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Abstract: Soil electrical conductivity (EC) maps obtained through proximal soil sensing (i.e.,
geophysical data) are usually considered to delineate homogeneous site-specific management
zones (SSMZ), used in Precision Agriculture to improve crop production. The recent literature
recommends the integration of geophysical soil monitoring data with crop information acquired
through multispectral (VIS-NIR) imagery. In non-flat areas, where topography can influence the soil
water conditions and consequently the crop water status and the crop yield, considering topography
data together with soil and crop data may improve the SSMZ delineation. The objective of this study
was the fusion of EC and VIS-NIR data to delineate SSMZs in a rain-fed vineyard located in Northern
Italy (Franciacorta), and the assessment of the obtained SSMZ map through the comparison with
data acquired by a thermal infrared (TIR) survey carried out during a hot and dry period of the 2017
agricultural season. Data integration is performed by applying multivariate statistical methods (i.e.,
Principal Component Analysis). The results show that the combined use of soil, topography and crop
information improves the SSMZ delineation. Indeed, the correspondence between the SSMZ map
and the CWSI map derived from TIR imagery was enhanced by including the NDVI information.

Keywords: geophysical data; multispectral data; thermal imagery; data fusion; homogeneous
management zones; crop water stress

1. Introduction

In agriculture an effective and efficient management of inputs (i.e., water and nutrients) is
fundamental to make the crop production sustainable, for both the environment and economics.
Knowledge about the plant-soil system is fundamental to achieve this goal. Since the nineties,
the Precision Agriculture (PA) approach has required a detailed description of the variability at field
scale of soil and plant properties, in order to apply water and nutrients with variable rates, according to
the actual irrigation and nutrient requirements, which can be extremely different within a field because
of the spatial variability of soil and plant properties [1]. Following this approach, not only the water and
nutrient use efficiencies, but also the quantity and the quality of crop yield may improve. Site-specific
management of water and nutrients in PA requires the delineation in the field of sub-regions with similar
soil and crop characteristics affecting crop yield (Site Specific Management Zone, SSMZ) [2]. Intensive
and relatively time-saving measurements of soil electrical conductivity (EC) through geophysical
proximal soil sensors are among the most frequently used approaches in PA to delineate SSMZs [3–7].
Statistical procedures [8] are used to classify the EC maps derived by interpolation of the geophysical
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data, resulting in few sub-field zones to be managed separately. EC maps are considered to delineate
SSMZs because EC is influenced by a combination of soil physical-chemical properties affecting crop
yield, including soluble salts, clay content and mineralogy, soil water content, bulk density, organic
matter, and pH. Finally, a strong relation has been shown to exist between EC and the total available
water-holding capacity (AWHC) of soils [9–14]. The information on spatial variability of AWHC at
field scale obtained from EC measurements may be extremely important to optimize irrigation [9–11],
allowing the construction of an irrigation prescription map to be used to prescribe variable water
amounts (i.e., variable rate irrigation, VRI) according to soil variability.

Ancillary data acquired by spectral sensors in the visible (VIS), near-infrared (NIR) and thermal
infrared (TIR) regions shall be combined with EC data to characterize the soil spatial variability [15]
and to improve the delineation of SSMZs [16,17]. Indeed, NIR reflectance from soil has been correlated
with many soil properties, including total C, total N, water content and texture [18,19]. VIS-NIR and
TIR images of the bare soil, acquired by sensors mounted on Unmanned Aerial Vehicles (UAVs), have
been used to evaluate the spatial distribution of soil water content [20,21]. The Normalized Difference
Vegetation Index (NDVI), calculated as a combination of VIS and NIR data, has been related with soil
organic carbon [22,23]. An approach to improve the delineation of SSMZ by considering multi-sensor
data describing both crop and soil variability is illustrated in [24]. Multi-sensor data included data
acquired through geophysical sensors to describe soil variability and spectral reflectance data derived
from satellite imagery to describe crop variability through the construction of vegetation indices maps.
The most recent literature stresses the importance to consider multi-sensor data to optimally delineate
SSMZs [25–29].

In non-flat areas, as often is the case with vineyards, topography can influence soil water conditions
and consequently crop yield and field zonation; in this situation SSMZ delineation may be improved by
integrating geophysical soil monitoring data with topography data [12]. The authors of [12] additionally
emphasized how spectral vegetation indices (mostly NDVI), constructed from reflectance data acquired
through proximal sensing, UAV, aircraft or satellite imagery, are useful in zoning vineyards when the
crop behavior is different from year to year because of important interactions between soil and climate
influencing the vine vigor.

The main objective of this work is the implementation of data fusion procedures to delineate
a SSMZ map in a vineyard of 1.5 ha located in Franciacorta (BS), since this information is crucial for
the elaboration of irrigation prescription maps to be used for the design and/or the management of
variable-rate irrigation systems. In particular, this study shows how the different types of data which
can be involved in the SSMZ delineation are acquired and analyzed, and finally integrated through
a data-fusion approach. To assess the reliability of the SSMZ maps obtained from different types of
data, each of them was compared with data acquired by a thermal infrared (TIR) survey carried out
during a hot and dry period of the 2017 agricultural season, in a phase of the crop phenology during
which the vine is normally most sensitive to water stress. Data collected during the TIR survey were
used to produce a crop water stress index (CWSI) map, which was demonstrated to be well correlated
with the final crop yield [30–33].

2. Materials and Methods

2.1. Study Area

The experimental site is a rain-fed vineyard of 15,000 m2 located in Franciacorta (Erbusco, 575,813 E,
5,050,828 N, Northern Italy), a rolling hills area south-east of Lake Iseo (Figure 1). Soils at this site are
sandy-loam in texture, according to the regional 1:250.000 soil map (http://www.geoportale.regione.
lombardia.it). They belong to the land system of ‘intermediate moraine deposits’. In this area, the
typic Paleudalf coarse loamy and poorly gravelly soils (CZO1), are associated with more skeletal soils,
very deep, with moderately faster permeability and drainage (VBO1) [34].

http://www.geoportale.regione.lombardia.it
http://www.geoportale.regione.lombardia.it
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In the Franciacorta region, the climate is continental, with the lake providing a mitigating effect in
both summer and winter. Considering the average monthly values of the main agrometeorological
variables registered at the Erbusco station (part of the Lombardy regional monitoring network), located
2 km far from the experimental site, for the period 2008–2018, it can be observed that the minimum
and maximum monthly rainfall occur respectively in July (70 mm) and October (85 mm), while the
minimum and maximum daily air temperatures vary, respectively, from 7 ◦C in October to 20 ◦C in July,
and from 16 ◦C in October to 32 ◦C in July. Figure 2 shows the behavior of the main agrometeorological
variables recorded at the Erbusco station during the experimental period June-August 2017.
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Figure 1. The experimental site; Coordinate Reference System (CRS): WGS84/UTM zone 32 N. Map
data: ©OpenStreetMap contributors.
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Figure 2. Precipitation and temperature daily data collected at the agrometeorological station of
Erbusco, during the experimental period from June to August 2017.

2.2. Experimental Surveys

Different types of data were collected in the vineyard to describe all the factors affecting crop yield,
related to the hydrological condition of the soil, as well as to the crop vigor and water status. The soil
properties were detected through an electro-magnetic induction (EMI) sensor, while the topography of
the vineyard and the crop properties were investigated through multispectral and thermal sensors
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mounted on UAV. Various combinations of these data (i.e., data fusion) were analyzed, to assess
their effectiveness in improving the delineation of the SSMZs aimed at optimizing the crop yield (see
Section 2.3 for more details).

2.2.1. Soil Survey through EMI Sensors

The soil variability was detected through an EMI survey on 14th June 2017, when the soil water
content might be considered close to the field capacity (FC), few days after a three-day period of rainfall
that resulted in 26 mm of rain (Figure 2).

The geophysical data were collected with the multi-frequency EMI sensor Profiler EMP-400 (GSSI
Inc., Nashua, NH, USA). The EMI sensor worked with up to three different frequencies from 1 to 16 kHz
(15 kHz, plus at most two other frequencies), corresponding to decreasing Depths of Exploration
(i.e., DoE). Two frequencies were selected for the survey, 15 kHz (DoE about 1.5 m) and 10 kHz (DoE
about 2.5 m), to explore the soil in contact with the vineyard’s root system, which is usually 2–3 m
deep. The data were acquired along parallel rows with an interdistance of 10 m, while vineyard rows
have an interdistance of 2 m. In the portions of the fields characterized by gravelly soils the EMI
measurements showed not to be valid, since the EC values were found to be negative. This extreme soil
texture was more present in the upper part of the soil profiles (investigated with the sensor operating
at higher frequencies), and showed to have a lower weight as the depth increases.

2.2.2. Vegetation and Topography Survey through UAV Multispectral and Thermal Imagery

Vegetation survey was conducted by means of an aerial campaign with sensors mounted on
an UAV. The survey took place on 19th July 2017, under sunny and clear blue-sky conditions. The daily
average air temperature was 26 ◦C, with a maximum value of 31 ◦C during the central hours of the day.
The survey was conducted during the veraison phenological stage, in which the crop is more sensitive
to crop water stress.

The UAV employed for the survey was the HexaKopter (MikroKopter, Moormerland, Germany).
It is a multirotor equipped with six brushless motors, it weighs about 1.2 kg, including batteries, and its
maximum transportable payload is equal to 0.5 kg. It can be remotely controlled and programmed for
automatic navigation through the free and open source Mission Planner software [35]. Its maximum
transmission range is about 200 m and the flight duration is limited to 10 min.

The UAV was equipped with three different sensors, in order to collect imagery in different portions
of the electromagnetic spectrum: VIS (450–720 nm), NIR (800–1000 nm) and TIR (7000–14,000 nm).
The Survey 2 camera (MAPIR, San Diego, CA, USA) was used for VIS acquisitions, while a modified
SJ400 camera (SJCAM, Shangxue Technology Park, Putian, Shenzhen, China) was used to collect NIR
imagery. Both instruments are low cost and light-weight cameras, with a CMOS sensor of maximum
size 16 Mpx. TIR data were collected by the thermal camera OPTRIS PI400 (Optris GmbH, Berlin,
Germany), with a spectral response in the range 7.5–13 µm. The thermal camera acquires data in
radiometric video sequences format (.RAVI). For the photogrammetric processing, single frames with
resolution equal to 382 × 288 px are subsequently extracted from the video. Technical specifications of
the three sensors used for the vegetation survey are reported in Table 1.

According to the UAV payload, two flights were required to collect images with the three
sensors. During the first flight, the UAV mounted the Survey2 and the SJ4000 cameras simultaneously,
in order to acquire a multispectral dataset. Considering sensors characteristics and study area, flight
planning included six strips at an altitude of 60 m above ground level (AGL), with forward and side
overlaps equal to 80% and 65%, respectively. Two blocks of data (VIS and NIR) were acquired, each
amounting 164 images with ground resolution, namely Ground Sample Distance (GSD), equal to
0.017 m. The adopted plan for the multispectral flight is reported in Figure 3.

During the second flight, the UAV mounted the OPTRIS PI400 to collect data of vegetation
temperature. The video sequences were acquired with nadiral orientation at a constant speed of 2.7 m/s
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and at the altitude fixed to 55 m AGL. The derived images had a GSD of about 0.150 m and forward
and side overlaps equal to 80% and 40%, respectively.

Table 1. Technical specifications of the three cameras used for the vegetation survey.

Survey 2 SJ4000 OPTRIS PI400

Acquisition VIS NIR TIR
Focal length (mm) 4.35 4.35 8
Sensor size (mm) 4.86 × 3.64 4.86 × 3.64 9.55 × 7.2
Sensor size (px) 4032 × 3024 4032 × 3024 382 × 288
Pixel size (µm) 1.2 1.2 25

Field of View (FOV) 82◦ 82◦ 62◦ × 49◦

Output format JPEG image JPEG image RAVI video
Weight (g) 64 64 380
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The georeferencing and the accuracy of the photogrammetric products were achieved by means
of some targets used as Ground Control Points (GCPs), whose center coordinates were measured
through a Global Navigation Satellite System (GNSS) receiver. A Leica Viva GS14 GNSS receiver
(Leica Geosystems, Heerbrugg, Switzerland) in Network Real Time Kinematic (NRTK) mode was
used in this study, with horizontal and vertical accuracies of 2–3 cm and 5 cm, respectively. Different
types of targets were used for multispectral and thermal surveys: 16 black and white plastic square
panels (30 cm × 30 cm) were employed for the multispectral survey, while 16 polystyrene square
panels (60 cm × 60 cm), covered with aluminum foil and marked with a copper cross to enhance the
central point were used for the thermal survey. In order to have an optimal distribution of GCPs,
the targets were placed both all around the perimeter of the vineyard, on the ground, and inside the
investigated area, on the top of the vineyard poles to ensure their visibility. Moreover, some targets
with known reflectance and thermal characteristics were imaged, to perform radiometric calibration of
VIS-NIR data and atmospheric correction of TIR images. According to [36], four square polystyrene
panels (60 cm × 60 cm), covered with plastic, where used for the atmospheric correction of the thermal
images. The panels, two white panels (i.e., cold target) and two black panels (i.e., hot target) were
placed outside the investigated area in two different positions.
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2.3. Methodological Approach for Delineating SSMZs through Data Fusion

Different types of data—geophysical data acquired through EMI sensors, and topographic and
crop data acquired through the multispectral VIS-NIR sensors mounted on the UAV—were variously
combined to delineate SSMZs. A data fusion approach was considered, by applying multivariate
statistical methods (i.e., Principal Component Analysis, PCA) to integrate the different types of data.
Precisely, the PCA was applied to the maps elaborated from geophysical and VIS-NIR data as explained
in Section 3.1.

Moreover, the CWSI map was elaborated from the imagery acquired through the TIR sensor
mounted on UAV. CWSI was calculated as expressed in the following formula:

CWSI =
Ts − Twet

Tdry − Twet
(1)

where TS is the crop surface temperature, Twet is the lower boundary of crop temperature corresponding
to the water status of a leaf with stomata fully open and a maximum transpiration rate, Tdry is the
upper boundary of crop temperature corresponding to the water status of a non-transpiring leaf with
stomata completely closed.

The CWSI map was used to assess the effectiveness of the SSMZ delineation obtained from
different combination of data even though crop yield maps are usually considered for this purpose.
In this study, in absence of this type of information, the CWSI map was used as a proxy of the crop
yield map. As a matter of fact, the crop water status (described through the CWSI) is assumed to be
the main environmental factor affecting crop yield in this rain-fed vineyard. Areas with a low value
in the CWSI map (i.e., good crop water status) were expected to correspond to areas with a high soil
water content (i.e., high EC values and/or high NDVI values and/or low topographic slope values).

Particularly, the effectiveness of the data fusion approach to enhance the delineation of SSMZs was
assessed by applying the methodology hereinafter explained and illustrated in Figure 4. Two separated
areas were defined within the vineyard, because of the occurrence of not valid EMI measurements for
gravelly soils (Section 2.2.1). In the first area (called ‘a’), characterized with valid EMI measurements,
geophysical and VIS-NIR data were available; in the second area (called ‘b’), characterized with not
valid EMI measurements, only VIS-NIR data were available. For each area, maps produced from
different combinations of data were fused by applying PCA. Consequently, the SSMZs were elaborated
(for each area, ‘a’ and ‘b’) from the integrated maps produced through PCA (i.e., maps of the Principal
Componens, PCs) by applying Cluster Analysis (CA) through the Management Zone Analyst (MZA)
software [37]. MZA implements an unsupervised fuzzy classification method and determines the
optimal number of SSMZs through the minimization of both the indices Normalized Classification
Entropy index (NCE) and Fuzziness Performance Index (FPI); the NCE measures the degree of
disorganization among zones (the larger the NCE, the higher is the amount of disorganization), the FPI
measures the degree of separation between zones (the larger the FPI, the stronger is the membership
sharing between zones). Specifically, the CA was applied considering only the PC maps representing
most of the variability of the input maps.

For the area ‘a’, the following three cases were analyzed: (1) only geophysical data were considered:
the SSMZs were delineated based on the EC maps relative to different soil depths; (2) geophysical data
were considered together with the topographic data obtained from VIS-NIR imagery: elevation and
slope maps as well as EC maps referred to different soil depths were used to delineate SSMZs; (3) the
complete dataset including also crop data was considered: the SSMZs were delineated by integrating
the NDVI map with all the previously illustrated maps. NDVI map was elaborated from VIS-NIR
imagery, as the index is defined as the normalized difference between NIR and Red bands:

NDVI =
NIR−Red
NIR + Red

(2)
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For the area ‘b’, the following two cases were analyzed: (1) the topographic data obtained from
VIS-NIR imagery were considered: elevation and slope maps were used to delineate SSMZs; (2) the
complete dataset, including topographic and crop data, was considered: the SSMZs were delineated
by integrating the NDVI map with elevation and slope maps.

For each case, the SSMZ map was validated through a comparison with the CWSI map.
The accuracy of the correspondence between SSMZ and CWSI map was analyzed considering
the distributions of CWSI values within each SSMZ.
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3.1. Soil, Vegetation and Topography Mapping

3.1.1. EC Maps

The EC measurements obtained for each frequency used with the EMI sensor (15 kHz and 10 kHz)
were interpolated on a grid with 2 m pixel size. Two EC maps were obtained (Figure 5), each one
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The red color area (area ‘b’) in each map of Figure 5 corresponds to gravelly soils, for which
the EMI measurements were not valid, because of the very low EC values characterizing those soils.
In these zones, negative EC values were obtained from the EMI survey. The total extent of these areas
decreases with the increasing DoE.

3.1.2. Topography and Slope Maps

The VIS and NIR imagery blocks were processed through standard photogrammetric workflow [38]
with the Agisoft Photoscan Professional software v. 1.2.6 [39]. Finally, the Digital Surface Model
(DSM) was produced with a spatial resolution equal to 0.05 m, representing the height model for both
vegetation and soil.

In order to reconstruct the soil topography, vegetation pixels were detected and removed from the
DSM. Vegetation detection was performed on the DSM by using an algorithm developed by the authors,
which assumes that pixels with higher elevation values correspond to vegetation [40]. The algorithm
classifies as vegetation pixels all the pixels having a height value greater than a user-defined threshold
within a moving window. In a second step, vegetation pixels were subtracted from the DSM, thus
producing a model representing the height of the terrain, namely the Digital Terrain Model (DTM) of
the study area. Figure 6 shows the DSM and the DTM of the vineyard, obtained after photogrammetric
processing and vegetation detection and removal, respectively. The final DTM reported in Figure 6b,
obtained after the application of a moving average smoothing filter, has a spatial resolution of 2 m.Sensors 2019, 19, x FOR PEER REVIEW 9 of 23 
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(VIS-NIR) dataset.

Slope and contour line maps were derived from the DTM, by using the Raster Terrain Analysis
functions in QGIS v 3.2 [41]. A fixed interval of 1 m was set for the generation of the contour lines,
while the slope map was computed as the gradient of the terrain model, having the same spatial
resolution of the DTM (i.e., 2 m). Final results are shown in Figure 7.

3.1.3. Vegetation Indices Maps (NDVI and CWSI)

Multispectral VIS-NIR and TIR imagery were used to compute the vegetation indices NDVI and
CWSI, commonly adopted to describe vegetation vigor and crop water status, respectively. A VIS-NIR
orthomosaic was generated in Digital Number (DN) with a spatial resolution of 0.05 m, then converted
in reflectance values, through the radiometric calibration obtained with an empirical line correction
approach [42]. Images of the radiometric targets were used to compute the linear regression coefficients
of the DN values against the reflectance values from the target surface. The orthomosaic corrected
through the radiometric calibration was used to obtain the NDVI map (Equation (2)). Moreover, soil
was masked out, to avoid the inclusion of soil pixels in the vegetation maps. The soil mask was created
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by extracting pixels that were not considered to be vegetation, as described in Section 3.1.2. Figure 8
shows NDVI maps before and after the soil pixel removal. From the graphs showing the frequency
distribution of the NDVI maps (Figure 8b,d), it is evident that most of the pixels with NDVI values
lower than 0.7-corresponding to soil and inter-row grass—could be removed and only vegetation
pixels (NDVI values greater than 0.7) were retained.
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The CWSI map was obtained from the TIR orthomosaic. The TIR orthomosaic (with spatial
resolution equal to 0.15 m) was generated through a specific procedure for TIR images. This procedure,
including single frames extraction, format conversion and photogrammetric processing, is described
in detail in [43]. Atmospheric correction of the obtained TIR orthomosaic was performed by using
the thermal images of the cold and hot targets, representing respectively the minimum (Tmin) and the
maximum (Tmax) temperature values within the investigated area. The temperature of the targets was
recorded at the ground level as well. These temperature values, acquired at flight height and at ground
level, were used to derive an atmospheric model [36] successively applied to the TIR orthomosaic to
obtain the crop surface temperature (called crop surface TIR orthomosaic hereinafter).

The CWSI map was calculated using Equation (1). The values Twet and Tdry were initially
determined by an empirical approach reported in many studies [44–47]. The value Tdry was calculated
by using the current Tair plus 5 ◦K [48–50], while the value Twet was calculated as the mean of the
coolest 5% vegetated pixels in the crop surface TIR orthomosaic. As for the NDVI map, soil was
masked out from the crop surface temperature map. Figure 9 illustrates the CWSI maps before and
after soil pixels removal.
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Figure 9. CWSI map before (a) and after (c) soil masking. The frequency distribution of the crop
surface temperatures, with the illustration of Twet and Tdry values calculated according to the empirical
approach described in Section 3.1.3, is reported for each case (b,d).

Both maps show a zone with values greater than 1, due to the presence of pixels with surface
temperature higher than Tdry. This could be due to the fact that, in this study, Tair (31◦C) was the
average hourly temperature registered during the central hours of the day (from 1:00 p.m. to 2:00 p.m.,
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solar time) at the Erbusco agro-meteorological station, placed 2 km away from the experimental site and
positioned over a standard grass surface as indicated by WMO (World Meteorological Organization).
In order to estimate a more reliable value for Tdry, the same approach used for Twet was adopted: Tdry

was calculated based on the temperature histogram [51–53] as the mean of the hottest 5% vegetated
pixels in the crop surface TIR orthomosaic. The derived CWSI map, successively used in this study,
is shown in Figure 10.
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Figure 10. CWSI map after soil masking (a), derived considering the Twet and Tdry values calculated as
the mean of the coolest 5% and the hottest 5% vegetated pixels in the crop surface TIR orthomosaic,
respectively. The frequency distribution of the crop surface temperatures is also reported (b).

3.2. SSMZ Mapping

Firstly, the SSMZ map was elaborated from EC maps only (Section 3.2.1). Afterwards, topography
and crop information were integrated with the EC maps through PCA, to improve the SSMZ map
(Sections 3.2.2 and 3.2.3). The Pearson’s correlation coefficients were computed separately for areas
‘a’ and ‘b’, respectively among the EC, DTM, Slope and NDVI values calculated at the grid nodes
used to interpolate the EC data (2 m pixel size), with valid EMI measurements (Table 2), and among
the DTM, Slope and NDVI values calculated at the nodes of the same grid, with not valid EMI
measurements (Table 3). All the coefficient values are statistically significant with level 0.001 (p-value
< 5 × 10−4). Moreover, the Moran Index was calculated to describe the spatial autocorrelation of the
variables and the spatial cross-correlation between the variables. The values, calculated separately
for areas ‘a’ and ‘b’, considering the nodes respectively inside and outside the vineyard’s area with
valid EMI measurements, are reported respectively in Tables 4 and 5. The Moran Index values were
always statistically significant with level 0.001 (p-value < 5 × 10−4). The univariate Moran Index
calculated for the different variables was always positive and greater than 0.60, showing a high spatial
autocorrelation of all the variables. The bivariate Moran Index (between variables) describes the
correlation based on the relationships between each point and the neighboring ones. According to [54],
the correlation described through the Pearson’s coefficients can be decomposed in two components,
related to a direct correlation without distance effect and an indirect correlation based on the distance
effect. Consequently, the difference between the Pearson’s coefficient and the Moran Index quantifies
the direct correlation component. For the two datasets described in Tables 4 and 5, this difference
was always less than 0.03 in absolute value, equal to the 25% of the correlation coefficient at most,
except for the correlation between the variables EC-15 kHz and EC-10 kHz (Table 4) and between the
variables DTM and Slope (Table 5). These results highlighted the relevant contribution of the spatial
pattern in cross-correlation.
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Table 2. Pearson’s correlation coefficients among the variables used to delineate SSMZ, estimated
considering the grid nodes with valid EMI measurements (area ‘a’).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz 1 0.93 *** −0.20 *** 0.23 *** −0.22 ***
EC-10 kHz 1 −0.29 *** 0.26 *** −0.21 ***

DTM 1 −0.40 *** −0.19 ***
Slope 1 −0.07 **
NDVI 1

*** p-value < 5 × 10−5; ** p-value < 5 × 10−4.

Table 3. Pearson’s correlation coefficients among the variables used to delineate SSMZ, estimated
considering the grid nodes with not valid EMI measurements (area ‘b’).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz - - - - -
EC-10 kHz - - - -

DTM 1 −0.40 *** −0.12 **
Slope 1 −0.08 *
NDVI 1

*** p-value < 5 × 10−5; ** p-value < 5 × 10−4; * p-value < 5 × 10−3.

Table 4. Moran Index among the variables used to delineate SSMZ, estimated (using GeoDa software,
by Luc Anselin) considering the grid nodes with valid EMI measurements (area ‘a’).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz 0.82 ** 0.79 ** −0.20 ** 0.23 ** −0.24 **
EC-10 kHz 0.81 ** −0.28 ** 0.27 ** −0.22 **

DTM 0.99 ** −0.40 ** −0.19 **
Slope 0.63 ** −0.07 **
NDVI 0.76 **

*** p-value < 5 × 10−5; ** p-value < 5 × 10−4.

Table 5. Moran Index among the variables used to delineate SSMZ, estimated (using GeoDa software,
by Luc Anselin) considering the grid nodes with not valid EMI measurements (area ‘b’).

EC-15 kHz EC-10 kHz DTM Slope NDVI

EC-15 kHz - - - - -
EC-10 kHz - - - -

DTM 0.96 ** −0.59 ** −0.15 **
Slope 0.69 ** −0.09 **
NDVI 0.66 **

*** p-value < 5 × 10−5; ** p-value < 5 × 10−4; * p-value < 5 × 10−3.

3.2.1. Delineation of SSMZs from EC Maps

The two EC maps relative to frequencies 15 kHz and 10 kHz, calculated within area ‘a’ considering
only the valid EMI measurements (i.e., not negative EC values), were analyzed through the PCA. The
SSMZ map (Figure 11) was obtained by applying CA to the first PC, explaining about 96% of the
variability of both the EC maps. Three SSMZs were delineated within area ‘a’; another SSMZ (red
color) was defined, corresponding to area ‘b’ characterized with not valid EMI measurements (i.e.,
negative EC values) occurred for gravelly soils (Figure 5). SSMZs from 1 to 4 (Figure 11) correspond to
decreasing EC values.
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SSMZ and CWSI maps were compared. High EC values (i.e., high soil water contents) were
expected to correspond with low CWSI values (i.e., good crop water status). Instead, areas with high
CWSI values, denoting crop water stress, were included in the SSMZ 1 (characterized by high EC
values), while, vice-versa, areas with low CWSI values were present in the SSMZ 4 (very low EC
values). The analysis showed that for the study vineyard, physical-chemical soil properties described
by the EC values where not sufficient to explain the crop water status. As matter of fact, the spatial
patter of the SSMZs is quite different from that one of the zones in the CWSI map correspondent to low
index values (from 0 to 0.5) and high index values (from 0.5 to 1).

3.2.2. Data Fusion: Delineation of SSMZs from Slope and EC Maps

The combined effect of soil properties (i.e., EC values) and field topography (i.e., elevation and
slope) was investigated to improve the delineation of SSMZs, looking for a better correspondence with
the spatial distribution of the zones in CWSI map with low and high index values. EC, elevation and
slope maps were analyzed through PCA. The SSMZ map was obtained by applying CA to the first and
second PCs explaining most of the variability of all the considered maps. Particularly, PCA and CA
were applied separately to the area ‘a’ with valid EMI measurements, corresponding to SSMZs from 1
to 3 in Figure 11, as well as to the gravelly soil area ‘b’, corresponding to SSMZ 4 in Figure 11.

In the former area, four SSMZs (numbered from 1 to 4 in Figure 12a), were delineated considering
EC, elevation and slope maps. In the latter area, three SSMZs (numbered from A to C in Figure 12a)
were recognized taking into account only elevation and slope maps. The resulting SSMZ map is shown
in Figure 12a. This map, even though improved with respect to that obtained from EC maps only
(Figure 11), could not completely explain the spatial variability detected in the CWSI map. Indeed,
as illustrated also in Figure 13 showing the distributions of the CWSI values within each SSMZ, the
SSMZs 1 and 2 (high EC values) corresponded to low CWSI values (as expected), as well as for the
SSMZ A and part of the SSMZ B; on the other hands, SSMZs 3 and 4 included areas with both low and
high CWSI values (not expected due to the low EC values), as for the cases of SSMZ C and part of
B. This behavior highlighted how the zonation shown in Figure 12a did not consider all the factors
affecting the crop water status.
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3.2.3. Data Fusion: Delineation of SSMZs from Soil Maps (Slope and EC Maps) and NDVI Map

Finally, also the variability of crop vigor (described by the NDVI map) was taken into account
to produce a more reliable SSMZ map, with better correspondence to the zones in the CWSI map
characterized by high (from 0.5 to 1) and low values (from 0 to 0.5) of the index. EC, elevation, slope
and NDVI maps were analyzed through PCA and CA. Following the same approach considered in
the Section 3.2.2, the SSMZ map was obtained by applying PCA and CA firstly to data available
within the area ‘a’ with valid EMI measurements, and afterwards to data available within the area ‘b’
characterized by gravelly soils.

For area ‘a’, CA was applied to the first three principal components PCa
1, PCa

2 and PCa
3 (Table 6),

obtained from the EC, elevation, slope and NDVI maps: PCa
1 represented mainly the physical-chemical

soil properties (correlation coefficients with EC greater than 0.90), and partly the DTM (correlation
coefficient equal to −0.48); PCa

2 represented the topography (correlation coefficients with DTM and
Slope equal to 0.72 and −0.45, respectively); PCa

3 represented both the topography (correlation
coefficient with Slope equal to −0.61) and the crop vigor (correlation coefficient with NDVI equal
to 0.59) which are negatively correlated (see Table 2). For area ‘b’, CA was applied to the first two
principal components PCb

1 and PCb
2 (Table 7), obtained from the elevation, slope and NDVI maps:

PCb
1 represented the topography (correlation coefficients with DTM and Slope equal to −0.89 and 0.88,

respectively); PCb
2 represented the crop vigor (correlation coefficient with NDVI equal to 0.99).

Table 6. Results of PCA applied in the area ‘a’: variance of the principal components considered in CA
and correlation coefficients with the variables used to delineate SSMZ.

Variance Cumulative Variance EC-15 kHz EC-10 kHz DTM Slope NDVI

PCa
1 2.26 45% 0.90 0.93 −0.48 0.52 −0.27

PCa
2 1.29 71% 0.25 0.18 0.72 −0.45 −0.69

PCa
3 0.87 88% 0.28 0.26 0.03 −0.61 0.59

Table 7. Results of PCA applied in the area ‘b’: variance of the principal components considered in CA
and correlation coefficients with the variables used to delineate SSMZ.

Variance Cumulative Variance DTM Slope NDVI

PCb
1 1.56 52% −0.89 0.88 0.06

PCb
2 1.03 87% −0.14 −0.20 0.99

Within areas ‘a’ and ‘b’, respectively, five SSMZs (numbered from 1 to 5) were delineated from EC,
elevation, slope and NDVI maps, and three SSMZs (numbered from A to C) were delineated considering
only elevation, slope and NDVI maps. The resulting SSMZ map is shown in Figure 12b. The SSMZs
1–3, A and C corresponded to low CWSI values, while SSMZs 4, 5, and B mostly corresponded to high
CWSI values, except for the three small areas highlighted with the red circles in Figure 12b. As matter
of fact, the SSMZ delineation in Figure 12b was improved compared to the one shown in Figure 12a,
as illustrated in Figure 14: (i) the mean and the standard deviation of the CWSI values within SSMZ
1 decreased, while SSMZs 5 (corresponding to SSMZ 4 in Figure 12a) mostly included high CWSI
values, with an increased mean value compared to SSMZ 4 in Figure 12a; (ii) also the mean of the CWSI
values within SSMZs 3 increased with respect to the values for SSMZ 1 in Figure 12a; (iii) the SSMZ B
was characterized by the CWSI values with the highest mean; (iv) the SSMZ C mostly included low
CWSI values (the mean and the standard deviation of the CWSI values within this SSMZ decreased
compared to the values for SSMZ C in Figure 12a). Finally, the integration of the NDVI data allowed
the delineation of SSMZs each one corresponding respectively to low or high CWSI values (except for
the three small areas highlighted with red circles in Figure 12b).
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The spatial distributions of the PCs (Figures 15 and 16) explain which factors prevailed in the
SSMZ delineation through CA. The SSMZs 1-3 were mainly determined by soil properties (EC data,
described by PCa

1), while the SSMZ 4, as well as the SSMZs A and B, were mainly determined by
topography (DTM and Slope data, described by PCa

2 for the case of SSMZ 4, and by PCb
1 for the case

of SSMZs A and B). The SSMZs 5 and C were mainly determined by crop vigor (NDVI data, described
by PCa

3 for the case of SSMZ 5, and by PCb
2 for the case of SSMZ C).
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Moreover, Table 8 shows the correlation between CWSI and the variables (elevation, slope and
NDVI) used to integrate the EMI measurements in order to improve the reliability of the SSMZ map
obtained from only EC data. Correlation with NDVI was the highest (p-values less than 5 × 10−4),
highlighting how NDVI data were able to explain the CWSI spatial variability within the whole field
area. As matter of fact, for NDVI the difference between the Pearson’s coefficient and the Moran Index,
quantifying the direct correlation component independent from the spatial variability, is almost −0.30,
while this component is almost zero for the other variables.

Table 8. Correlation between CWSI and variables DTM, Slope and NDVI.

DTM Slope NDVI

Pearson’s coefficient 0.29 *** 0.02 * −0.71 ***
Moran Index 0.29 ** 0.02 ** −0.52 **

*** p-value < 5 × 10−5; ** p-value < 5 × 10−4; * p-value > 0.1.

3.3. Discussion

Obtaining a reliable SSMZ map is of practical relevance for farmers, since this map is an important
tool to actuate variable rate practices in PA, in term of both designing and managing application
systems (e.g., for the water and nutrient management). As matter of fact, the delineated SSMZs are
zones where the factors influencing the crop yield (i.e., soil, topography, and micro-climate) result
in affecting the crop water status and vigor in a different way. These factors need to be adequately
described through thematic maps, to allow the delineation of SSMZs through their combination.

This work proposed a fusion approach integrating different thematic maps (EC, DTM, slope and
NDVI maps) to compute a SSMZ map, whose effectiveness was assessed considering a CWSI map.
The approach was applied in a rainfed vineyard to obtain a SSMZ map useful for the design and the
management of a variable rate irrigation system. By actuating a variable rate irrigation accordingly to
the SSMZ map, farmers would achieve a twofold result: first, to obtain a higher and more uniform
production and second, to optimize the water use. Interesting general discussion points that emerge
from the results of this study are the following:

(1) the SSMZ map can vary greatly its spatial configuration depending on the information layers
used for its production, it is therefore necessary to conduct more research aimed at understanding
which information it may be appropriate to include, based not only on the prevailing factors
affecting the crop yield, but also on the purpose for which the SSMZ map is being developed
(e.g., nutrient management, water management);

(2) the addition of the topographic information to the soil data included in the EC maps leads the
SSMZ map to have a spatial distribution more similar to that shown by the CWSI map; it can
be deduced that in a vineyard in slope conditions, the topographic information together with
the soil distribution information are able to explain part of the variability illustrated in the
vegetation maps;

(3) in the specific case of this study (i.e., rain-fed vineyard in severe water stress conditions), NDVI
data were able to explain the CWSI spatial variability within the whole field area; indeed,
the NDVI map showed a strong correlation with the crop water status (CWSI);

(4) while information on soil properties and topography are not very variable over time, crop data
may vary from year to year if soils and topography are not the only factors conditioning their
distribution; it would therefore be necessary to repeat the study for several years to verify the
‘stability over time’ of the spatial distribution of crop data;

(5) if the SSMZ map is to be used to design a ‘rigid’ variable-rate irrigation system (i.e., drip irrigation
system subdivided into different irrigation sectors), considering that the geometry of the irrigation
system (and consequently the irrigation amounts distributed) cannot be changed from year to
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year, it is even more important to verify the ‘stability over time’ of the spatial distribution of crop
data, and if therefore it makes sense to consider them in the delineation of the SSMZs.

4. Conclusions

Recent literature suggests that integrating EC information with elevation and slope maps, as well
as with crop indices describing the crop vigor, can improve the delineation of SSMZs in vineyards. This
was demonstrated in this study, focusing on the fusion of EC maps obtained by an EMI geophysical
survey and VIS-NIR data collected through UAV-mounted cameras, to optimally delineate SSMZs
in a rain-fed vineyard of 15,000 m2 located in Northern Italy. In the study, in absence of a spatially
distributed crop yield map, the crop water status detected in a severe dry period during the grape’s
veraison phenological stage was assumed to summarize the effect of the principal environmental
factors acting on the crop production; consequently, the CWSI map was used as a proxy of the crop
yield map itself.

The obtained results stressed how the crop water status in the study vineyard was actually
affected significantly not only by the physical-chemical soil properties (described by the EC maps),
but also by the elevation and slope of terrain. Moreover, the NDVI map allowed us to include in the
analysis time-dependent factors influencing the production (i.e., interaction among soil, topography,
micro-climate and vegetation). In fact, for the study vineyard, a good correspondence between the
spatial pattern of SSMZ and CWSI maps was achieved only by integrating the NDVI data to the other
types of data. Consequently, at least for the study case, a reliable SSMZ map to be used to design and
manage irrigation within the vineyard showed to require the availability of both ‘stable-over-time
information’, related to soil properties and topography, and ‘time-dependent information’, related
to the crop development. In this study, crop information was available only for the 2017 season,
but a good practice to obtain reliable SSMZ maps would require the acquisition of crop data during
different seasons.
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