
sensors

Article

Cyber Situation Comprehension for IoT Systems
based on APT Alerts and Logs Correlation

Xiang Cheng 1,2, Jiale Zhang 1,2 and Bing Chen 1,2,*
1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, China; huozhai9527@126.com (X.C.); jlzhang@nuaa.edu.cn (J.Z.)
2 The Collaborative Innovation Center of Novel Software Technology and Industrialization,

Nanjing 210023, China
* Correspondence: cb_china@nuaa.edu.cn; Tel.: +86-025-84892952

Received: 23 July 2019; Accepted: 16 September 2019; Published: 19 September 2019
����������
�������

Abstract: With the emergence of the Advanced Persistent Threat (APT) attacks, many Internet
of Things (IoT) systems have faced large numbers of potential threats with the characteristics
of concealment, permeability, and pertinence. However, existing methods and technologies cannot
provide comprehensive and prompt recognition of latent APT attack activities in the IoT systems.
To address this problem, we propose an APT Alerts and Logs Correlation Method, named APTALCM
and a framework of deploying APTALCM on the IoT system, where an edge computing architecture
was used to achieve cyber situation comprehension without too much data transmission cost.
Specifically, we firstly present a cyber situation ontology for modeling the concepts and properties
to formalize APT attack activities in the IoT systems. Then, we introduce a cyber situation instance
similarity measurement method based on the SimRank mechanism for APT alerts and logs Correlation.
Combining with instance similarity, we further propose an APT alert instances correlation method
to reconstruct APT attack scenarios and an APT log instances correlation method to detect log instance
communities. Through the coalescence of these methods, APTALCM can accomplish the cyber
situation comprehension effectively by recognizing the APT attack intentions in the IoT systems.
The exhaustive experimental results demonstrate that the two kernel modules, i.e., Alert Instance
Correlation Module (AICM) and Log Instance Correlation Module (LICM) in our APTALCM,
can achieve both high true-positive rate and low false-positive rate.

Keywords: cyber situation comprehension; APT attack; alert correlation; log correlation; IoT;
edge computing

1. Introduction

With the rapid advancement of the Internet of Things (IoT) infrastructure and the widely emerging
networking applications, IoT security management has faced several significant challenges [1]:
(a) Invisibility: it is hard to convince users to keep the software updated in IoT equipment that stops
looking like traditional computers; (b) Lifetimes: since IoT devices will likely live much longer than
traditional computers, unpatched software will persist much longer in IoT devices; (c) Patchability:
as long-term communications were required between remote IoT devices and public networking
servers, updating patches became harder than conventional information systems; (d) Consequences of
Compromise: the intimate connection of IoT devices to physical infrastructure will increase the damage
from successful compromise. As the above challenges, IoT systems have performed vulnerability
with complexity topological structure. To cope with these increasingly complicated and potential
security threats, various detection techniques have been put forward, such as the vulnerability
detection technology, malicious code detection method, intrusion detection system, trying to recognize

Sensors 2019, 19, 4045; doi:10.3390/s19184045 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19184045
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/18/4045?type=check_update&version=2

Sensors 2019, 19, 4045 2 of 21

the security issues existing in the IoT systems [2–6]. However, the biggest shortcoming of these
methods is that they cannot provide real-time recognition of the real threats from a comprehensive
scope, which limits the ability of IoT security administrators to make responsive decisions.

Recently, to solve this problem, the concept of Cyber Situation Awareness (CSA) [7] has emerged.
The main idea of CSA in the large-scale IoT systems is recognizing the attack activities scattering among
a large amount of noised data in IoT systems and grasping the whole IoT system security situation
macroscopically. In this way, IoT system managers can make the responses appropriately and meanwhile
effectively reduce the damage caused by the various attacks as possible. Among these powerful
network attacks, Advanced Persistent Threat (APT) is one of the most robust multiple-steps attacks
with characteristics of concealment, permeability, and pertinence, causing serious threats to all kinds
of high-level information systems [3]. To mitigate the negative effects of APT, the fundamental problem is
to design the cyber situation core technologies that aim at APT attack comprehension. Conventional cyber
situation comprehension methods usually recognize attack intentions by only analyzing the attack alerts.
However, the IoT system has the characteristics as follows: (1) the deployment of IoT terminal devices
are especially scattered; (2) the majority of IoT terminal devices are resource-constraint, which means
they are unable to install computing hungrily attack detecting software; (3) it is impossible to directly
deploy security detection hardware for IoT terminal devices; (4) the conventional centralized cloud
computing architecture cannot handle heavy transmission overheads of attack detect information.
The aforementioned characteristics (1)–(3) will arise the risk of omitting alerts and failing to recognize
some attack intentions. To solve this problem, we propose an APT Alerts and Logs Correlation Method
(named APTALCM) to recognize the attack intentions and accomplish cyber situation comprehension
in the IoT systems. To address the challenge caused by characteristic (4), we further present an edge
computing-based framework for deploying APTALCM on the IoT systems, which can significantly
reduce the communication overhead of cyber situation comprehension.

1.1. Our Contribution

In this paper, we propose APLALCM, a cyber situation comprehension method for IoT systems
based on APT alerts and logs correlation. We summarize the contributions of this paper as follows:

• We propose a cyber situation comprehension method for IoT systems which can effectively,
accurately and in a timely manner reconstruct the APT attack scenarios. This method is also able
to dig out the potential attack activities by analyzing the log data in IoT edge devices in a holistic
way, making a significant contribution to the field of IoT attack detection.

• We present a framework for deploying APTALCM on the IoT system based on edge computing
architecture. This framework can greatly reduce the communication overheads of APT alerts
and logs transmission among entities.

• We introduce an alert and log instances similarity measures method based on the SimRank
mechanism in APTALCM. This method can provide a basis for: (1) correlating the APT alerts
generated by edge servers and cloud data center; (2) correlating the logs created by edge devices.

• Experimental evaluation of the efficiency and accuracy of the proposed alert instances correlation
module and log instances correlation module.

1.2. Organization of the Paper

The rest of the paper is organized as follows. Section 2 summarizes the background and related
work of Cyber Situation Awareness. Section 3 provides an overview of cyber situation comprehension
for IoT Systems, it contains a description of the proposed APTALCM and a framework of deploying
APTALCM on the IoT system which is based on edge computing architecture. Section 4 presents
the design details of APTALCM, which contains the cyber situation ontology construction module,
alert instances correlation module, and log instances correlation module. Section 5 provides a view
of our experiments and analysis. Section 6 presents the conclusions.

Sensors 2019, 19, 4045 3 of 21

2. Background and Related Work

The situation is a key factor of CSA, which means the states of various objects in the cyber systems
represented by a set of measurement values. In other words, the situation is a global concept and
all the objects in the cyber systems are synthesized. Any sole state cannot be regarded as a situation
because they only focus on the systematic perspective and relationships between the objects in systems.
Cyber situation awareness is a cognitive process applied to cyber systems consisted of three phases.
First, the original data generated in the system will be fused and processed gradually to accomplish
the semantics extraction of the system states and activities. Then, the recognition procedure will
be executed to obtain the exiting cyberspace activities and intentions of abnormal activities in the
cyberspace. At last, representational cyber situations are acquired based on the effects of recognizing
activities and intentions of abnormal activities in the cyber systems. According to the definition
and illustration of CSA, we can summarize the entire CSA processes into three specific operations:
cyber situation perception, cyber situation comprehension, and cyber situation projection. The general
functional module of CSA is shown in Figure 1 which consists of the Cyber Situation Perception module,
Cyber Situation Comprehension module, Cyber Situation Projection module, and Visualization module.

• The primary duty of cyber situation perception is recognizing the activities (include attack
activities) and the corresponding features in the information systems, providing for further cyber
situation comprehension to acquire the attack intention.

• The cyber situation comprehension is mainly used to discover the attack activities and understand
the semantics of them to acquire the attack intention.

• The cyber situation projection plays the role of analyzing and estimating the threats incurred
by attack activities based on the first two phases. This kind of projection includes discovering
the existing and possible effects on the objects in the cyber system incurred by attack activities.
We can acquire the objective situation through projecting the cyber situation awareness results
on certain objects in cyber systems. The projection process firstly constructs the cyber system
situation by fusing the situation of various objects in the cyber system, then projects back the cyber
situation results to further evaluate their effects.

• The cyber situation can be visualized as the formation of who on what time at where generates
what impact, namely (Who, When, Where, Impact). They are, Who represents the recognized
attack activities; When represents the evolutionary process of the recognized attack activities;
Where represents the distribution of the recognized attack activities; Impact represents the existing
effects on the cyber system incurred by the recognized attack activities. The security managers can
not only observe some attack activities during a certain period time but also acquire the distribution
of all the activities (contains normal activities) according to their goals and requirements.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 20

2. Background and Related Work

The situation is a key factor of CSA, which means the states of various objects in the cyber
systems represented by a set of measurement values. In other words, the situation is a global concept
and all the objects in the cyber systems are synthesized. Any sole state cannot be regarded as a
situation because they only focus on the systematic perspective and relationships between the objects
in systems. Cyber situation awareness is a cognitive process applied to cyber systems consisted of
three phases. First, the original data generated in the system will be fused and processed gradually
to accomplish the semantics extraction of the system states and activities. Then, the recognition
procedure will be executed to obtain the exiting cyberspace activities and intentions of abnormal
activities in the cyberspace. At last, representational cyber situations are acquired based on the effects
of recognizing activities and intentions of abnormal activities in the cyber systems. According to the
definition and illustration of CSA, we can summarize the entire CSA processes into three specific
operations: cyber situation perception, cyber situation comprehension, and cyber situation
projection. The general functional module of CSA is shown in Figure 1 which consists of the Cyber
Situation Perception module, Cyber Situation Comprehension module, Cyber Situation Projection
module, and Visualization module.

• The primary duty of cyber situation perception is recognizing the activities (include attack
activities) and the corresponding features in the information systems, providing for further
cyber situation comprehension to acquire the attack intention.

• The cyber situation comprehension is mainly used to discover the attack activities and
understand the semantics of them to acquire the attack intention.

• The cyber situation projection plays the role of analyzing and estimating the threats incurred by
attack activities based on the first two phases. This kind of projection includes discovering the
existing and possible effects on the objects in the cyber system incurred by attack activities. We
can acquire the objective situation through projecting the cyber situation awareness results on
certain objects in cyber systems. The projection process firstly constructs the cyber system
situation by fusing the situation of various objects in the cyber system, then projects back the
cyber situation results to further evaluate their effects.

• The cyber situation can be visualized as the formation of who on what time at where generates
what impact, namely (Who, When, Where, Impact). They are, Who represents the recognized
attack activities; When represents the evolutionary process of the recognized attack activities;
Where represents the distribution of the recognized attack activities; Impact represents the
existing effects on the cyber system incurred by the recognized attack activities. The security
managers can not only observe some attack activities during a certain period time but also
acquire the distribution of all the activities (contains normal activities) according to their goals
and requirements.

Data Preprocessing

Data
Standardization Data Validation

Activities Modeling

Data Correlation

Knowledge mining
Perception Output

Activities Recognition

Activities Features

Cyber Situation Perception

Comprehension Output

Activities Intention
Recognition

Attack Targets
Recognition

Activities Identities
Recognition

Cyber Situation Com
prehension

Projection Output

Damage Assessment

Threat Assessment

Cyber Situation Projection

Visualization

Who, When,
Where, Effect

Various data from the
Sensors

Figure 1. The framework of Cyber Situation Awareness. Figure 1. The framework of Cyber Situation Awareness.

Sensors 2019, 19, 4045 4 of 21

Attack intention recognition is a part of the primary objectives of cyber situation comprehension
and our work is mainly focused on the attack intention recognition of APT. Existing work [2–6]
on attack intention recognition usually focus on attack scenarios reconstruction while ignoring
the related unaggressive activities, contributing to APT attack and multiple-step attack implementation.
In addition to this, the intrusion ontology used in the field of intrusion detection cannot be applied
to the CSA paradigm directly. Recently, statistical analysis mechanisms are proposed to discover
the relationships between attack steps. However, these methods can only perform on static databases
because they all depend on expert knowledge.

At present, hot topics of cyber situation comprehension mainly focus on two branches: (1) matching the
alerts with acquired attack activities based on the prior knowledge; (2) analyzing relationships between
the alerts without prior knowledge. Cuppens [4] developed the LAMBDA programming to accomplish
the description of templates and matching process. The researchers [5–8] usually divide an attack activity
into several stages, such as the Intrusion Kill Chains Model [9]. Most recently, there are primarily two
types of methods based on similarity measure: The attribute similarity method and timing sequence
method. The key point of these methods is the definition of a suitable similarity measure metric. In [10,11],
the authors defined a similarity function and clustered the IDS alerts based on the similarities between
attributes. Later, Ourston proposed an alert correlation method [12] based on the Hidden Markov Model
to get the attack sequences with the highest possibilities. Qiao proposed a simple formula for computing
the similarity between alerts [13]. They apply a double clustering followed by a loose application of LCS
(Longest Common Subsequence). Moreover, Murphy uses a similarity matrix based on the services each
attack exploits [14,15]. Clusters of alerts are extracted using Divisive Hierarchical Clustering (DHC) on
a social network graph derived from the similarity matrix. In the JEAN (Judge Evaluation of Attack
Intension) system, proposed by [16], the process starts building a database of attack session graphs from
a training set of IDS alerts using J-Fusion, an algorithm for alert fusion. In a brief paper, Zhang [17]
presented a clustering method based on a specific metric between IP addresses.

3. Cyber Situation Comprehension for IoT Systems

The primary duty of cyber situation comprehension in IoT is analyzing the activities (include attack
activities) and recognizing the attack intentions. Conventional cyber situation comprehension methods
usually recognize attack intentions by only analyzing the attack alerts. However, the IoT system
has the characteristics: (1) IoT terminal devices are deployed especially scattered; (2) the majority
of IoT terminal devices have limited hardware resources which are unsuitable for installing large-scale
attack detection software; (3) it is impossible to deploy security detection hardware directly on the
resource-constraint IoT terminal devices. Therefore, we only can deploy the security detection
equipment on the boundary of certain region IoT devices. The above characteristics will arise the risk
of alerting omission and failing to recognize some attack intentions. To solve the above problems,
we introduce the IoT edge device log community detection method to recognize the potential attack
intentions that have not been detected; making up for the deficiencies when conventional cyber
situation comprehension methods apply to the IoT systems. Then, we can acquire the activities in two
forms: attack alerts and edge devices logs. As the number of activities is too large in the IoT systems,
it is impossible to correlate all the activities at a short time slot. Therefore, we use the following
two benchmarks to improve the efficiency of activities correlation: (1) APT attack alerts that are
essential to be correlated generating the APT attack scenarios; (2) the logs generated in the edge
devices infected by APT attacks are essential to be correlated to detect the unaggressive malicious
activities. According to these two standpoints, results of cyber situation comprehension are composed
of APT attack scenarios and log instance communities in the IoT systems. As a novelty concept, the log
instance community is a kind of log instance cluster which composes of log instances that have similar
attributes and operating purposes.

Based on the above discussions, we propose an APT Alerts and Logs Correlation Method (APTALCM)
to achieve the cyber situation comprehension in the IoT systems. The architecture of APTALCM is

Sensors 2019, 19, 4045 5 of 21

shown in Figure 2. It needs to be emphasized that APTALCM is not only a theoretical method,
but can be applied to other information systems. The large number of sensors embedded in IoT
devices result in the complicated data analysis for massive attack alerts and logs. In this situation,
when we apply the APTALCM based on conventional cloud computing architecture, all alerts and
logs should be transmitted to a central server, so as to increase the huge communication overhead
for data transmission and further affect the network performance. To address this, the emerging edge
computing architecture [18] can be used to meet the challenge of data transmission costs in the IoT
systems. Thus, we present an edge computing-based framework for deploying our proposed APTALCM
mechanism. Figure 3 represents a typical IoT system based on edge computing architecture and it contains
three layers: cloud data center, edge servers, and edge devices. Firstly, the cloud data center provides
the core network access and centralized cloud computing services and management functions for IoT
edge devices. Secondly, edge servers are responsible for providing virtualized and multiple management
services. Finally, edge devices include all types of IoT devices (e.g., intelligent camera, automatic robot,
and industrial sensing equipment) connected to the edge servers which are not only playing the role of data
consumers but also data producers to participate in the distributed infrastructure for all three layers.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 20

method, but can be applied to other information systems. The large number of sensors embedded in
IoT devices result in the complicated data analysis for massive attack alerts and logs. In this situation,
when we apply the APTALCM based on conventional cloud computing architecture, all alerts and
logs should be transmitted to a central server, so as to increase the huge communication overhead for
data transmission and further affect the network performance. To address this, the emerging edge
computing architecture [18] can be used to meet the challenge of data transmission costs in the IoT
systems. Thus, we present an edge computing-based framework for deploying our proposed
APTALCM mechanism. Figure 3 represents a typical IoT system based on edge computing
architecture and it contains three layers: cloud data center, edge servers, and edge devices. Firstly,
the cloud data center provides the core network access and centralized cloud computing services and
management functions for IoT edge devices. Secondly, edge servers are responsible for providing
virtualized and multiple management services. Finally, edge devices include all types of IoT devices
(e.g., intelligent camera, automatic robot, and industrial sensing equipment) connected to the edge
servers which are not only playing the role of data consumers but also data producers to participate
in the distributed infrastructure for all three layers.

Alert instances correlation

Cyber situation
ontology construction

Alert instances Clustering

Different sources
of data in IoT

APT attack scenario

Alert instances Filters

Calculate instance
similarity

Construct ontology

Log instances correlation

Log instances community
Detection

Preliminary Correlation

Victim host IP
cyber situation
comprehension

output

Co(I(alert))

Co(I(log))

Figure 2. The architecture of APTALCM.

Cloud Data Center

Edge ServerEdge Server

Edge Devices

Ontology
Construction

Alert Instance
Correlation

Log Instance
Correlation

Alert instance

Log data

Log community

Victim_HostIP

Figure 3. Cyber Situation Comprehension for Internet of Things (IoT) Systems Framework.

For the practical implementation of our proposed APTALCM in the edge computing
architecture, we describe the detail of each module of our method. Cyber situation ontology is

Figure 2. The architecture of APTALCM.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 20

method, but can be applied to other information systems. The large number of sensors embedded in

IoT devices result in the complicated data analysis for massive attack alerts and logs. In this situation,

when we apply the APTALCM based on conventional cloud computing architecture, all alerts and

logs should be transmitted to a central server, so as to increase the huge communication overhead for

data transmission and further affect the network performance. To address this, the emerging edge

computing architecture [18] can be used to meet the challenge of data transmission costs in the IoT

systems. Thus, we present an edge computing-based framework for deploying our proposed

APTALCM mechanism. Figure 3 represents a typical IoT system based on edge computing

architecture and it contains three layers: cloud data center, edge servers, and edge devices. Firstly,

the cloud data center provides the core network access and centralized cloud computing services and

management functions for IoT edge devices. Secondly, edge servers are responsible for providing

virtualized and multiple management services. Finally, edge devices include all types of IoT devices

(e.g., intelligent camera, automatic robot, and industrial sensing equipment) connected to the edge

servers which are not only playing the role of data consumers but also data producers to participate

in the distributed infrastructure for all three layers.

Alert instances correlation

Cyber situation
ontology construction

Alert instances Clustering

Different sources
of data in IoT

APT attack scenario

Alert instances Filters

Calculate instance
similarity

Construct ontology

Log instances correlation

Log instances community
Detection

Preliminary Correlation

Victim host IP

cyber situation
comprehension

output

Co(I(alert))

Co(I(log))

Figure 2. The architecture of APTALCM.

Cloud Data Center

Edge ServerEdge Server

Edge Devices

Ontology

Construction

Alert Instance

Correlation

Log Instance

Correlation

Alert instance

Log data

Log community

Victim_HostIP

Figure 3. Cyber Situation Comprehension for Internet of Things (IoT) Systems Framework.

For the practical implementation of our proposed APTALCM in the edge computing

architecture, we describe the detail of each module of our method. Cyber situation ontology is

Figure 3. Cyber Situation Comprehension for Internet of Things (IoT) Systems Framework.

For the practical implementation of our proposed APTALCM in the edge computing architecture,
we describe the detail of each module of our method. Cyber situation ontology is proposed for modeling

Sensors 2019, 19, 4045 6 of 21

the concepts and properties of the cyber situation awareness paradigm in IoT systems. At present,
there are no ontologies that are enough mature to satisfy the requirement of cyber situation awareness.
Therefore, in this paper, we proposed the APTALCM, which defines a set of representational primitives
for modeling the domain of cyber situation as the cyber situation ontology. The inputs of this phase
are APT alerts and logs affected by APT attacks from various detection sensors in the IoT systems.
The corresponding outputs are the cyber situation ontology instances. To implement the APTALCM
in the system presented in Figure 3, we deploy the Ontology Construction module on cloud data center
layer to convert APT alerts generated from IDS in edge servers layer, firewalls and IDS in cloud data
center layer to alert instances, and we also deploy the Ontology Construction module on edge servers
layer to convert the log data to log instances.

After the cyber situation ontology construction, the situation ontology instances will face two
operational options according to the different instance types (alert instance & log instance). That is,
alert instances raised from the preceding phase will be fed into the alert instance correlation module
(AICM) and the log instances will be transmitted to the log instance correlation module (LICM).
Specifically, the primary duty of AICM is to recognize APT alert instances which are belonged to an
APT attack scenario in the IoT systems. To apply the APTALCM in the system presented in Figure 3,
we deploy AICM on cloud data center layer to accomplish APT attack scenarios reconstruction,
and then the cloud data center will transmit the Victim_HostIp to edge servers’ layer. Finally, the edge
servers select the target IoT edge device to apply log correlation. LICM takes the log instances
generated by the victim edge device as inputs to detect the log instance communities, so as to recognize
the potential malicious activities. Similarly, we also deploy the LICM on the edge servers’ layer
to detect log communities through the log instances and further recognize the potential malicious
activities. Followed by this way, our designed systems framework has the following advantages:
(1) the communication overheads between cloud data center and edge devices can be greatly reduced
by deploying the edge servers layer in the middle and the shares between edge servers and cloud data
center are only log community results; (2) a large part of computation costs of log community detection
can be outsourced to the edge servers, so as to make up the resource-constraint drawback of IoT edge
devices. Guiding by this cyber situation comprehension for IoT systems framework, the IoT system
security managers can effectively acquire APT attack scenarios and log communities on cloud data
center to recognize APT attack intentions in a specific IoT system based on edge computing architecture.

4. APTALCM Design

We have proposed the APT alerts and logs correlation method (APTALCM) to achieve the cyber
situation comprehension in the IoT systems and provided the edge computing-based framework
for deploying APTALCM on the IoT system. Here, we give a detailed description of our proposed
APTALCM mechanism.

4.1. Cyber Situation Ontology Construction

According to the APTALCM architecture, the first module of APTALCM deployed on cloud
data center and edge servers will convert the received APT alerts and edge device logs into cyber
situation ontology instances. Thus, our first work is to propose a formal definition of cyber situation
ontology. Different from the previously proposed methods directly send the ontology instances
to attack scenarios reconstruction module, we introduce a method based on the SimRank mechanism
to calculate the similarity between cyber situation instances.

4.1.1. Cyber Situation Ontology Initialization

A widely accepted definition of ontology is shown as follows: the ontology defines
a set of representational primitives with which to model a domain of knowledge or discourse.
The representational primitives are typically classes (or concepts), attributes (or properties),
and relationships (or relations between class members) [2].

Sensors 2019, 19, 4045 7 of 21

According to the ontology definition and the combination of the cyber situation characteristics,
we introduce a formalized definition of the cyber situation ontology as follows: O = (C, A, D, R, S).
The elements C, A, D, R and S represent the set of classes (alert or log), the set of attributes, the domain
of the cyber situation ontology, the set of relationships of the instances, and the set of similarity
between the instances in the IoT system based on edge computing architecture (alert instances or log
instances), respectively. Then, we define A(ci) to represent the attributes of a class ci, I(ci)m as an
instance of the class ci. Besides, the attribute value of an instance can be represented as A(I(ci)m)

and SIM(I(ci)m, I(ci)n) presents the similarity between instances I(ci)m and I(ci)n.
The APT alert class consists of alert instances converted from APT alert detected by various attack

detection sensors (e.g., IDSs in edge servers, IDS in cloud data center, firewall between edge servers
and cloud data center) and each alert instance represents a suspicious attack step of an APT attack
in the IoT system based on edge computing architecture. In this paper, we set seven attributes for APT
alert class to analyze the characteristics of APT alerts output from different attack detection sensors:
Timestamp, Alert_Type, Src_Ip, Dest_Ip, Src_Port, Dest_Port, and Victim_HostIp. Attributes values of an
alert instance stored in a 7-dimensional vector, A(I(alert)m) = (a1, a2, a3, a4, a5, a6, a7). The description
of each attribute is shown in Table 1.

Table 1. The attributes of Advanced Persistent Threat (APT) alert class.

Number Attributes Description

1 Timestamp The time of the alert occurs
2 Alert_Type The type of alert
3 Src_Ip The source IP of the attack step
4 Dest_Ip The destination IP of the attack step
5 Src_Port The source port number of the attack step
6 Dest_Port The destination port number of the attack step
7 Victim_HostIp The IP of the host which victimized by the attack step

The edge device log class consists of the log instances transformed from the log data generated
in the edge devices. The log type depends on the operating system installed in the edge devices.
On the assumption that all the edge devices are installed with Windows Embedded Compact
(Windows CE), the log data that can be provided by the application programs are presented in Table 2.
The essenceof transforming the log data to log instances is extracting representative attributes.
In this work, we select 19 attributes from the log data are shown in Table 3. As the data generate from
different application programs, not all the log instances have the same attribute type, we also give
the log instance type. Attributes value of a log instance can be presented as a 19-dimensional vector:
A
(
I(log)m

)
= (a1, a2 . . . a18, a19). If a log instance only contains attributes a1, a3, a5, the other elements

of its attribute vector are zero.

Table 2. Logs used for cyber situation perception comprehension.

Number Logs Providers

1 HTTP Internet explorer
2 Object access Audit
3 DNS Tshark
4 Authentication Syslogd
5 Process create Audit
6 WFP connect Audit

Table 3. The attributes extracted from log data.

Number Logs Attribute Description

1 Log1-Log6 timestamp Event timestamp
2 Log3 q_domain DNS queried domain name

Sensors 2019, 19, 4045 8 of 21

Table 3. Cont.

Number Logs Attribute Description

3 Log3 r_ip DNS resolved IP address
4 Log2 Log5 Log6 pid base-16 process ID
5 Log5 ppid base-16 parent process ID
6 Log2 Log4 Log5 Log6 pname process
7 Log6 h_ip host IP address
8 Log6 h_port host port number
9 Log6 d_port destination port number
10 Log6 d_ip destination IP address
11 Log6 type request/response
12 Log1 get_q absolute path of GET
13 Log1 post_q absolute path of POST
14 Log1 res_code response code
15 Log1 h_domain host domain name
16 Log1 referer refer of requested URI
17 Log1 res_loc location to redirect
18 Log2 acct principle of this access
19 Log2 objname object name

4.1.2. Calculate Instance Similarity

We proposed a cyber situation instance similarity calculation method to provide a correlation basis
for the alert correlation module and log correlation module. Each alert or log is an instance of cyber
situation ontology, and the relationship between them can be described as a labeled directed graph
with similarity. As its graphic character, the proposed method is built on the SimRank mechanism.

The SimRank mechanism provides a similarity measure of structural context where the related
objects are linked by directed edges. It defines a recursive function calculating the similarity between
object pairs based on the concept of context. The core idea is that objects are similar in terms
of referenced by similar objects.

We measure the similarity between the cyber situation instances, which fall within the same class.
In other words, we measure the similarity within the alert class and edge device log class. To compare
the similarity between two cyber situation instances I(c)m and I(c)n within the same class, we use
the following two sets of parameters:

• Attributes: The attributes of each cyber situation instance, A(I(c)m) and A(I(c)n)

• Correlated instances: The instances which have already correlated to each cyber situation instance
I(c)m and I(c)n are presented as Co(I(c)m) and Co(I(c)n).

The basic similarity measure of cyber situation instances is calculating the similarity between their
attributes and the correlated instances. The formalized representation of the similarity between two
cyber situation instances is shown in Equation (1).

SIM(I(c)m, I(c)n) = γSIMA(I(c)m, I(c)n) + βSIMCo(I(c)m, I(c)n)

γ =
|A(I(c)m)∪A(I(c)n)|

|A(I(c)m)∪A(I(c)n)|+|Co(I(c)m)∪Co(I(c)n)|

β =
|Co(I(c)m)∪Co(I(c)n)|

|A(I(c)m)∪A(I(c)n)|+|Co(I(c)m)∪Co(I(c)n)|

(1)

It indicates that SIMA(I(c)m, I(c)n) ∈ [0, 1] and SIMCo(I(c)m, I(c)n) ∈ [0, 1], respectively.
Two parameters γ and β are defined to normalize the impact degree where γ+β = 1. Therefore, we can
draw the conclusion that SIM(I(c)m, I(c)n) ∈ [0, 1]. Then, we will give the formalized representation
of SIMA(I(c)m, I(c)n) in a mutually recursive method. SIMA(I(c)m, I(c)n) measures the similarity
between cyber situation instances based on attribute similarity, SIMA(Ai(I(c)m), Ai(I(c)n)) measures

Sensors 2019, 19, 4045 9 of 21

the similarity between the attributes of each cyber situation instance. Note that, the similarity between
the same instances can be set as 1 and other conditions can be calculated in Equation (2).

SIMA((I(c)m, I(c)n) =
∂∣∣∣A(I(c))

∣∣∣ ∑|A(I(c))|

i=1
SIMA(Ai(I(c)m), Ai(I(c)n)) (2)

The similarity between two attributes can be set as 1 on the condition of Ai(I(c)m) = Ai(I(c)n).
If no pairs of the attributes are identical, SIMA(I(c)m, I(c)n) will be calculated based on Equation (3)
where Coi(I(c)m) is the correlated instance to I(c)m. The method of acquiring them will be discussed
in Sections 4.2 and 4.3.

SIMA(I(c)m, I(c)n) =
∂
∑|Co(I(c)m)|

i=1
∑|Co(I(c)n)|

j=1 SIMA
(
Coi(I(c)m), Co j(I(c)n)

)
∣∣∣Co(I(c)m)

∣∣∣∣∣∣Co(I(c)n)
∣∣∣ (3)

The SIMCo(I(c)m, I(c)n) measures the similarity between cyber situation instances based on its
correlated instances similarity and calculated in Equation (4). On the condition that either I(c)m or I(c)n
does not have any correlated instance, we will hardly infer any similarity between them.

SIMACo(I(c)m, I(c)n) =


1 I(c)m = I(c)n

∂
∑|Co(I(c)m)|

i=1
∑|Co(I(c)n)|

j=1 SIMCo(Coi(I(c)m),Co j(I(c)n))

|Co(I(c)m)||Co(I(c)n)|
I(c)m , I(c)n

(4)

4.2. Alert Instances Correlation

As APT attack alerts are critical to be correlated generating the APT attack scenarios, we focus
on deploying the Alert Instance Correlation module on cloud data center to accomplish APT attack
scenarios reconstruction. The APT attack usually performs through a few steps with characteristics
of persistent, targeted and aiming at the specific object. The final mission of APT is obtaining confidential
data in the IoT systems. To achieve this goal, the attack process usually contains complex multistep.
Alert instances which are extracted in edge servers and cloud data center belong to different APT attack
step, Table 4 summarizes the matchup between APT attack scenario steps and alert instances.

Table 4. The matchup between APT attack scenario steps and alert instances.

Step Number APT Step Alerts Instance

Step 2 (P) Point of entry
I(p1)Domain_instance

I(p2)Disguised_exe_instance
I(p3)Hash_instance

Step 3 (C) C&C communication
I(c1)Domain_flux_instance

I(c2)Ip_instance
I(c3)Ssl_instance

Step 5 (A) Asset/Data discovery I(a1)Scan_instance
Step 6 (D) Data exfiltration I(d1)Tor_intance

The first step (Intelligence Gathering) contains some passive process and the corresponding alerts
are not readily be detected by network traffic sensors. The fourth step (Lateral Movement) is internal
traffic within the edge devices while the APT alerts are detected from the inbound and outbound
traffic. Based by the above facts, we only correlate the APT alert instances generated in Step 2, Step 3,
Step 5 and Step 6 of an APT attack scenario.

The AICM outputs two kinds of correlated alert instance clusters: Cluster f ull and Clustersub.
The Cluster f ull will be generated when AICM has correlated a full APT attack scenario during
the correlation duration, which has every step of an APT attack scenario. To be more specific,
the Cluster f ull include four alert instances, which generated within different step of a full APT attack

Sensors 2019, 19, 4045 10 of 21

scenario. We can correlate 9 alert instance cluster patterns based on Table 4 and the APT attack life
cycle. These alert instance cluster patterns can be formalized represented as:

Cluster f ull = P∩C∩A∩D
P = [I(p1)∪ I(p2)∪ I(p3)], C = [I(c1)∪ I(c2)∪ I(c3)], A = [I(a1)] and D = [I(d1)].

(5)

The Clustersub will be produced when AICM has correlated two or three rather than all steps of an
APT attack scenario during the correlation duration. In this fractional correlated alert cluster, one or two
step alert instances are missing. To be more specific, the Clustersub includes two types of alert clusters:
sub_steps_correlated_two_steps_alert_cluster and sub_steps_correlated_three_steps_ alert_cluster. We
can correlate 64 alert instance cluster patterns based on Table 4 and the APT attack life cycle. These
alert instance cluster patterns can be formalized represented as:

Clustersub = [C∩A∩D] ∪ [P∩A∩D] ∪ [P∩C∩A] ∪ [(P∪C)∩ (A∪D)]∪ [A∩D]∪

[C∩ (A∪D)]∪ [P∩ (C∪A∪D)]

P = [I(p1)∪ I(p2)∪ I(p3)], C = [I(c1)∪ I(c2)∪ I(c3)], A = [I(a1)] and D = [I(d1)]

(6)

4.2.1. Alert Instance Filter (AIF)

The APT alert instances which are constructed by the cyber situation ontology construction module
are fed to the alert instance correlation module. As the ATP alerts are produced by various detection
sensors (e.g., IDSs in edge servers, IDS in cloud data center, firewalls between edge servers and
cloud data center), the same alert instances are given the opportunity to generate during a correlation
duration. The alert instance filter (AIF) discards the repeated and redundant alert instances. It checks
whether the new arriving alert instance has been constructed during the correlation duration through
compare the alert instance type and instance attributes value with the previous instances. It is clear,
discarding invalid alert instances can reduce the computation cost of AICM.

4.2.2. Alert Instance Cluster (AIC)

The alert instance cluster module (AIC) allocates the most similar alert instances into a certain
cluster. An APT full steps scenario or sub-steps scenario can present an alert instance cluster. Each alert
instance presents a disparate attack step. The AIC module gets the AIF products as input and stores
the alert instances during a correlation duration. The AIC module tests the possibility of clustering
as soon as a new alert instance arrives based on the APT attack scenario characteristics, so as to it is
restricted by the following two rules:

• Rule 1. Alert instances, which belong to the same APT attack step, should not be allocated into
the same cluster.

• Rule 2. APT attack alert instances should trigger within the correlation duration and alert instances
order should in accord to the APT attack life cycle.

Formally, Timestampp, Timestampc, Timestampa and Timestampd stand for the trigger time
of four alert instances respectively, which belong to four attack steps of the APT scenario. They only if
comply with the following criteria that can be clustered into one cluster:

Timestampp < Timestampc < Timestampa < Timestampd (7)

Timestampd − Timestampp < CorrelationDuration (8)

All the generated alert instance clusters are presented as a directed graph and scattered alert
instances are linked by directed edges based on the similarity. Then the clusters will be consumed
by the correlation indexing module. Each cluster is consisted of maximum of four ordered alert
instances and recorded in an instance_cluster_dataset (ICD) which is deployed on the cloud data center.

Sensors 2019, 19, 4045 11 of 21

When a new alert instance arrives in AIC module, we firstly check it belongs to which APT attack
step. Based on the different alert instance type, AIC chooses different operation options. We have
the conclusion: Point of entry (P) which is the second step of an APT attack scenario is the first
detectable attack step. When AIC gets an alert instance I(pi) it generates a new cluster and allocates
I(pi) at instance_1, which is recorded in ICD.

When AIC gets an alert instance I(ci)(namely: Domain_flux_instance or Ip_instance or Ssl_instance)
AIC inquires the similarity degrees SIM(I(ci), I(pi)) between I(ci) and I(pi) from the cyber situation
ontology construction module. I(pi) are the instances which are already recorded in ICD in the order
instance_1 of the existing clusters. The ci and pi are different sub-classes of class alert, then I(ci) and I(pi)

can be treated as I(alert). Therefore, it is feasible to calculate the value of SIM(I(ci), I(pi)). AIC adds
the I(ci) to the order instance_2 of cluster which not only has the largest value of SIM(I(ci), I(pi)) but
also meet the flowing two conditions in Equations (9) and (10). Then we can get the correlated instance
of I(ci): Co(I(ci)) = I(pi), and send the Co(I(ci)) back to the cyber situation ontology construction
module for later instance similarity degree calculation. If there are no suitable alert instances I(pi) to be
chosen, AIC will generate a new cluster and allocate I(ci) to instance_2 and store it in ICD.

TimestampI(pi)
< TimestampI(ci)

(9)

TimestampI(ci)
− TimestampI(pi)

< CorrelationDuration (10)

When AIC get an alert instance I(ai)(namely: Scan_instance) AIC inquires the similarity degrees
SIM(I(ai), I(ci)) between I(ai) and I(ci) from the cyber situation ontology construction module. I(ci) are
the instances which are already stored in ICD at the order instance_2 of the existing clusters. AIC adds
the I(ai) to the order instance_3 of cluster which not only has the largest value of SIM(I(ai), I(ci)) but
also meets the flowing two conditions in Equations (11) and (12). If the chosen I(ci) is the first instance
of the cluster, the above two conditions should be changed by Equations (13) and (14). Then we can get
the correlated instance of I(ai): Co(I(ai)) = I(ci), and send the Co(I(ai)) back to the cyber situation
ontology construction module for later instance similarity degree calculation. If there are no suitable
alert instances I(ci) to be chosen, AIC will generate a new cluster and allocate I(ai) to instance_3 and
store it in ICD.

TimestampI(pi)
< TimestampI(ci)

< TimestampI(ai)
(11)

TimestampI(ai)
− TimestampI(pi)

< CorrelationDuration (12)

TimestampI(ci)
< TimestampI(ai)

(13)

TimestampI(ai)
− TimestampI(ci)

< CorrelationDuration (14)

When AIC get an alert instance I(di)(namely: Tor_intance) AIC inquires the similarity degrees
SIM(I(di), I(ai)) between I(di) and I(ai) from the cyber situation ontology construction module.
I(ai) are the instances which are already stored in ICD at the order instance_3 of each existing
cluster. AIC adds the I(di) to the order instance_4 of cluster which not only has the largest value
of SIM(I(di), I(ai)) but also meet the flowing two conditions in Equations (15) and (16). If the chosen I(ai)

is the first instance of the cluster the above two conditions should be changed by Equations (17) and (18).
If the chosen I(ai) is the second instance of the cluster the above two conditions should be changed by
Equations (19) and (20). Then we can get the correlated instance of I(di): Co(I(di)) = I(ai), and send
the Co(I(di)) back to the cyber situation ontology construction module for later instance similarity
degree calculation. If there are no suitable alert instances I(ai) to be chosen, it means the I(di) has no
relationships with any clusters in the ICD, AIC will discard the I(di).

TimestampI(pi)
< TimestampI(ci)

< TimestampI(ai)
< TimestampI(di)

(15)

TimestampI(di)
− TimestampI(pi)

< CorrelationDuration (16)

Sensors 2019, 19, 4045 12 of 21

TimestampI(ai)
< TimestampI(di)

(17)

TimestampI(di)
− TimestampI(ai)

< CorrelationDuration (18)

TimestampI(ci)
< TimestampI(ai)

< TimestampI(di)
(19)

TimestampI(di)
− TimestampI(ci)

< CorrelationDuration (20)

In general, we correlate the alert instance to the most similar prior-step alert instance. A correlation
example is shown in Figure 4.
Sensors 2019, 19, x FOR PEER REVIEW 12 of 20

I(p1) I(p2) I(p3)

I(c1) I(c2) I(c4)

I(a1) I(a2) I(a4)

I(d1) I(d2) I(d3)

I(a3)

Instance_1

Instance_2

Instance_3

Instance_4

cluster1 cluster2 cluster4

cluster3 cluster5

cluster6

I(c3)

I(p1) I(p2) I(c1) I(c2) I(p3)

I(a1)I(c3)I(a2)I(a3)

I(d1)

I(c4)

I(a4) I(d2) I(d3)

Figure 4. The alert instance clusters construction.

4.2.3. APT Attack Scenario (AAS)

APT attack scenario (ASS) module confirms the alert instances which belonging to the same alert
instance cluster whether or not can construct a full or sectional APT attack scenario in the IoT system
based on edge computing architecture. As we knew each ATP alert instance cluster is constructed
incrementally, it has the opportunity that later received alert instance reforms the previously
correlated alert instances. To address this problem, we add a parameter 𝐿௜௝ on the correlated links
between every two alert instances which belong to the same cluster. The parameter 𝐿௜௝ consists of
two values: 1 or 0. When alert instance_i and instance_j have identical Victim_HostIP the 𝐿௜௝ will be
set as 1; otherwise, the 𝐿௜௝ will be set as 0. The ASS will face four states of 𝐿௜௝ during the correlation.
The four states and corresponding operations are shown in Figure 5, and we describe them as follows:

• (1,1): APT alert instances can belong to a certain AAS.
• (0,1): The latest two alert instances are much more similar than the prior two alert instances.

Then the first link should be disconnected and construct a new instance cluster contains the latest
two alert instances waiting for the coming correlation.

• (1,0): No evidence can trigger the disconnection, just waiting for the coming instances.
• (0,0): No evidence can trigger the disconnection, just waiting for the coming instances.

I(p2)

I(d1)

I(c1)Lij=1

I(p2) I(c1)Lij=1 I(a1)Lij=0

I(p2) I(c1)Lij=1 I(a1) Lij=1

I(c2) I(a2)

I(d2)

Step 1 cluster2

Step 2 cluster2

Step 3 cluster2

Step 1 cluster3

Step 2 cluster3 I(c2) I(a2)

Lij=0

Lij=1

clusterne w

clusternew

I(c4) I(a3)Lij=0Step 1 cluster5

I(p3) I(c3)Lij=1Step 1 cluster4

Figure 5. The constructing APT Attack Scenario (AAS) states evolution.

We also introduce a parameter LinkNum to check the clustered APT alert instances and discard
the uncorrelated alert instances. LinkNum can be formulated as follows:

𝐿𝑖𝑛𝑘𝑁𝑢𝑚௖௟௨௦௧௘௥ೖ = ෍ 𝐿௜௝ଷ
௜ୀଵ,௝ୀ௜ାଵ௜௡௦௧௔௡௖௘_೔∈௖௟௨௦௧௘௥ೖ௜௡௦௧௔௡௖௘_௝∈௖௟௨௦௧௘௥ೖ

(21)

𝐿𝑖𝑛𝑘𝑁𝑢𝑚 = 0. APT alert instances in the cluster have no effect and cause with each other; they
cannot construct an APT attack scenario.

Figure 4. The alert instance clusters construction.

4.2.3. APT Attack Scenario (AAS)

APT attack scenario (AAS) module confirms the alert instances which belonging to the same alert
instance cluster whether or not can construct a full or sectional APT attack scenario in the IoT system
based on edge computing architecture. As we knew each ATP alert instance cluster is constructed
incrementally, it has the opportunity that later received alert instance reforms the previously correlated
alert instances. To address this problem, we add a parameter Li j on the correlated links between every
two alert instances which belong to the same cluster. The parameter Li j consists of two values: 1 or 0.
When alert instance_i and instance_j have identical Victim_HostIP the Li j will be set as 1; otherwise,
the Li j will be set as 0. The ASS will face four states of Li j during the correlation. The four states and
corresponding operations are shown in Figure 5, and we describe them as follows:

• (1, 1): APT alert instances can belong to a certain AAS.
• (0, 1): The latest two alert instances are much more similar than the prior two alert instances.

Then the first link should be disconnected and construct a new instance cluster contains the latest
two alert instances waiting for the coming correlation.

• (1, 0) : No evidence can trigger the disconnection, just waiting for the coming instances.
• (0, 0) : No evidence can trigger the disconnection, just waiting for the coming instances.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 20

I(p1) I(p2) I(p3)

I(c1) I(c2) I(c4)

I(a1) I(a2) I(a4)

I(d1) I(d2) I(d3)

I(a3)

Instance_1

Instance_2

Instance_3

Instance_4

cluster1 cluster2 cluster4

cluster3 cluster5

cluster6

I(c3)

I(p1) I(p2) I(c1) I(c2) I(p3)

I(a1)I(c3)I(a2)I(a3)

I(d1)

I(c4)

I(a4) I(d2) I(d3)

Figure 4. The alert instance clusters construction.

4.2.3. APT Attack Scenario (AAS)

APT attack scenario (ASS) module confirms the alert instances which belonging to the same alert
instance cluster whether or not can construct a full or sectional APT attack scenario in the IoT system
based on edge computing architecture. As we knew each ATP alert instance cluster is constructed
incrementally, it has the opportunity that later received alert instance reforms the previously
correlated alert instances. To address this problem, we add a parameter 𝐿௜௝ on the correlated links
between every two alert instances which belong to the same cluster. The parameter 𝐿௜௝ consists of
two values: 1 or 0. When alert instance_i and instance_j have identical Victim_HostIP the 𝐿௜௝ will be
set as 1; otherwise, the 𝐿௜௝ will be set as 0. The ASS will face four states of 𝐿௜௝ during the correlation.
The four states and corresponding operations are shown in Figure 5, and we describe them as follows:

• (1,1): APT alert instances can belong to a certain AAS.
• (0,1): The latest two alert instances are much more similar than the prior two alert instances.

Then the first link should be disconnected and construct a new instance cluster contains the latest
two alert instances waiting for the coming correlation.

• (1,0): No evidence can trigger the disconnection, just waiting for the coming instances.
• (0,0): No evidence can trigger the disconnection, just waiting for the coming instances.

I(p2)

I(d1)

I(c1)Lij=1

I(p2) I(c1)Lij=1 I(a1)Lij=0

I(p2) I(c1)Lij=1 I(a1) Lij=1

I(c2) I(a2)

I(d2)

Step 1 cluster2

Step 2 cluster2

Step 3 cluster2

Step 1 cluster3

Step 2 cluster3 I(c2) I(a2)

Lij=0

Lij=1

clusterne w

clusternew

I(c4) I(a3)Lij=0Step 1 cluster5

I(p3) I(c3)Lij=1Step 1 cluster4

Figure 5. The constructing APT Attack Scenario (AAS) states evolution.

We also introduce a parameter LinkNum to check the clustered APT alert instances and discard
the uncorrelated alert instances. LinkNum can be formulated as follows:

𝐿𝑖𝑛𝑘𝑁𝑢𝑚௖௟௨௦௧௘௥ೖ = ෍ 𝐿௜௝ଷ
௜ୀଵ,௝ୀ௜ାଵ௜௡௦௧௔௡௖௘_೔∈௖௟௨௦௧௘௥ೖ௜௡௦௧௔௡௖௘_௝∈௖௟௨௦௧௘௥ೖ

(21)

𝐿𝑖𝑛𝑘𝑁𝑢𝑚 = 0. APT alert instances in the cluster have no effect and cause with each other; they
cannot construct an APT attack scenario.

Figure 5. The constructing APT Attack Scenario (AAS) states evolution.

Sensors 2019, 19, 4045 13 of 21

We also introduce a parameter LinkNum to check the clustered APT alert instances and discard
the uncorrelated alert instances. LinkNum can be formulated as follows:

LinkNumclusterk
=

3∑
i = 1, j = i + 1

instance_i ∈ clusterk
instance_ j ∈ clusterk

Li j (21)

LinkNum = 0. APT alert instances in the cluster have no effect and cause with each other;
they cannot construct an APT attack scenario.

LinkNum = 1. APT alert instances in the cluster can generate a correlation between two alert
instances and they can construct a Clustersub with two steps.

LinkNum = 2. APT alert instances in the cluster can generate correlations between three alert
instances and they can construct a Clustersub with three steps.

LinkNum = 3. APT alert instances in the cluster can generate a correlation between four alert
instances. They can construct a Cluster f ull and be presented as an APT attack scenario.

assvk = (clusterk, LinkNum, VictimHostIp, SimDeg) (22)

SimDee = (SIM(instance_1, instance_2), SIM(instance_2, instance_3), SIM(instance_3, instance_4)) (23)

The assvk vectors are the sectional output of cyber situation comprehension to be used in future
cyber situation projection. In the condition that instance_i alert instance is absent, the value
of SIM(instance_i−1, instance_i) and SIM(instance_i, instance_i+1) can be set as 0. Meanwhile, the LICM
modules which are deployed on edge servers can get the attribute Victim_HostIp from the AIC module
which is deployed on cloud data center to determine the correlation range of logs which are generated
in edge devices.

4.2.4. Module Implementation

We implement the algorithm of the AICM module in C programming language after getting
the simulation dataset. The pseudo-code of the AICM module is provided in Figure 6.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 20

𝐿𝑖𝑛𝑘𝑁𝑢𝑚 = 1. APT alert instances in the cluster can generate a correlation between two alert
instances and they can construct a 𝐶𝑙𝑢𝑠𝑡𝑒𝑟௦௨௕ with two steps. 𝐿𝑖𝑛𝑘𝑁𝑢𝑚 = 2. APT alert instances in the cluster can generate correlations between three alert
instances and they can construct a 𝐶𝑙𝑢𝑠𝑡𝑒𝑟௦௨௕ with three steps. 𝐿𝑖𝑛𝑘𝑁𝑢𝑚 = 3. APT alert instances in the cluster can generate a correlation between four alert
instances. They can construct a 𝐶𝑙𝑢𝑠𝑡𝑒𝑟௙௨௟௟ and be presented as an APT attack scenario. 𝑎𝑠𝑠𝑣௞ = (𝑐𝑙𝑢𝑠𝑡𝑒𝑟௞, 𝐿𝑖𝑛𝑘𝑁𝑢𝑚, 𝑉𝑖𝑐𝑡𝑖𝑚𝐻𝑜𝑠𝑡𝐼𝑝, 𝑆𝑖𝑚𝐷𝑒𝑔) (22) 𝑆𝑖𝑚𝐷𝑒𝑒 = ቀSIM൫𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ଵ, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ଶ൯, SIM൫𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ଶ, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ଷ൯, SIM൫𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ଷ, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_ସ൯ቁ (23)

The 𝑎𝑠𝑠𝑣௞ vectors are the sectional output of cyber situation comprehension to be used in future
cyber situation projection. In the condition that 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_௜ alert instance is absent, the value of SIM൫𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_௜ିଵ, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_௜൯ and SIM൫𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_௜, 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒_௜ାଵ൯ can be set as 0. Meanwhile, the
LICM modules which are deployed on edge servers can get the attribute Victim_HostIp from the AIC
module which is deployed on cloud data center to determine the correlation range of logs which are
generated in edge devices.

4.2.4. Module Implementation

We implement the algorithm of the AICM module in C programming language after getting the
simulation dataset. The pseudo-code of the AICM module is provided in Figure 6.

ypedef struct
{
 struct TimeStamp
 char Alert_Type[20];
 char Src_Ip[20];
 char Dest_Ip[20];
 int Src_Port;
 int Dest_Port;
}Attr;// Structure definition
main{

readtxt()//Read the information
and convert
it into a specified format

sim（）{//similarity degree
do{ If ((edge[i][0] == 1 &&

edge[i][1] == 0 && edge[t][0] == 0 &&
edge[t][1] == 1) || (edge[i][0] == 0 &&
edge[i][1] == 1 && edge[t][0] == 1 &&
edge[t][1] == 0))
 arr[i][j] = C * AB;

else
arr[i][j] = C * (1.0 + AB) / 2.0;//

Compare each attribute and Complete the
iteration
}end；
}

Timecmp();//Sort by TimeStamp
Check_sort();//Group by type
//Construct the cluster
Linkcourt();//Calculate the linkcount
Print();//Oput the cluster

}end

Figure 6. The pseudo-code of the Alert Instance Correlation Module (AICM) module.

4.3. Log Instances Correlation

Advanced Persistent Threat (APT) attack has multiple stages for the sake of being elusive and
stealthy. Besides the APT alerts generated during the multiple stages, this type of attack pattern
inevitably leaves some log information spatiotemporally dispersed across victim edge devices in the
edge computing-based IoT systems. Therefore, we deploy the LICM on the edge servers to detect log
communities through the log instances and further recognize the potential malicious activities. A
large part of computation costs of log community detection can be outsourced to the edge servers, so
as to make up the resource-constraint drawback of IoT edge devices. Firstly, the preliminary
correlation module constructs the weighted graphs by correlating log instances which are extracted
from the victim edge devices log. Then, LICM will discover the log instance communities hid within
the weighted graphs by log instances community detection module.

4.3.1. Preliminary Correlation (PC)

The input of preliminary correlation module (PC) are the log instances extracted from the logs
which are generated in victim edge devices, the outputs are directed and weighted graphs. In this

Figure 6. The pseudo-code of the Alert Instance Correlation Module (AICM) module.

4.3. Log Instances Correlation

Advanced Persistent Threat (APT) attack has multiple stages for the sake of being elusive and
stealthy. Besides the APT alerts generated during the multiple stages, this type of attack pattern

Sensors 2019, 19, 4045 14 of 21

inevitably leaves some log information spatiotemporally dispersed across victim edge devices in the
edge computing-based IoT systems. Therefore, we deploy the LICM on the edge servers to detect
log communities through the log instances and further recognize the potential malicious activities.
A large part of computation costs of log community detection can be outsourced to the edge servers,
so as to make up the resource-constraint drawback of IoT edge devices. Firstly, the preliminary
correlation module constructs the weighted graphs by correlating log instances which are extracted
from the victim edge devices log. Then, LICM will discover the log instance communities hid within
the weighted graphs by log instances community detection module.

4.3.1. Preliminary Correlation (PC)

The input of preliminary correlation module (PC) are the log instances extracted from the logs
which are generated in victim edge devices, the outputs are directed and weighted graphs. In this
work, we represent the log instances as nodes and regard the relationships between them as edges.
The weights of edges illustrate the similarity between log instances and the directions of edges illustrate
the effect and cause relationship between them. Once the LICM which is deployed on an edge server
gets an ASS vector from the AICM which is deployed on cloud data center it starts to construct
a preliminary correlated graph based on the log instances which are extracted from the victim edge
device log. Some preprocessing may leave logs before the significant APT alerts occur, so we correlate
the log instances before the first alert instance generated for a short time of τ. As the log instances
generated in a timing sequence, the preliminary correlation module inquires the similarity from
the cyber situation ontology construction module in the same strategy. To construct a weighted and
directed graph the similarity between the log instances are represented as weights according to the
following strategy:[

I(log)1 , I(log)2, I(log)3, . . . , I(log)n

]
is a log instance sequence generated according to the

timing order. When PC module receives a new log instance I(log)i it starts to inquire
the SIM

(
I(log)1, I(log)i

)
, SIM

(
I(log)2, I(log)i

)
, SIM

(
I(log)3, I(log)i

)
, . . . , SIM

(
I(log)i−1, I(log)i

)
from

the cyber situation ontology construction module. On the condition that SIM
(
I(log)i, I(log) j

)
, 0,

create a directed edge from I(log)i to I(log) j setωi j = SIM
(
I(log)i, I(log) j

)
, generate a correlated instance

of I(log) j set Con
(
I(log) j

)
= I(log)i and pass back Con

(
I(log) j

)
to cyber situation ontology construction

module. Otherwise, ωi j = 0. There are no correlated relationships (edges) between I(log)i and I(log) j.
The PC module acquires the weighted graph of log instances is shown in Figure 7, and this module

will send this graph to the log instance community detection module for later operation.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 20

work, we represent the log instances as nodes and regard the relationships between them as edges.
The weights of edges illustrate the similarity between log instances and the directions of edges
illustrate the effect and cause relationship between them. Once the LICM which is deployed on an
edge server gets an ASS vector from the AICM which is deployed on cloud data center it starts to
construct a preliminary correlated graph based on the log instances which are extracted from the
victim edge device log. Some preprocessing may leave logs before the significant APT alerts occur,
so we correlate the log instances before the first alert instance generated for a short time of 𝜏. As the
log instances generated in a timing sequence, the preliminary correlation module inquires the
similarity from the cyber situation ontology construction module in the same strategy. To construct
a weighted and directed graph the similarity between the log instances are represented as weights
according to the following strategy: ሾI(𝑙𝑜𝑔)ଵ , I(𝑙𝑜𝑔)ଶ, I(𝑙𝑜𝑔)ଷ, … , I(𝑙𝑜𝑔)௡ሿ is a log instance sequence generated according to the timing
order. When PC module receives a new log instance I(𝑙𝑜𝑔)௜ it starts to inquire
the SIM(I(𝑙𝑜𝑔)ଵ, I(𝑙𝑜𝑔)௜), SIM(I(𝑙𝑜𝑔)ଶ, I(𝑙𝑜𝑔)௜) , SIM(I(𝑙𝑜𝑔)ଷ, I(𝑙𝑜𝑔)௜) ,…, SIM(I(𝑙𝑜𝑔)௜ିଵ, I(𝑙𝑜𝑔)௜) from
the cyber situation ontology construction module. On the condition that SIM(I(𝑙𝑜𝑔)௜, I(𝑙𝑜𝑔)௝) ≠ 0,
create a directed edge from I(𝑙𝑜𝑔)௜ to I(𝑙𝑜𝑔)௝set 𝜔௜௝ = SIM(I(𝑙𝑜𝑔)௜, I(𝑙𝑜𝑔)௝) , generate a correlated
instance of I(𝑙𝑜𝑔)௝ set Co௡൫I(𝑙𝑜𝑔)௝൯ = I(𝑙𝑜𝑔)௜ and pass back Co௡൫I(𝑙𝑜𝑔)௝൯ to cyber situation
ontology construction module. Otherwise, 𝜔௜௝ = 0. There are no correlated relationships (edges)
between I(𝑙𝑜𝑔)௜ and I(𝑙𝑜𝑔)௝.

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27

W78

W26

W48

W89

W79

W69

W39

W610

W710

W910

Figure 7. The weighted and directed log instances graph.

The PC module acquires the weighted graph of log instances is shown in Figure 7, and this
module will send this graph to the log instance community detection module for later operation.

4.3.2. Log Instance Community Detection (LICD)

Taking account for the log instance graphs scale, log instance community detection module has
the demand of proposing an efficient community detection method to extract the log instance
communities from the intricate directed and weighted correlated instance graph. Comparing the
diverse existing machine learning method used in the community detection, the LICD module owns
a log instance community detection method based on the Louvain method, which has the advantage
of managing large-scale nodes networks such as the edge computing-based IoT system.

At the initial phase of LICD, each log instance in the graph constructed by the PC module
represents a solitary log instance community. ∑ 𝜔௜௠௠ and ∑ 𝜔௠௝௠ respectively represents the
totality weights added on edges associate to log instances I(𝑙𝑜𝑔)௜ and I(𝑙𝑜𝑔)௝ , 𝑐୍(௟௢௚)೔ and 𝑐୍(௟௢௚)ೕ
respectively represents the log instance community which I(𝑙𝑜𝑔)௜ and I(𝑙𝑜𝑔)௝ belong to.
The 𝜃 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 in the LICD module is used to separate the log instances which belong to the
different log instance communities, means 𝜃(𝑖, 𝑗) = 1 if 𝑖 = 𝑗, 𝜃(𝑖, 𝑗) = 0 otherwise. To compare the
density degree of the correlations within the log instance communities with the correlations across the
log instance communities, LICD introduces an evaluation index 𝐷𝑒𝑛𝐷𝑒𝑔 which is defined as follows.

Figure 7. The weighted and directed log instances graph.

Sensors 2019, 19, 4045 15 of 21

4.3.2. Log Instance Community Detection (LICD)

Taking account for the log instance graphs scale, log instance community detection module
has the demand of proposing an efficient community detection method to extract the log instance
communities from the intricate directed and weighted correlated instance graph. Comparing the diverse
existing machine learning method used in the community detection, the LICD module owns a log
instance community detection method based on the Louvain method, which has the advantage
of managing large-scale nodes networks such as the edge computing-based IoT system.

At the initial phase of LICD, each log instance in the graph constructed by the PC module
represents a solitary log instance community.

∑
m ωim and

∑
m ωmj respectively represents the totality

weights added on edges associate to log instances I(log)i and I(log) j, cI(log)i
and cI(log) j

respectively

represents the log instance community which I(log)i and I(log) j belong to. The θ− f unction in the LICD
module is used to separate the log instances which belong to the different log instance communities,
means θ(i, j) = 1 if i = j, θ(i, j) = 0 otherwise. To compare the density degree of the correlations
within the log instance communities with the correlations across the log instance communities,
LICD introduces an evaluation index DenDeg which is defined as follows.

DenDeg =

∑
I(log)i,I(log) j

[
ωi j −

∑
m ωim

∑
m ωmj∑

I(log)i ,I(log) j
ωi j

]
θ
(
cI(log)i

, cI(log) j

)
∑

I(log)i,I(log) j
ωi j

(24)

As soon as the LICD module finishes the log instance initialization, it repeats actions to optimize
the index DenDeg in the following strategies: for each log instance I(log)k, shift I(log)k from its attached
log instance community cI(log)k

into its correlated log instance Con
(
I(log)k

)
attached communities.

LICD evaluates the value change of index DenDeg and allocates I(log)k into the log instance community
cI(log)k−in, which has the most obvious index DenDeg increase. If the maximum increase is not positive,
the log instance I(log)k will not be shifted from its original log instance community. LICD applies this
process repeatedly and sequentially to each log instances until no ∆DenDeg occurs and gets the detected
log instance communities as the segmental output of cyber situation comprehension. The optimization
procedure of detecting log instance communities is shown in Figure 8.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

𝐷𝑒𝑛𝐷𝑒𝑔 = ∑ ቈ𝜔௜௝ − ∑ 𝜔௜௠௠ ∑ 𝜔௠௝௠∑ 𝜔௜௝୍(௟௢௚)೔,୍(௟௢௚)ೕ ቉ 𝜃 ቀ𝑐୍(௟௢௚)೔, 𝑐୍(௟௢௚)ೕቁ୍(௟௢௚)೔,୍(௟௢௚)ೕ ∑ 𝜔௜௝୍(௟௢௚)೔,୍(௟௢௚)ೕ (24)

As soon as the LICD module finishes the log instance initialization, it repeats actions to optimize
the index 𝐷𝑒𝑛𝐷𝑒𝑔 in the following strategies: for each log instance I(𝑙𝑜𝑔)௞, shift I(𝑙𝑜𝑔)௞ from its
attached log instance community 𝑐୍(௟௢௚)ೖ into its correlated log instance Co௡(I(𝑙𝑜𝑔)௞) attached
communities. LICD evaluates the value change of index 𝐷𝑒𝑛𝐷𝑒𝑔 and allocates I(𝑙𝑜𝑔)௞ into the log
instance community 𝑐୍(௟௢௚)ೖష௜௡, which has the most obvious index 𝐷𝑒𝑛𝐷𝑒𝑔 increase. If the maximum
increase is not positive, the log instance I(𝑙𝑜𝑔)௞ will not be shifted from its original log instance
community. LICD applies this process repeatedly and sequentially to each log instances until no ∆𝐷𝑒𝑛𝐷𝑒𝑔 occurs and gets the detected log instance communities as the segmental output of cyber
situation comprehension. The optimization procedure of detecting log instance communities is
shown in Figure 8.

Community2

Community3

Community10

Community4

Community9
Community3

Community1

Community2

Community6

Community5
Community7

Community8

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79

W69

W39

W610

W710

W910

Community4

Community1

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79
W69

W39

W610

W710

W910

Community4 Community1

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79
W69

W39

W610

W710

W910

Step 1 Step 2

Step 3
Figure 8. The optimization procedure of log instance communities.

4.3.3. Module Implementation

We implement the algorithm of the LICM module in Python after getting the log data. The LICM
module pseudo-code is provided in Figure 9:

#define MAX_VERTEX_NUM 20
typedef struct ArcBox
{ int tailvex,headvex;
 struct ArcBox *hlink,*tlink;
 InfoType *info;
}ArcBox; //The struct of edge definition
 typedef struct VexNode
{ VertexType data[20];
 ArcBox *firstin,*firstout;
}VexNode; //The struct of log nodes definition
 typedef struct
{ VexNode xlist[MAX_VERTEX_NUM];
 int vexnum,arcnum;
}OLGraph; //The struct of graph definition
//Three main algorithms
get_attributes() //Convert the log data into log instance
{ key_word log[6]; //Five kinds of log data

 init_keyword(); //Initialization of the log data
 while()
{ getline();//Read the log data
 find_keyword()
 { if(key_word in log)// Set the attribute vector value
 {set 1;

}
 else set 0;
 }
}
return A[20];//Output the log instances

}

simrank() //Calculation the similarity degree
{ calc_similarity();

init_graph(); // Initialization of the graph
while(new node occur)//When new nodes arrive,

renew the graph
{ ergodic_graph();

calc_similarity();
change_graph();

}
print(); //Output the result

}

louvain()//Clustering analysis
{ calc_modularity(){
 for(each node) // Evaluation the clustering degree

{
 get_neighbor();
 calc_modularity();

 }
}
if(new modularity occurs) // Iterative computations
 calc_modularity();
else
 print();

}
main()
{

get_attirbutes();
simrank();
louvain();

}

Figure 9. The pseudo-code of Log Instance Correlation Module (LICM) module.

Figure 8. The optimization procedure of log instance communities.

Sensors 2019, 19, 4045 16 of 21

4.3.3. Module Implementation

We implement the algorithm of the LICM module in Python after getting the log data. The LICM
module pseudo-code is provided in Figure 9:

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

𝐷𝑒𝑛𝐷𝑒𝑔 = ∑ ቈ𝜔௜௝ − ∑ 𝜔௜௠௠ ∑ 𝜔௠௝௠∑ 𝜔௜௝୍(௟௢௚)೔,୍(௟௢௚)ೕ ቉ 𝜃 ቀ𝑐୍(௟௢௚)೔, 𝑐୍(௟௢௚)ೕቁ୍(௟௢௚)೔,୍(௟௢௚)ೕ ∑ 𝜔௜௝୍(௟௢௚)೔,୍(௟௢௚)ೕ (24)

As soon as the LICD module finishes the log instance initialization, it repeats actions to optimize
the index 𝐷𝑒𝑛𝐷𝑒𝑔 in the following strategies: for each log instance I(𝑙𝑜𝑔)௞, shift I(𝑙𝑜𝑔)௞ from its
attached log instance community 𝑐୍(௟௢௚)ೖ into its correlated log instance Co௡(I(𝑙𝑜𝑔)௞) attached
communities. LICD evaluates the value change of index 𝐷𝑒𝑛𝐷𝑒𝑔 and allocates I(𝑙𝑜𝑔)௞ into the log
instance community 𝑐୍(௟௢௚)ೖష௜௡, which has the most obvious index 𝐷𝑒𝑛𝐷𝑒𝑔 increase. If the maximum
increase is not positive, the log instance I(𝑙𝑜𝑔)௞ will not be shifted from its original log instance
community. LICD applies this process repeatedly and sequentially to each log instances until no ∆𝐷𝑒𝑛𝐷𝑒𝑔 occurs and gets the detected log instance communities as the segmental output of cyber
situation comprehension. The optimization procedure of detecting log instance communities is
shown in Figure 8.

Community2

Community3

Community10

Community4

Community9
Community3

Community1

Community2

Community6

Community5
Community7

Community8

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79

W69

W39

W610

W710

W910

Community4

Community1

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79
W69

W39

W610

W710

W910

Community4 Community1

W34

W25

I(log)1

I(log)2

I(log)9

I(log)4

I(log)5

I(log)8

I(log)7

I(log)10

I(log)3

I(log)6

W12

W23

W13

W14

W35

W56

W36

W16

W67

W47

W27W78

W26

W48

W89

W79
W69

W39

W610

W710

W910

Step 1 Step 2

Step 3
Figure 8. The optimization procedure of log instance communities.

4.3.3. Module Implementation

We implement the algorithm of the LICM module in Python after getting the log data. The LICM
module pseudo-code is provided in Figure 9:

#define MAX_VERTEX_NUM 20
typedef struct ArcBox
{ int tailvex,headvex;
 struct ArcBox *hlink,*tlink;
 InfoType *info;
}ArcBox; //The struct of edge definition
 typedef struct VexNode
{ VertexType data[20];
 ArcBox *firstin,*firstout;
}VexNode; //The struct of log nodes definition
 typedef struct
{ VexNode xlist[MAX_VERTEX_NUM];
 int vexnum,arcnum;
}OLGraph; //The struct of graph definition
//Three main algorithms
get_attributes() //Convert the log data into log instance
{ key_word log[6]; //Five kinds of log data

 init_keyword(); //Initialization of the log data
 while()
{ getline();//Read the log data
 find_keyword()
 { if(key_word in log)// Set the attribute vector value
 {set 1;

}
 else set 0;
 }
}
return A[20];//Output the log instances

}

simrank() //Calculation the similarity degree
{ calc_similarity();

init_graph(); // Initialization of the graph
while(new node occur)//When new nodes arrive,

renew the graph
{ ergodic_graph();

calc_similarity();
change_graph();

}
print(); //Output the result

}

louvain()//Clustering analysis
{ calc_modularity(){
 for(each node) // Evaluation the clustering degree

{
 get_neighbor();
 calc_modularity();

 }
}
if(new modularity occurs) // Iterative computations
 calc_modularity();
else
 print();

}
main()
{

get_attirbutes();
simrank();
louvain();

}

Figure 9. The pseudo-code of Log Instance Correlation Module (LICM) module.
Figure 9. The pseudo-code of Log Instance Correlation Module (LICM) module.

5. Experimental Evaluation of APTALCM

5.1. Evaluation of the Alert Instance Correlation Module

As there is no available public data set that can provide enough APT attack alerts in the edge
computing-based IoT system, we adapt to construct a specialized simulation data set. The duty of the
alert instance correlation module is to recognize various alert instances could belong to a certain APT
attack scenario. To significantly evaluate the AICM module, the simulation data set consists of APT
alerts belong to APT attack scenarios and other general alerts do not belong to the APT attack scenarios.
The experiment aims to verify whether the AICM module can reconstruct the APT scenarios hidden
in the constructed data set.

5.1.1. Data Generation

To construct the simulation data set, we use Python to write a script, which constructs two classes
of alert: Correlative alerts are part of a Cluster f ull or Clustersub; scattered alerts do not belong to any
of the alert instance cluster. In our experiments, we set seven attributes to each alert: Alert_Type,
Timestamp, Src_Ip, Dest_Ip, Src_Port, Dest_Port, and Victim_HostIp. To guarantee the randomness of the
generated alert, we select the Alert_Type from the provided eight ATP alert types. We assign a random
value start from 01 February 2019 00:00:01 to 30 March 2019 23:59:59 to Timestamp. The Src_Ip value is
assigned based on the selected Alert_Type.

The Dest_Ip assigned randomly with an IP address in an industry IoT network. We select
the Src_Port randomly from the 49,140 to 65,521 ranges, which are usually allocated dynamically
to initiate a connection. Then, we further assign a random port number to Dest_Port based on
the Alert_Type. The Victim_HostIp is assigned randomly with an IP address in an industry IoT network.
Besides, we have generated 5000 APT alerts for the simulation data set consisted of 150 Cluster f ull,
150 Clustersub, and 4000 random isolated alerts. In this way, the simulation data set for evaluating
the AICM module have accomplished. Note that, as there is no standard APT attack data set for testing
the performance of our method, we use the above constructed simulate data set to present the real
APT attack in the edge computing-based IoT system. The attribute types of simulation alert data and
the real APT alert are identical. The biggest difference between the simulation data set and the real APT
alert is that attribute value distribution perhaps contains much more random features in the simulation

Sensors 2019, 19, 4045 17 of 21

data set, but the real APT alerts maybe generate follow some certain intentions guided by attackers.
However, it will not limit to disclose the correlated ability of our method if the data set is scattered.

5.1.2. Correlation Performance

After the data generation phase, we applied the AICM module algorithm on the constructed
simulation data set. The correlation result is presented in Table 5. We select the false-positive rate (FPR)
and the true-positive rate (TPR) as the correlation effect measurement parameters. The parameters
involved in our experiments are {P, N, TP, FP}, which present the quantity of APT alerts, the quantity
of random isolated alerts, the quantity of true-positive APT alerts, and the quantity of false-positive
APT alerts, respectively. Then, the correlation effect measurement parameters TPR and FPR can be
formalized as follows:

TPR =
TP

TP + FN
(25)

FPR =
FP

FP + TN
(26)

Table 5. Evaluation AICM module correlation result.

APT Attack Cluster Correlated Quantity FP TP FN TN N P FPR TPR

APT two steps cluster 2*83 2*35 2*48 4 4830 4900 100 1.4% 96%
APT three steps cluster 3*106 3*19 3*87 39 4643 4700 300 1.2% 87%

APT full scenario 4*121 4*10 4*120 120 4360 4400 600 0.9% 80%
Total APT cluster 968 167 837 163 3833 4000 1000 4.2% 83.7%

Here, we can find the TPR of the two steps Clustersub is higher than any other clusters. It is
evident that the TPR is lower with the alert instance cluster steps quantity increaser. This is primarily
because more alert instances correlation process will increase the possibility of the random isolated
alert instances to be unexpected correlated. When decreasing the TPR, the unexpected random isolated
alert instances correlation can also incur the false positive correlation result. As the larger step quantity
of the clusters, the stronger ability they equipped to amend the previous correlation by the later alert
instances, so that FPR is lower with the alert instance cluster steps quantity increaser. In general,
holistic TPR and FPR are well satisfied. To reveal the effect on the detection accuracy with the data
set size changing we also applied the AICM module algorithm on the sectional simulation data sets
whose alert quantity are 1000, 2000, 3000 and 4000. We can get the TPR variation trend on the condition
of data sets size changing in Figure 10. It is obvious that TPRs of APT three steps cluster, APT full
scenario and Total APT cluster increase with the data set size expanding. This phenomenon is due
to more alerts can also enhance the amendment ability of the pre-step correlation operation. However,
TPR of the APT two step cluster slightly decreases with the data set size expanding, because of more
alerts within two certain steps only can increase the risk of leaving out some correlations and there are
no pre-step correlation operations to be amended. However, we cannot dig out any variation trends
of FPR on the condition of data sets size changing in Figure 11, and it is probably due to the absolute
value of the FPRs are so low.

Sensors 2019, 19, 4045 18 of 21

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

the later alert instances, so that FPR is lower with the alert instance cluster steps quantity increaser.
In general, holistic TPR and FPR are well satisfied. To reveal the effect on the detection accuracy with
the data set size changing we also applied the AICM module algorithm on the sectional simulation
data sets whose alert quantity are 1000, 2000, 3000 and 4000. We can get the TPR variation trend on
the condition of data sets size changing in Figure 10. It is obvious that TPRs of APT three steps cluster,
APT full scenario and Total APT cluster increase with the data set size expanding. This phenomenon
is due to more alerts can also enhance the amendment ability of the pre-step correlation operation.
However, TPR of the APT two step cluster slightly decreases with the data set size expanding,
because of more alerts within two certain steps only can increase the risk of leaving out some
correlations and there are no pre-step correlation operations to be amended. However, we cannot dig
out any variation trends of FPR on the condition of data sets size changing in Figure 11, and it is
probably due to the absolute value of the FPRs are so low.

Table 5. Evaluation AICM module correlation result.

APT Attack Cluster
Correlated
Quantity FP TP FN TN N P FPR TPR

APT two steps cluster 2*83 2*35 2*48 4 4830 4900 100 1.4% 96%
APT three steps cluster 3*106 3*19 3*87 39 4643 4700 300 1.2% 87%

APT full scenario 4*121 4*10 4*120 120 4360 4400 600 0.9% 80%
Total APT cluster 968 167 837 163 3833 4000 1000 4.2% 83.7%

Figure 10. The TPR varies with data set size changes.

Figure 11. The false-positive rate (FPR) varies with the data set size changes.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Data Set size

TP
R
（

%
）

APT two steps cluster
APT three steps cluster
APT full scenario
Total APT cluster

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

Data Set size

FP
R
（

%
）

APT two steps cluster
APT three steps cluster
APT full scenario
Total APT cluster

Figure 10. The TPR varies with data set size changes.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

the later alert instances, so that FPR is lower with the alert instance cluster steps quantity increaser.
In general, holistic TPR and FPR are well satisfied. To reveal the effect on the detection accuracy with
the data set size changing we also applied the AICM module algorithm on the sectional simulation
data sets whose alert quantity are 1000, 2000, 3000 and 4000. We can get the TPR variation trend on
the condition of data sets size changing in Figure 10. It is obvious that TPRs of APT three steps cluster,
APT full scenario and Total APT cluster increase with the data set size expanding. This phenomenon
is due to more alerts can also enhance the amendment ability of the pre-step correlation operation.
However, TPR of the APT two step cluster slightly decreases with the data set size expanding,
because of more alerts within two certain steps only can increase the risk of leaving out some
correlations and there are no pre-step correlation operations to be amended. However, we cannot dig
out any variation trends of FPR on the condition of data sets size changing in Figure 11, and it is
probably due to the absolute value of the FPRs are so low.

Table 5. Evaluation AICM module correlation result.

APT Attack Cluster
Correlated
Quantity FP TP FN TN N P FPR TPR

APT two steps cluster 2*83 2*35 2*48 4 4830 4900 100 1.4% 96%
APT three steps cluster 3*106 3*19 3*87 39 4643 4700 300 1.2% 87%

APT full scenario 4*121 4*10 4*120 120 4360 4400 600 0.9% 80%
Total APT cluster 968 167 837 163 3833 4000 1000 4.2% 83.7%

Figure 10. The TPR varies with data set size changes.

Figure 11. The false-positive rate (FPR) varies with the data set size changes.

0 1000 2000 3000 4000 5000 6000
0

10

20

30

40

50

60

70

80

90

100

Data Set size

TP
R
（

%
）

APT two steps cluster
APT three steps cluster
APT full scenario
Total APT cluster

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

Data Set size

FP
R
（

%
）

APT two steps cluster
APT three steps cluster
APT full scenario
Total APT cluster

Figure 11. The false-positive rate (FPR) varies with the data set size changes.

5.1.3. Performance Comparison Between AICM And Existing APT Detection Systems

We compared the performance of the developed AICM module with the three typical APT
scenarios detection methods by operating the three methods on the simulation data set we generated
in Section 5.1.1 to show the advantage of ACIM. We also choose the false-positive rate (FPR) and
the true-positive rate (TPR) as the correlation effect measurement parameters. The value of TPR and
FPR can be calculated according to Equations (25) and (26). The FPR and TPR of each method can be
regarded as the comparative results which are presented in Table 6.

Table 6. The comparative results between AICM and other APT scenarios reconstruction method.

APT Scenarios Reconstruct Method Efficiency Step Quantity FPR TPR

AICM Real-time Four steps 4.2% 83.7%
Spear phishing based Real-time One step 15.9% 94.3%

TerminAPTor Real-time Four steps 25.64% 98.8%
C&C-based Off-line One step 1.2% 79.6%

We can get the evident results that the other three proposed APT scenarios detection methods are
not able to handle the problem of balancing the higher TPR and lower FPR properly. It is obvious to see
that AICM acquire satisfactory TPR with not too high FPR. As the only method can approximately get
the similar performance to AICM, the C&C-based method has disadvantages of failing to accomplish
real-time APT attack detection. Comparing the experiment results of Spear phishing based and
TerminAPTor, we find under the premise of similar valid detection capability of APT attack (The TPR
values of the two methods are approximately equal), increasing the step quantity will incur more false
positive APT alerts.

Sensors 2019, 19, 4045 19 of 21

5.2. Evaluation of the Log Instance Correlation module

We implement the algorithm of LICM in Python and make full use of the convenience of package
python-Louvain to accomplish log instance community detection. The experiment environment is
described as follows: (1) a victim Windows 10 64-bit operating system running on a host with an Intel
Core i5-7200u 2.0 GHz CPU, 8GB RAM. (2) an attack Windows 10 64-bit operating system running
on a host with an Intel Core i7-8550u 2.53 GHz CPU, 16GB RAM. We also assign extra roles for the
attack host: FTP server, C&C server, and Apache server.

5.2.1. Data Generation

To construct the log data set and evaluate the LICM module algorithm we record the log data from
the log providers and the log data quantity of each provider is shown in Table 7. We record the log
data by routinely work without perceiving that some operations have triggered APT attack activities.
We obtain these log data after some attacks have launched to simulate the APT attack scenario.

Table 7. APT log instance size.

Log Quantity Size (KB)

HTTP 3345 16,530
Object access 282 5789
Process create 261 6420

DNS 510 72
WFP 734 18,453

5.2.2. Correlation Performance

We have applied the LICM module algorithm on the recorded log dataset to evaluate
the performance of log community detection on 7 APT attack scenarios such as Attack on Aerospace
(AA), Hacking Team (HT), Tibetan and HK (TH), Russian Campaign (RC), Op-Tropic Trooper (OTT),
APT on Taiwan (AT), and Op-Clandestine Fox (OCF). We also select the FPR and TPR as the correlation
effect measurement parameters. Log instances within any detected community are regarded as
malicious ones and the others as benign ones. The TRP is the portion of the malicious log instance
and benign log instance which have been correctly classified. The FPR is the portion of the actual
benign log instances, which are unexpectedly classified into the malicious cluster. The results are
shown in Figure 12; we can see that TPRs of LICM module work well on the 7 typical APT scenarios
and the FPRs are also medium.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 20

correlation effect measurement parameters. Log instances within any detected community are
regarded as malicious ones and the others as benign ones. The TRP is the portion of the malicious log
instance and benign log instance which have been correctly classified. The FPR is the portion of the
actual benign log instances, which are unexpectedly classified into the malicious cluster. The results
are shown in Figure 12; we can see that TPRs of LICM module work well on the 7 typical APT
scenarios and the FPRs are also medium.

(a) (b)

Figure 12. Evaluation LICM module detection result; (a) true-positive rate (TPR); (b) FPR.

5.3. Attack Scenario Reconstruction Time

The time complexity of the attack scenario reconstruction versus the number of alert and log
instances is one of the most important parameters in evaluating the proposed technique. The scenario
reconstruction time is the average time from the time an alert is generated to the time this newly
generated alert is correlated to one of the attack scenarios plus the average time of the log associated
with that newly generated alert to be classified to a certain cluster. Figure 13 depicts the impact of the
number of alert and log instances on the average reconstruction time, which smoothly increases as
the number of instances increases.

Figure 13. Computational time varies with the instance quantity changes.

6. Conclusion

In this paper, we proposed the APT alerts and logs correlation method to accomplish the cyber
situation comprehension in IoT systems. To appropriately reduce the communication overhead of the
proposed method, we provide a framework of deploying APTALCM on the edge computing-based IoT
system. To recognize attack intentions, a similarity measures method based on SimRank is provided.
We also proposed an APT alert instances correlation method to reconstruct APT attack scenarios and
an APT log instances correlation method to detect log instance communities. The experimental results
demonstrate that the APTALCM has higher TPR with acceptable FPR.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

100

200

300

400

500

600

700

800

900

1000

Quantity of alert and log instances

A
ve

ra
ge

 c
om

pu
tio

na
l t

im
e

(s
ec

on
ds

)

Figure 12. Evaluation LICM module detection result; (a) true-positive rate (TPR); (b) FPR.

5.3. Attack Scenario Reconstruction Time

The time complexity of the attack scenario reconstruction versus the number of alert and log
instances is one of the most important parameters in evaluating the proposed technique. The scenario

Sensors 2019, 19, 4045 20 of 21

reconstruction time is the average time from the time an alert is generated to the time this newly
generated alert is correlated to one of the attack scenarios plus the average time of the log associated
with that newly generated alert to be classified to a certain cluster. Figure 13 depicts the impact of the
number of alert and log instances on the average reconstruction time, which smoothly increases as
the number of instances increases.

Sensors 2019, 19, x FOR PEER REVIEW 19 of 20

correlation effect measurement parameters. Log instances within any detected community are
regarded as malicious ones and the others as benign ones. The TRP is the portion of the malicious log
instance and benign log instance which have been correctly classified. The FPR is the portion of the
actual benign log instances, which are unexpectedly classified into the malicious cluster. The results
are shown in Figure 12; we can see that TPRs of LICM module work well on the 7 typical APT
scenarios and the FPRs are also medium.

(a) (b)

Figure 12. Evaluation LICM module detection result; (a) true-positive rate (TPR); (b) FPR.

5.3. Attack Scenario Reconstruction Time

The time complexity of the attack scenario reconstruction versus the number of alert and log
instances is one of the most important parameters in evaluating the proposed technique. The scenario
reconstruction time is the average time from the time an alert is generated to the time this newly
generated alert is correlated to one of the attack scenarios plus the average time of the log associated
with that newly generated alert to be classified to a certain cluster. Figure 13 depicts the impact of the
number of alert and log instances on the average reconstruction time, which smoothly increases as
the number of instances increases.

Figure 13. Computational time varies with the instance quantity changes.

6. Conclusion

In this paper, we proposed the APT alerts and logs correlation method to accomplish the cyber
situation comprehension in IoT systems. To appropriately reduce the communication overhead of the
proposed method, we provide a framework of deploying APTALCM on the edge computing-based IoT
system. To recognize attack intentions, a similarity measures method based on SimRank is provided.
We also proposed an APT alert instances correlation method to reconstruct APT attack scenarios and
an APT log instances correlation method to detect log instance communities. The experimental results
demonstrate that the APTALCM has higher TPR with acceptable FPR.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
0

100

200

300

400

500

600

700

800

900

1000

Quantity of alert and log instances

A
ve

ra
ge

 c
om

pu
tio

na
l t

im
e

(s
ec

on
ds

)

Figure 13. Computational time varies with the instance quantity changes.

6. Conclusions

In this paper, we proposed the APT alerts and logs correlation method to accomplish the cyber
situation comprehension in IoT systems. To appropriately reduce the communication overhead of the
proposed method, we provide a framework of deploying APTALCM on the edge computing-based IoT
system. To recognize attack intentions, a similarity measures method based on SimRank is provided.
We also proposed an APT alert instances correlation method to reconstruct APT attack scenarios and
an APT log instances correlation method to detect log instance communities. The experimental results
demonstrate that the APTALCM has higher TPR with acceptable FPR.

Author Contributions: Conceptualization, X.C. and B.C.; methodology, X.C.; software, J.Z.; validation, X.C.,
B.C. and J.Z.; formal analysis, X.C.; investigation, X.C.; resources, X.C.; data curation, B.C.; Writing—Original
draft preparation, X.C.; Writing—Review and editing, J.Z.; supervision, B.C.; funding acquisition, B.C.

Funding: This research was funded by the National Key Research and Development Program of China,
grant number 2017YFB0802303 and the Postgraduate Research & Practice Innovation Program of Jiangsu Province,
grant number KYCX18_0308.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Palani, K.; Holt, E.; Smith, S. Invisible and forgotten: Zero-day blooms in the IoT. In Proceedings of the IEEE
International Conference on Pervasive Computing & Communication Workshops, Melbourne, Australia,
14–18 March 2016.

2. Xiao, L.; Xu, D.; Xie, C.; Mandayam, N.B.; Vincent Poor, H. Cloud Storage Defense Against Advanced
Persistent Threats: A Prospect Theoretic Study. IEEE J. Sel. Areas Commun. 2017, 1, 99–109. [CrossRef]

3. Cuppens, F.; Ortalo, R. Lambda: A language to model a database for detection of attacks. In Proceedings
of the 3rd International Workshop on Recent Advances in Intrusion Detection (RAID 2000), Toulouse, France,
2–4 October 2000; pp. 197–216.

4. Bhatt, P.; Yano, E.T.; Gustavsson, P.M. Towards a framework to detect multi-stage advanced persistent threats
attacks. In Proceedings of the IEEE International Symposium on Service Oriented System Engineering,
Toronto, ON, Canada, 7–11 April 2014; pp. 390–395.

5. Roschke, S.; Cheng, F.; Meinel, C. A new alert correlation algorithm based on attack graph. CISIS 2017, 6694,
58–67.

6. Albanese, M.; Subrahmanian, V.S. Scalable detection of cyberattacks. CISIM 2016, 245, 9–18.

http://dx.doi.org/10.1109/JSAC.2017.2659418

Sensors 2019, 19, 4045 21 of 21

7. Bass, T. Intrusion detection systems and multisensor data fusion: Creating cyberspace situational awareness.
Commun. ACM 2000, 43, 99–105. [CrossRef]

8. Mathew, S.; Upadhyaya, S. Situation awareness of multistage cyber attacks by semantic event fusion.
In Proceedings of the Military Communications Conference, London, UK, 29–31 October 2018; pp. 286–1291.

9. Aleroud, A.; Karabatis, G.; Sharma, P.; He, P. Context and semantics for detection of cyber attacks. Int. J. Inf.
Comput. Secur. 2014, 6, 63–92.

10. Hutchins, E.M.; Cloppert, M.J.; Amin, R.M. Intelligence driven computer network defense informed analysis
of adversary campaigns intrusion kill chains. In Proceedings of the ICIW, Chicago, IL, USA, 1–3 August 2011;
pp. 113–127.

11. Julisch, K. Clustering intrusion detection alarms to support root cause analysis. ACM Trans. Inf. Syst. Secur.
2016, 48, 443–471. [CrossRef]

12. Ourston, D.; Matzner, S.; Stump, W. Applications of hidden Markov models to detecting multi-stage network
attacks. In Proceedings of the Hawaii International Conference on System Sciences, Big Island, HI, USA,
6–9 January 2016; pp. 73–76.

13. Qiao, L.B.; Zhang, B.F.; Lai, Z.Q.; Su, J.S. Mining of Attack Models in IDS Alerts from Network Backbone
by a Two-stage Clustering Method. In Proceedings of the IEEE 2012 26th IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), Shanghai, China, 21–25 May 2012; pp. 1263–1269.

14. Murphy, C.T.; Yang, S.J. Clustering of multistage cyber attacks using significant services. In Proceedings
of the 13th International Conference on Information Fusion IEEE, Edinburgh, UK, 26–29 July 2010; pp. 1–7.

15. Murphy, C.T. CACTUSS: Clustering of Attack Tracks Using Significant Services. Ph.D. Thesis, Rochester Institute
of Technology, New York, NY, USA, 2009.

16. Cheng, B.C.; Liao, G.T.; Huang, C.C.; Yu, M.T. A Novel Probabilistic Matching Algorithm for Multi-Stage
Attack Forecasts. IEEE J. Sel. Areas Commun. 2011, 29, 1438–1448. [CrossRef]

17. Zhang, Y.; Liu, T.; Shi, J.; Zhang, P.; Zhang, H.; Ya, J. An automatic multistep attack pattern mining approach
for massiveWAF alert data. Scanning 2015, 4514, 23–34.

18. Zhang, J.L.; Chen, B.; Zhao, Y.C.; Cheng, X.; Hu, F. Data Security and Privacy-Preserving in Edge Computing
Paradigm: Survey and Open Issues. IEEE Access 2018, 99, 1. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/332051.332079
http://dx.doi.org/10.1145/950191.950192
http://dx.doi.org/10.1109/JSAC.2011.110809
http://dx.doi.org/10.1109/ACCESS.2018.2820162
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Our Contribution
	Organization of the Paper

	Background and Related Work
	Cyber Situation Comprehension for IoT Systems
	APTALCM Design
	Cyber Situation Ontology Construction
	Cyber Situation Ontology Initialization
	Calculate Instance Similarity

	Alert Instances Correlation
	Alert Instance Filter (AIF)
	Alert Instance Cluster (AIC)
	APT Attack Scenario (AAS)
	Module Implementation

	Log Instances Correlation
	Preliminary Correlation (PC)
	Log Instance Community Detection (LICD)
	Module Implementation

	Experimental Evaluation of APTALCM
	Evaluation of the Alert Instance Correlation Module
	Data Generation
	Correlation Performance
	Performance Comparison Between AICM And Existing APT Detection Systems

	Evaluation of the Log Instance Correlation module
	Data Generation
	Correlation Performance

	Attack Scenario Reconstruction Time

	Conclusions
	References

