extracted. Finally, the highest accuracy of 91.9%
can be obtained under the SVM classifier, which is a very good result [55]. In this paper, without the
specific feature extraction, the accuracy is comparable or even higher.

By comparing our models with different methods on different corpora, it can be seen that the
method of this paper gives an improvement in accuracy, and the increase range is from 1% to 4%.
In the design of our method, there are some differences from the existing methods. Compared with the
FBoW model [1], our models introduce the LDA topic model, enabling our new models to describe the
texts from the perspective of topic modeling. Compared with Zhang’s method [53], the method of this
paper does not need to deal with the mix problem of Chinese and English, such as word categorization.
Compared with Zhai’s method [54], our method does not set special rules for feature extraction on the
data of sentiment analysis, but it matched Zhai’s method in strength.

From the above experiments as a whole, we can also gather some additional conclusions. Firstly,
the dimensions of vectors do not need to be large. The 200-and 300-dimensional settings often get the
best results. Secondly, for some special corpus, it is possible that the FW or PW model can get good
results, but in most cases, text representation models that combine feature extraction, word vector,
and topic models are more effective. Thirdly, P2 has a relatively poor accuracy due to the deletion of
some information calculated by LDA. However, after combining with the FW model, even if no longer
combined with the word vector, it often gets good results.

5. Conclusions

This paper proposes short text representation models based on the feature probability embedding
vector, including FP2, FPW, and FPC. This vector is easy to implement. Although it does not
require adjustment to many parameters (basically, the default parameters can be used), its effect is
stable. Even if Word2Vec does not use a large-scale corpus in training, better results can be achieved.
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Combining different conceptual text modeling models with deep learning word embedding can make
significant advances over traditional algorithms.

In the six sets of experiments conducted on three corpora, we also made some observations about
baseline methods and classifiers. Although the accuracy of classic TF–IDF on KNN classifiers is limited
to some extent, SVM usually classifies its models well. LDA is rarely used for document modeling,
but its models are often available. KNN can also achieve good results. It is also effective to add the
word vectors obtained by Word2Vec to express the documents. From most of the data, the models
obtained by Word2Vec can get good results on both SVM and KNN.

Regarding the combination of methods, the FW effect deteriorates more than that of PW,
which may be due to the fact that vector multiplication involves changes in algebraic signs. These
positive and negative changes will change the meaning of certain values as a whole. Although the
amount of information increases, new vectors may not suitable for documents. It may be better to
make improvements in symbolic changes when normalized, which will make our approach more
effective. However, this paper still presents relatively original results, with the aim of helping further
research. This paper shows that one of the biggest benefits of the combination of methods is stability.
Different methods and classifiers may perform differently in the face of different languages and different
content. If we need to process different data more stably, we can consider the combination of models.

The models of the proposed text representation method focus on one idea: The combination of
vectors. Since the method is purely unsupervised and the required tools and corpora are available,
such a text representation strategy is simple and easy. This paper proposes a different attempt from
the existing methods of vector representation. Our models do not fundamentally change existing
basic strategies, but rather they can be combined as a whole in order to preserve the information
obtained by the basic modeling strategy. Therefore, the operations used in this method are mostly
simple matrix addition and multiplication. Experiments show that the method in this paper can also
obtain good results.

Next, we will study some new deep learning models, and different feature weighting techniques
in order to obtain better text representation models. At the same time, we hope to find more interesting
cooperation modes.
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