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Abstract: Commercial sleep devices and mobile-phone applications for scoring sleep are gaining
ground. In order to provide reliable information about the quantity and/or quality of sleep,
their performance needs to be assessed against the current gold standard, i.e., polysomnography
(PSG; measuring brain, eye, and muscle activity). Here, we assessed some commercially available
sleep trackers, namely an activity tracker; Mi band (Xiaomi, Beijing, China), a scientific actigraph:
Motionwatch 8 (CamNTech, Cambridge, UK), and a much-used mobile phone application: Sleep
Cycle (Northcube, Gothenburg, Sweden). We recorded 27 nights in healthy sleepers using PSG and
these devices and compared the results. Surprisingly, all devices had poor agreement with the PSG
gold standard. Sleep parameter comparisons revealed that, specifically, the Mi band and the Sleep
Cycle application had difficulties in detecting wake periods which negatively affected their total sleep
time and sleep-efficiency estimations. However, all 3 devices were good in detecting the most basic
parameter, the actual time in bed. In summary, our results suggest that, to date, the available sleep
trackers do not provide meaningful sleep analysis but may be interesting for simply tracking time in
bed. A much closer interaction with the scientific field seems necessary if reliable information shall
be derived from such devices in the future.
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1. Introduction

Our knowledge about the structure and function of sleep is derived mainly from recordings
that are done in sleep laboratories. In these recordings, physiological activity is measured using
polysomnography (PSG), which is considered as the gold standard to assess sleep. PSG requires a
combination of electroencephalography (EEG), electrooculography (EOG), and electromyography
(EMG) data. Although these recordings contribute widely to our constantly expanding knowledge
about sleep, their major drawback is that they do not mimic the habitual sleeping environment at
home. The laboratory setup, experimental manipulations, and the first night effect, among other
factors, form challenges that hinder laboratory sleep recordings from properly reflecting at-home
sleep [1–3]. For instance, time in bed (TiB), total sleep time (TST), as well as sleep efficiency (SE) are
significantly reduced during a night in the laboratory as compared to a night at home [1,2]. Therefore,
laboratory sleep recordings might not be optimal in measuring sleep and consequently in diagnosing
sleep disorders. Indeed, home-based PSG recordings show better dissociation between healthy sleepers
and insomniacs than laboratory PSG [4]. Altogether, it is a priority in the field of sleep research and
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sleep medicine to develop better tools that can accurately and reliably measure sleep at home and in a
wider range of population.

In that context, we have recently witnessed a vast increase in the available consumer devices, i.e.,
sleep trackers and mobile-phone applications, which aim to assess and ultimately improve sleep. These
devices have the potential to overcome the bias induced by laboratory settings as they are designed
to assess sleep outside the laboratory with minimal effort from the user. Before this is realized, it is
essential to scientifically test and validate these devices against the “gold standard” to ensure that
such devices and applications do not provide inaccurate information to the naïve end-user, resulting in
“unintended effects on sleep beliefs and behaviors” [5]. The adherence of such devices and applications
to the gold standard ensures that their reliability and validity upholds the ethical standards before they
are advertised by the industry.

In that regard, previous studies have assessed the performance of a number of sleep trackers in
measuring sleep [6–8]. Accelerometer-based sleep trackers, for instance, had high accuracy in detecting
sleep but low accuracy in detecting awakenings from sleep which makes them quite efficient in
estimating parameters such as TST and/or TiB but not that accurate in estimating wake after sleep onset
(WASO) [6]. Similarly, mobile-phone applications had very poor agreement with the PSG gold standard
in estimating sleep parameters such as SE and sleep onset latency (SOL) as well as in staging sleep
into light and deep sleep [7]. In such a rapidly evolving market, however, it is essential to regularly
update our knowledge about the current status of such devices and applications in order to constantly
monitor their progress and optimize their performance. Therefore, the aim of this study was to assess
the performance of some of these readily used consumer devices which claim to monitor sleep and to
provide reliable information about sleep quality and sleep architecture on a nightly basis. Specifically,
we assessed sleep data from two devices: (1) a commercial activity tracker, the Mi band (MB; Xiaomi,
Beijing, China), and (2) a scientific actigraphy, Motionwatch 8 (MW; CamNTech, Cambridge, UK),
as well as one readily used mobile-phone application: the Sleep Cycle (SC; Northcube, Gothenburg,
Sweden). Our aim was to select some of the relatively cheap and highly popular commercial sleep
trackers, the Mi band and the Sleep Cycle application, as well as at least one research-grade sleep
tracker, the Motionwatch to ensure that we tested at least one device/application from each class of
sleep trackers available. We compared sleep parameters as measured by these trackers against our PSG
gold standard that relied on semi-automatic sleep staging using the SOMNOlyzer 24X7 solution [9,10].

2. Materials and Methods

Study sample: For the study, we recorded a total of 27 nights of PSG recordings. First, we recruited
19 healthy participants (13 females, mean age: 29 ± 13. Range: 19–64 years) for in-laboratory recordings.
Participants arrived at the sleep laboratory of the University of Salzburg at 9 pm. They were instructed
about the procedure and the purpose of the experiment. After signing the consent forms, they were
given the Mi band (MB) and the MotionWatch (MW). After we confirmed that both the MB and the
MW were recording, we started with PSG preparation. Before turning the lights off and starting the
PSG recording, we started the Sleep Cycle application (SC) and placed the device next to the subject.
Participants went to bed at around 11 pm and stayed in bed (TIB, time in bed) for approximately 8 h
(452.29 ± 81.78 min). Two of these participants had to be excluded from our analyses due to technical
problems with the PSG recordings. Additionally, we recorded 8 ambulatory “home” PSG nights using
an ambulatory EEG device together with the MB device and the SC application after the participants
visited the lab for electrode placement. Due to technical problems with some of the devices/application,
we finally analyzed 21 nights for MB and 12 nights for MW and SC.

Instruments: Mi Band (MB; Xiaomi, Beijing, China) is a wrist-worn commercial activity tracker
(15.7 mm × 10.5 mm × 40.3mm and weighs 7.0 g) that detects sleep using a combination of two sensors:
(i) a proximity sensor and (ii) actigraphy (actimetric sensor). While the proximity sensor detects contact
with the skin, the actimetric sensor detects body movements to count sleep time and to differentiate
between light and deep sleep. MB uses a triaxial accelerometer and a photoplethysmography (PPG)
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sensor to detect movements and to monitor blood-volume changes, respectively. MB starts recording
sleep when it detects no movement for a certain (unspecified) period of time. MB classifies sleep into
deep and light sleep based on body movements. In addition, MB uses PPG for continuous heart-rate
monitoring during sleep to track light and deep sleep more precisely. However, information on the
thresholds used for classifying sleep is not made available. The collected data are then converted to a
hypnogram using the Mi Fit software (algorithm v1.1.14, Anhui Humai Information Technology CO.,
Ltd., Hefei, China). Generally, we used the Mi band 2; however, some of the recordings were done
using the Mi band 3, which, as advised by Xiaomi developers on their website, has no hardware update
from the Mi band 2 that might influence the results. For our analysis, we used the hypnogram (graph)
produced by the Mi Fit software to extract the exact timings of the start and the end of sleep, the start
and the end of each sleep stage (light sleep/deep sleep), as well as the duration of WASO in minutes.
Using these data, we calculated the TiB as the difference between the start and the end times reported
in the software and the TST as the total amount of time spent asleep (both light and deep sleep) during
this period. SOL is defined as the difference between the start time of the PSG recording and the
time when MB starts recording light sleep. Finally, SE was calculated as follows; SE = (TST/TiB) × 100.
The 30-second epochs for the epoch-by-epoch agreement were extracted manually by fragmenting the
segments of wake/light sleep/deep sleep in the graph into 30-s segments.

MotionWatch 8 (MW; CamNTech, Cambridge, UK) is a research-grade actigraphy with a built-in
ambient light sensor (Dimensions: 36-mm length × 28.2-mm width × 9.4-mm depth excluding
strap and weighs 9.1 g including the battery but excluding the strap; sensor: triaxial accelerometer,
microelectromechanical (MEM) technology, 0.01 g to 8 g range, 3–11 Hz). For scoring sleep, MW uses a
triaxial microelectromechanical system (MEMS) accelerometer (range: 0.01 g–8 g, bandwidth: 3–11Hz)
to monitor body movements with a sampling frequency of 50Hz. The onboard software processes the
raw acceleration data such that one quantitative measure of activity for a predefined epoch length
of, e.g., 30 s is calculated and stored on an internal nonvolatile memory. For differentiating between
sleep and wake epochs, we used the MotionWare software (v1.1.20, empire Software GmbH, Cologne,
Germany) which uses an algorithm that depends on thresholding. Briefly, this thresholding algorithm
assigns an activity score to each epoch by totalizing the epoch in question and those surrounding it
using weighting factors. If the activity score of an epoch is above a predefined threshold, then the
epoch is scored as wake; otherwise, it is scored as sleep. This activity score is dependent upon the
sampling epoch-length. Since we used 30-s epochs, the activity scores are calculated as follows: the
number of movements in the epoch being scored is multiplied by 2 and that of the epochs within 2
minutes of this epoch (1 minute before and 1 minute after) are multiplied by 0.2. The activity score
of this epoch is the sum of these weighted values. MW has 3 thresholding options: low, medium,
and high corresponding to 80, 40, and 20 activity scores, respectively. For our analysis, we used the
high-threshold value as it was used for the validation of MW. Moreover, an additional level of scoring
is also done based on the movements detected by MW per epoch. If there are more than 2 movements
in a 30-s epoch, this epoch is scored as mobile (awake). The detection of the start of sleep is based
on 10-minute segments and is totally independent of the sleep/wake scoring described earlier as the
threshold is 3 activity counts in a 30-s epoch. The process starts by looking at the first 10 minutes
(twenty 30-s epochs) after lights-out (which was synchronized to the PSG). Each epoch is tested against
the threshold (i.e., 3 counts), and the number of epochs exceeding the threshold is counted. If this
number is greater than 2, then the process is repeated 1 minute later. This process continues until
a 10-minute block that fulfills the criteria is detected, marking the start of sleep. Detecting the end
of sleep is done using the same procedure; however, instead of 10-minute segments of maximum 2
epochs containing 3 or more activity counts, 5-minute segments of maximum 2 epochs containing 5 or
more activity counts marks the end of sleep. Note that lights-out was always synchronized to the start
of the PSG recording. TiB, TST, SOL, and SE are calculated automatically by the software, while WASO
is calculated manually. TiB is defined as the total elapsed time between the “Lights Out” and “Got
Up” times. TST is defined as the total elapsed time between the “Fell Asleep” and “Woke Up” times.
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SOL is defined as the time between “Lights Out” and “Fell Asleep”, and SE is the “Actual Sleep Time”
divided by “Time in Bed” in percentage. Finally, WASO is determined by calculating the number of
epochs scored as awake after the first epoch of sleep. 30-second epoch data provided by the software is
used to calculate the epoch-by-epoch agreement with the gold standard.

Sleep Cycle (SC; NorthCube, Gothenburg, Sweden) is a mobile-phone application that is available
on android-based as well as iOS-based devices. SC is a smart alarm-clock that tracks your sleep patterns
and wakes you up during light sleep. SC tracks sleep throughout the night and use a 30-minute window
that ends up with the desired alarm time during which the alarm goes off at the lightest possible sleep
stage (i.e., light sleep). SC scores sleep through motion detection via one of two motion-detection
modes: (i) microphone, which uses the built-in microphone to analyze movements, or (ii) accelerometer,
which uses the phone’s built-in accelerometer. SC tracks movements through the night and uses them
to detect and score sleep as well as to plot a graph (hypnogram). For our analysis, we used SC on
both iOS (v5.7.1) and Android (v3.0.1). We were advised by the developers (Northcube, Gothenburg,
Sweden) that there is no difference between the two versions in the sleep-scoring algorithm. We used
the recommended settings for recording; that is, we used the microphone to detect movements and
we placed the phone next to the participant, with the microphone facing the participant and the
charger plugged in. By selecting the microphone option to monitor sleep, the SC application uses
sound analysis to identify sleep phases by tracking movements in bed. The SC application uses the
smartphone’s built-in microphone to pick up sounds from the sleeper. After receiving the sound
input, the application then filters the sound using a series of high and low cut-off filters to identify
specific noises that correlate with movement. When there is no motion, the application registers
deep sleep; when there is little motion, it registers light sleep; and when there is a lot of motion,
it registers wakefulness. More details on the algorithms and the technical aspects of sound analysis
are not available to the public. Although we used the premium version, we were not able to find any
information on the algorithm SC uses for sleep scoring. As even the premium version of the application
provides no access to the raw data, we performed image analysis of the hypnogram provided by the
application (see the Supplementary Materials and Supplementary Figure S1 for more information) as a
workaround. Through this method, we were able to extract 30-s-epoch information about sleep scoring
(wake/light sleep/deep sleep) which was also used for measuring sleep parameters. TiB was calculated
based on the “went to sleep” and waking times reported by the application. TST was calculated by
subtracting all the “awake” epochs from the TiB. SOL was calculated by summing up all the awake
30-s epochs before the first light-sleep epoch. WASO was calculated by summing up all the awake
epochs that lie between the first light-sleep epoch and the “woke up” time. SE = (TST/TiB) × 100.

EEG data acquisition: For the nights spent in the laboratory, brain activity was recorded using
high-density EEG with a 256-electrode GSN HydroCel Geodesic Sensor Net (Electrical 478 Geodesics Inc.,
Eugene, Oregon, USA) and a Net Amps 400 amplifier. Additionally, we recorded electrocardiography
(ECG), electromyography (EMG), and electrooculography (EOG) using bipolar electrodes. Ambulatory
PSG was recorded using a 16-channel EEG, bipolar EMG, and EOG using the AlphaEEG amplifier and
NeuroSpeed software (Alpha Trace Medical Systems, Vienna, Austria).

Sleep scoring: Our PSG was analyzed for sleep stages using the computer-assisted sleep
classification system Somnolyer 24 × 7 as developed by the SIESTA group (The SIESTA Group
Schlafanalyse GmbH., Vienna, Austria) [9,10] and followed the revised standard criteria described by
the American Association for Sleep Medicine (AASM) [11]. The derived sleep features and sleep stages
serve as gold standards for the rest of the analyses. Sleep staging for the SC application was realized
via a simple image processing of the figures generated by the application; basically, we discretized the
SC illustrations into 3 sleep–wake states as suggested by the application in wake, light sleep, and deep
sleep (cf. Supplementary Materials and Supplementary Figure S1 for more details).

Statistical analysis: The following five sleep parameters were evaluated: (i) SOL, (ii) SE, (iii)
WASO, (iv) TST, and (v) TiB. Importantly, measurements from all the devices were accurately
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synchronized to the start of the PSG recording. Correlations were computed nonparametrically using
Spearman correlations.

Bland–Altman plots were used to quantify the agreement between the PSG gold standard and
the three consumer devices. The measured bias is defined as the mean of the difference between
the two-paired measurements. That is, the further this value is from zero, i.e., the line of equality
(difference = 0), the higher the error in the measurement. Spearman correlations are used to illustrate
systematic linear biases of the devices and are reported at p < 0.01 (corrected for the 5 dependent sleep
variables analyzed).

Epoch-wise comparison of sleep stages: For analyzing the epoch-by-epoch agreement of the gold
standard with the three consumer devices, we always synchronized the recording start with the start
of the PSG recording. In case one device started recording after the other (for example, PSG after SC or
vice versa), we simply discarded the earlier epochs and started the analysis from the first epoch which
was scored by both. As mentioned above, we used the graphs provided by the MB device and the
SC application in order to divide 30-s epochs into awake, light sleep, and deep sleep. For the PSG
gold standard, light sleep was defined as stages N1 and N2 while deep sleep was defined as the N3
stage. Importantly, when scoring sleep into 3 categories (wake/light sleep/deep sleep) we excluded
PSG epochs which were scored as Rapid Eye movement (REM) according to the AASM from the
analysis as all 3 devices and applications provide no information about REM (or “dreaming”) sleep.
However, in the case of scoring sleep into 2 categories only (wake/sleep), REM epochs were included.
We report two main parameters for the epoch-wise agreement: sensitivity and positive predictive
value (PPV). Sensitivity (in %) estimates the epoch-by-epoch agreement between MB and SC with the
gold standard by measuring the percent of correct classifications (according to the PSG standard) per
sleep stage (that is, for example, labelling 79% of all light-sleep detections by the PSG as “light sleep”).
The positive predictive value (PPV), on the other hand, is the probability that the assigned state (by the
device or application) is indeed that specific state in the gold standard (that is, for example, only 41%
of assigned “light sleep” epochs are actually light-sleep epochs and no other sleep states). Cohen’s
Kappa (K) as well as the Prevalence adjusted Bias adjusted Kappa (PABAK) were used to assess the
pairwise agreement between the devices. A Kappa score < 0.2 is considered a poor agreement while
scores between 0.21–0.40 are often considered fair, 0.41–0.60 is considered moderate, and 0.61–0.80 is
considered a substantial agreement according to Landis and Koch (1977) [12]. Epoch-wise analysis
was computed using IBM SPSS Statistics software (IBM Corp. Released 2017. IBM SPSS Statistics for
Windows, Version 25.0. Armonk, NY: IBM Corp.).

3. Results

The mean values of the key features of sleep across all participants according to the PSG gold
standard were 434.58 ± 95.83 minutes for TiB, 370.12 ± 104.43 minutes for TST, 84.08 ± 13.22% for
SE, 25.98 ± 19.35 minutes for SOL, and 39.08 ± 38.43 minutes for WASO. We found no significant
difference between laboratory-PSG and home-PSG sleep parameters, but we found a trend towards a
lower SOL in home-PSG parameters (Supplementary Table S4), which is expected due to the first-night
effect [6]. As a first analysis, we simply checked whether the mean sleep values per participant
and night correlate between the gold standard and the devices. For TiB, we found good correlation,
that is, significant positive associations of the gold standard values with the 3 consumer devices
(Supplementary Figure S2; MB: r = 0.72, p = 0.0002; SC: r = 0.67, p = 0.02; and MW: r = 0.77, p = 0.03).
For TST, we only found one moderately positive association for the MB device (r = 0.49, p = 0.02),
while MW was the only device that showed a significant positive correlation for WASO time (r = 0.78,
p = 0.02) (see Supplementary Figure S2). This low correlation is already surprising given that these are
simple associations of the mean values per subject, e.g., whether people who take longer to fall asleep
in the case of SOL measurements according to the PSG gold standard, also tend to fall asleep later
according to the output of one of the consumer devices.
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3.1. Bland–Altman Plots

We used the Bland and Altman analysis to visualize the degree of agreement between the PSG
gold standard and each of the 3 aforementioned sleep trackers (cf. Figures 1–3). The most global
key features of sleep, namely TIB and TST, are depicted in Figure 1. Looking at the mean difference,
there is only a slight bias towards over- or underestimating TIB (MB: 11.17 ± 59.96 min, MW: 11.96
± 38.48 min, and SC: −5.17 ± 57.57 min). However, the 95% confidence interval also indicates that,
for single cases, the devices may still over- or under-estimate TIB by an hour or more (cf. Figure 1A).
Mean TST is systematically overestimated by MB by more than an hour (Bias: 69.64 ± 67.43 min) and
underestimated by the SC application by a little less than hours on average (Bias: −103.67 ± 85.87
min) (Figure 1B). All 3 tested devices/applications showed inaccurate estimations of SE, with MW
giving the best results and showing no systematic over- or underestimation of SE (Figure 2). The mean
differences indicate that MB systematically overestimated SE (13.25%) whereas the SC application
systematically underestimated SE (26.42%). Interestingly, Spearman correlations indicated that the MB
shows greater errors, when the SE values reported by PSG are worse than average. That is, MB has a
strong bias towards quantifying SE better than it is. Moreover, we observed a systematic error in the
estimation of the WASO time by the MB and the SC but not the MW (Figure 3A). While the MB device
underestimates WASO (−33.57 ± 42.84 min), the SC overestimates WASO systematically (89.92 ± 49.90
min). In addition, there is a linear trend in the data showing that MB underestimates WASO time more
the longer the actual WASO time gets. The mean difference of the 3 devices/applications to the gold
standard is closer to zero for SOL; however, it is to be noted that, here also, the range of possible values
is much more limited (36.18 ± 38.37 min for the gold standard). Only MB shows a linear trend with a
stronger underestimation of SOL, the longer SOL actually was (as measured by the gold standard)
(Figure 3B).

3.2. Epoch-Wise Agreement Per Sleep Stage

Table 1 shows the overall and stage-wise agreement between the 30-s epochs scored by our PSG
gold standard and by both the MB device and the SC application. Note that MW is disregarded in
this respect as standard MW outputs do not provide (or claim to allow) sleep-staging classifications.
The overall agreement over all epochs from all subjects (16,350 epochs for MB; 11,243 epochs for MW;
and 9504 epochs for SC) between gold-standard PSG scoring and MB was relatively low (53.31%,
k = 0.14, PABAK = 0.06) and even lower for the SC device (46.34%, k = 0.18, PABAK = −0.07). Table 1
also illustrates that the highest level of agreement for MB was in determining light sleep (sensitivity
= 70.6% and PPV = 57.8%) and that the lowest sensitivity for MB was for detecting wakefulness
(sensitivity = 5.5%; PPV= 62.8%). Conversely, SC had moderate sensitivity in identifying awake epochs
(sensitivity = 55.6%) and a low PPV value of 24.3%, meaning that only 24.3% of wake-classified epochs
are indeed woken states according to the PSG gold standard. On the other hand, SC had low sensitivity
in detecting light sleep (40.9%), yet when it classified light sleep, this was the true state in 61.2% of the
cases (i.e., PPV = 61.2%). Moreover, for “deep sleep” classification, we found very poor performance
for MB (sensitivity = 47.2%, PPV = 43.6%) and poor performance for the SC app (sensitivity = 52.0%,
PPV= 53.0%).
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Cycle (SC) with the polysomnography (PSG) in measuring (A) time in bed (TiB) but not (B) total 
sleep time (TST). The blue horizontal line represents the mean difference between the two 
measurements, and the shaded blue area represents the 95% CI of the mean difference. Black 
horizontal lines mark the 1.96 SD from the mean. The black dashed line is the line of equality 
(difference = 0). TiB: time in bed, TST: total sleep time, MB: Mi Band, MW: MotionWatch, and SC: 
Sleep Cycle application. 

Figure 1. Bland–Altman plots show the agreement of Mi Band (MB), MotionWatch (MW), and Sleep
Cycle (SC) with the polysomnography (PSG) in measuring (A) time in bed (TiB) but not (B) total sleep
time (TST). The blue horizontal line represents the mean difference between the two measurements,
and the shaded blue area represents the 95% CI of the mean difference. Black horizontal lines mark the
1.96 SD from the mean. The black dashed line is the line of equality (difference = 0). TiB: time in bed,
TST: total sleep time, MB: Mi Band, MW: MotionWatch, and SC: Sleep Cycle application.
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Figure 2. Bland–Altman plots show the PSG gold standard with (A) MB, (B) MW, and (C) SC in 
measuring sleep efficiency (SE). The blue horizontal line represents the mean difference between the 
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(difference = 0), and the red dashed line represents the Spearman correlation between the difference 

Figure 2. Bland–Altman plots show the PSG gold standard with (A) MB, (B) MW, and (C) SC in
measuring sleep efficiency (SE). The blue horizontal line represents the mean difference between the two
measurements, and the shaded blue area represents the 95% CI of the mean difference. Black horizontal
lines mark the 1.96 SD from the mean. The black dashed line is the line of equality (difference = 0), and
the red dashed line represents the Spearman correlation between the difference and the average of the
two measurements. SE: Sleep Efficiency, MB: Mi Band, MW: MotionWatch, and SC: Sleep Cycle.
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Figure 3. Bland–Altman plots of (A) the sleep onset latency (SOL) and (B) wake after sleep onset 
(WASO) measurements show differences between the PSG gold standard and MB, MW, and SC. The 
blue horizontal line represents the mean difference between the two measurements, and the shaded 
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Figure 3. Bland–Altman plots of (A) the sleep onset latency (SOL) and (B) wake after sleep onset
(WASO) measurements show differences between the PSG gold standard and MB, MW, and SC. The blue
horizontal line represents the mean difference between the two measurements, and the shaded blue
area represents the 95% CI of the mean difference. Black horizontal lines mark the 1.96 SD from the
mean. The black dashed line is the line of equality (difference = 0), and the red dashed line represents
the Spearman correlation between the difference and the average of the two measurements. SOL:
Sleep onset latency, WASO: wake after sleep onset. MB: Mi Band, MW: MotionWatch and SC: Sleep
Cycle application.
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Table 1. Percentages of agreement for 3 stages of sleep scoring (awake/light sleep/deep sleep) between
the gold standard (PSG) and the scoring of MB and SC.

PSG Gold Standard

WAKE LIGHT SLEEP DEEP SLEEP

Mi Band (MB) staging
Wake

% Sensitivity 5.5 0.1 1.5
% PPV 62.8 4.7 32.6

Light sleep
% Sensitivity 79.2 70.6 51.3

% PPV 18.9 57.8 23.2
Deep sleep

% Sensitivity 15.3 29.3 47.2
% PPV 7.5 48.9 43.6

Sleep Cycle (SC) staging
Wake

% Sensitivity 55.6 37.0 16.9
% PPV 24.3 61.1 14.7

Light sleep
% Sensitivity 36.4 40.9 31.1

% PPV 14.4 61.2 24.4
Deep sleep

% Sensitivity 8.0 22.1 52.0
% PPV 4.1 42.8 53.0

Devices/applications OA (%) K/PABAK
Mi Band

MB 53.31 0.14/0.06
Sleep Cycle

SC 46.34 0.18/−0.07

The agreement is demonstrated by the means of sensitivity (%) as well as by the positive predictive value (PPV).
The percentage of overall agreement (OA; %), Cohen’s Kappa coefficient (K) and Prevalence-adjusted Bias-adjusted
Kappa (PABAK) are reported for each device.

Given this poor performance in correctly classifying sleep stages, we then investigated the ability
of these devices and the SC application to simply differentiate between sleep (light and deep sleep) and
wakefulness. We also included the scientific MW device (of which the software anyway only provides
wake and sleep categories). We then found good overall agreement (OA) for MB and MW (>80%,
cf. Table 2) and rather poor OA for the SC app (65.9%). Kappa pairwise agreement indicates a “fair”
agreement for MW but poor agreements for the MB and the SC. Specifically, the output shows that the
MB and MW devices on the arm and wrist are very good when only “sleep” detection is needed (MB:
sensitivity = 99.5%, PPV = 86.8%; MW: sensitivity = 92.9%, PPV = 88.2%). The SC application is as
good as the wristband devices in assigning “sleep” to an epoch, as the application is correct in 91.3% of
these cases, however, it still misses a third of all sleep epochs (sensitivity = 67.4%). Severe difficulties
remain in assigning “awake” epochs by these devices/application and therefore, a proper estimation of
overall sleep efficiency or sleep quality remains a challenge.

Importantly, when we pooled all sleep stages in one stage, i.e. “sleep”, the OA and the PABAK of
the MB and the SC increased while their Cohen’s K scores dropped which m indicate a serious bias in
the scoring algorithms of the MB device and the SC app. Moreover, when we excluded REM epochs
from this analysis, no significant difference in the agreement scores was observed (see Supplementary
Table S2).
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Table 2. Percentages of agreement for 3 stages of sleep scoring (awake/asleep) between the gold
standard (PSG) and the scoring of MB and SC.

PSG Gold Standard

WAKE SLEEP

Mi Band (MB) staging
Wake

% Sensitivity 5.5 0.5
% PPV 62.8 37.2
Sleep

% Sensitivity 94.5 99.5
% PPV 13.2 86.8

Sleep Cycle (SC) staging
Wake

% Sensitivity 55.6 32.6
% PPV 19.9 80.1
Sleep

% Sensitivity 44.4 67.4
% PPV 8.7 91.3

MotionWatch (MW) staging
Wake

% Sensitivity 37.5 7.8
% PPV 47.8 52.2
Sleep

% Sensitivity 62.5 92.9
% PPV 11.5 88.5

Devices/applications OA (%) K/PABAK
Mi Band

MB 86.54 0.08/0.72
Sleep Cycle

SC 65.90 0.13/0.30
MotionWatch

MW 83.42 0.33/0.66

The agreement is demonstrated by the means of sensitivity (%) as well as by the positive predictive value (PPV).
The percentage of overall agreement (OA; %), Cohen’s Kappa coefficient (K) and Prevalence-adjusted Bias-adjusted
Kappa (PABAK) are reported for each device.

4. Discussion

In the present study, we evaluated 2 readily used consumer devices (Mi Band and MotionWatch
8) and one application (Sleep Cycle) for their ability to track sleep. The reason for our selection of
such sleep trackers is mainly driven by their dissemination among the public as well as their low cost.
We compared these consumer devices to our PSG gold standard which was simultaneously recorded.
Overall, we revealed that these devices have an alarmingly low accuracy in scoring sleep in three
categories (wake, light sleep, and deep sleep) with the overall agreement ranging between 46.34% for
the SC application and 53.02% for the wrist-worn MB. When we tested for the correct classification in
only two categories, that is, wake and sleep, the devices of course performed better with an overall
agreement of 65.90% for SC, 84.69% for MB, and 81.33% for MW.

We also showed that all devices and applications had high accuracy in estimating the most global
sleep parameter, TiB. Therefore, these devices, in their current status, might be helpful as an objective
measure of the time spent in bed at home, preferably in combination with subjective measurements
such as sleep diaries. Especially in the case of MW, we need to note that we adjusted the start and
the end of the recordings to the PSG gold standard which might overestimate the fidelity of the MW
device in measuring TiB. Nevertheless, our MW results are consistent with those reported in previous
literature [13,14].
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Only for TiB, correlational analysis showed significant positive correlations between the gold
standard and all 3 sleep trackers. Although these correlations (see Supplementary Table S1) are not
sufficient for commenting on the agreement between the sleep trackers and the PSG, they are important
to show that even this simple relation does not hold statistically and with alarming disagreements.
This raises the question of whether the faulty estimation of values such as TST, SE, WASO, or SOL are
due to a priori knowledge of these sleep trackers on the amount of time the average person actually
sleeps or needs to fall asleep. If such information is included in the algorithms and outputs of consumer
devices, this would explain why the largest errors occur primarily for “non-average” sleep profiles and
nights. In line with this observation, previous studies have highlighted the poor performance of sleep
trackers when sleep deviates from the average person’s sleep [6,8]. However, to date, this argument
remains speculative as the MB and the SC do not allow access to their raw data and are black boxes
when it comes to their staging algorithms. Similarly, when comparing the agreement between MB
and SC with the PSG gold standard for 3 categories (light sleep, deep sleep, and wake) as compared
to 2 categories (sleep vs. wake), we found the expected increase in OA but a drop in the Kappa
scores. Especially for MB, looking at the sensitivity scores, we observed extremely low sensitivities
in detecting wakefulness (5.5%) and a very high sensitivity in detecting sleep (99.5%). That is, by
assigning “sleep” to basically every epoch, the device also cannot miss sleep epochs, yet it of course
strongly overestimates sleep and has a vast amount of false alarms for the stage “sleep”. Although MB
was the least sensitive between all 3 sleep trackers, it had the highest precision in scoring wakefulness
(PPV: 62.8% for MB, 47.8% for MW, and 24.3% for SC). That means that MB does not score awakenings
from sleep unless they are almost unmistakable. However, since Cohen’s Kappa is affected by the
imbalanced marginal totals in a table [15], masking high levels of agreement, we also reported PABAK
which has been shown to be more accurate in such cases [16]. When sleep was scored into 3 categories
(wake/light sleep/deep sleep), both K and PABAK were very low (for MB, k = 0.14, PABAK = 0.06 and,
for SC, k = 0.18, PABAK = −0.07), confirming the poor agreement between MB/SC and the PSG gold
standard. Interestingly, when sleep was scored into two categories (wake/sleep), K scores dropped
to half (MB: k = 0.08; SC: k = 0.13) but PABAK increased greatly (MB: PABAK = 0.72; SC: PABAK =

0.30). This might indicate a bias, especially in the MB sleep-scoring algorithm, which again raises the
concern whether such a biased output can be of any benefit to the user. It might also be the case that
the devices’ bad performance in tracking sleep is due to their inability to capture the subtle changes in
sleep architecture throughout the night (see Supplementary Figure S4).

Regarding the other key parameters, our results raise serious doubts whether such consumer
devices and applications can, to date, provide any reliable information about sleep-related health issues.
Especially the revealed misjudgment in estimating key features of sleep such as SE, SOL, and WASO
are worrisome as they are important diagnostic criteria for quantifying clinically relevant bad sleep
and sleep disorders such as insomnia [17]. On the contrary, by providing such inaccurate information,
these consumer devices might even risk contributing to worse sleep and life quality as the users may
be concerned by the sometimes-negative outputs highlighting bad nights of sleep [5].

Our results suggest that wrist-worn devices (MB and MW) tend to have better a performance than
mobile-phone applications (SC) in measuring the key features of sleep. This might be attributed to
the fact that these devices have direct contact with the body making them more accurate in capturing
changes in physiological activity accompanying sleep, and more resilient to environmental factors
such as noise or movement from the bed partner, child, pet...etc. In that sense, the combination
of both laboratory and at-home PSG recordings in our study is beneficial as this variability reveals
whether these sleep trackers can actually detect a range of good to bad sleep patterns independent
of the actual sleep environment. This is especially true since the data subset on which the PSG sleep
scoring is performed, i.e., the classical AASM channel-set, is identical for both ambulatory and in-lab
recordings. Moreover, the semi-automated sleep scoring we used in this study would eliminate any
bias when scoring at-home vs. laboratory sleep as it has been shown to have higher agreement with
manual scorers than manual scorers among themselves [10]. One very important drawback of these
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sleep trackers is their inability to provide any information about REM or “dreaming” sleep. Due to
an inherent absence of the needed measurements for quantifying REM sleep (most importantly eye
movements via EOG and brain activity via EEG), the devices cannot provide the full spectrum of sleep
even if the algorithms and sensors would be considerably improved. The incorporation of additional
sensors such as an eye or brain electrode might add substantially to the ability of these devices to track
and score sleep more accurately and on the long-run, similar to a professional polysomnography in the
sleep laboratory.

An inherent limitation of our evaluation study is that most of our analyses needed to build upon
the simple (graphical) outputs of the devices in the form of plots provided for the end user. Moreover,
for the tested MB device and SC application, we lost some of the recorded data due to technical
reasons unknown to us which lead to differences in the sample size between the three sleep trackers.
Additionally, we were not able to directly report the raw data (e.g., heart rate, activity/movements,
or sounds) on which these devices and applications build their sleep outputs. Therefore, how these
devices and applications generate their results on an epoch-by-epoch basis over the whole night and
how they translate their data into sleep stages is unknown to us. We therefore needed to come up with
a way to quantify the data and to extract information that can be analyzed statistically (for details,
see the Material and Methods section as well as the Supplementary Materials). However, MW allows
access to raw data but it is a scientific device that is out of the price range of the usual consumer.
Interestingly, this device is likely the most accurate device tested and yet its software only provides
two outputs, sleep and wake, as it does not claim to be able to classify sleep in a more fine-grained
manner (as compared to MB and SC). However, the main advantage of the commercially available
sleep trackers such as MB and SC in their current status is their unmatched affinity with the public,
encouraging them to participate in research with a huge impact on the field of sleep research and sleep
medicine. These sleep trackers can be valuable for collecting huge amounts of data that otherwise
would require a lot of time and money to collect. They can also help us better understand sleep and
tackle sleep disorders, given that they provide access to their raw data and analysis algorithms in order
to undergo the necessary validation steps [18,19].

In summary, the currently available consumer devices for sleep tracking do not provide reliable
information about one’s sleep. However, devices of that kind could be very promising tools for tracking
sleep outside the laboratory in the future given that they adhere more to the scientific standards of
sleep staging and analysis. Moreover, by refining their algorithms or even by adding more sensors,
these devices might be able to reliably monitor and classify sleep across its full range from wakefulness
to light sleep, deep sleep, and “REM” dreaming sleep.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/19/4160/s1,
Figure S1: Sleep-scoring procedure of the Sleep Cycle application output hypnogram. Figure S2: Scatter plot
showing the positive correlations between the time-in-bed measurement of the PSG gold standard and those of Mi
Band, MotionWatch, and Sleep Cycle. Figure S3: Bland and Altman plots for the agreement between the time
in bed (TiB). Figure S4: Hypnograms produced by the PSG gold standard (red), the Mi band (MB, blue), and
the Sleep Cycle application (SC, green) for the same night. Table S1: Spearman correlation results between the
PSG gold standard and Mi Band, MotionWatch, and the Sleep Cycle application for the key sleep parameters.
Table S2: Epoch-wise agreement (sleep/wake) while discarding epochs scored as REM by the PSG gold standard.
Table S3: Epoch-wise agreement comparison between 3-stage scoring (wake/light sleep/deep sleep) and 2-stage
scoring (sleep/wake). Table S4: A comparison of sleep architecture between laboratory and home PSG. Table S5:
A comparison between sleep parameters as measured by the PSG gold standard and the 3 sleep trackers: Mi band,
MotionWatch, and Sleep Cycle. Table S6: The amount of time slept by each participant before and after removing
the time spent in REM “dreaming” sleep. Table S7: A table showing the agreement between the sleep scoring
of a manual scorer and the scoring of the sleep trackers in classifying 30-s epochs into 3 categories (wake/light
sleep/deep sleep). Table S8: The agreement between the sleep scoring done by a manual scorer and the sleep
trackers when classifying 30-s epochs into two categories (sleep/wake).
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