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Abstract: Many kinds of weapon systems and launching equipment on the deck of large ships are
easily affected by deck deformation. In order to ensure the accuracy of weapon systems and the safety
of taking off and landing of carrier aircraft, a dynamic estimation method combining the main inertial
navigation systems (INS) and the sub-inertial navigation systems (SINS) is designed to estimate
the curvature and torsion of any trajectory on the deck. Our contributions start from the fact that
the area of concern extends from the fixed points to any trajectory on the deck. The dynamic filter
algorithm of wavelet combined with Kalman filter is used to process the acquired data. The wavelet
method is used to remove the outliers in the acquired data, and the Kalman filter effectively reduces
the influence of white noise, so that the estimation accuracy is guaranteed. The simulation results
clearly show that the deck deformation of large ships can be obtained accurately in real-time over the
observed area which proved that this dynamic inertial measurement method is feasible in practical
engineering application.

Keywords: gyro sensor; deck deformation; dynamic inertial estimation; Kalman filter; wavelet

1. Introduction

Many sensors and weapon systems are installed on the deck of large ships, such as aircraft carriers
and long-range survey ships. To ensure the proper work of these devices, they must be provided
with accurate attitude [1]. These weapon systems will not work accurately when the ship’s deck is
deformed [2,3]. Then the dynamic estimation of deck deformation of ships is carried out. The major
problem to be solved is to estimate the real-time deformation of the deck, so the deck can be repaired
or reinforced in time.

Among various measurement methods, such as optical, photogrammetric, and polarization
methods, the most common method for estimating the deformation of a ship’s deck was the inertial
measurement matching method [4,5]. This method began in the 1980s, and the United States, Great
Britain, Germany, France, and other countries began to apply it to ship-borne attitude and heading
datum successively. The Electrical Instrument Hall and the Electrical University in St. Petersburg,
Russia have also carried out research in this area [6–8]. Its measurement principle is to install an Inertial
Measurement Unit (IMU) [9] near the center of the ship’s deck as a reference point, and distribute the
other one or more IMUs on the deck reasonably, then the output values of each IMU for determining
the deck deformation are compared at that point [10,11]. Its advantages are high accuracy, simple
structure, and easy operation, but the area coverage is small, comprising of only a few points.
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Under the premise of ensuring the above advantages of the inertial measurement matching
method, this paper proposes a dynamic inertial measurement method, which can extend the past
single point measurement to the measurement of the entire observing trajectory.

2. Principle of Dynamic Inertial Measurement Method

The main inertial navigation system (INS) is installed in the center position of the deck of the
ship as a benchmark, from which the position, velocity, acceleration, and angular motion are observed.
Then a sub-inertial navigation system (SINS) slides on the deck to measure the deck angle motion
generated by wave, constraint, and ship motion of the estimation trajectory several times. It means
that the difference of angular motion between the SINS and the INS is the true angular deformation
of the deck. At the same time, the real-time deformation position can be obtained from the SINS.
This paper takes Russia’s “Kuznetsov” aircraft carrier as an example. Its landing deck is at ε = 7◦ to
the ship’s central axis and is deflected to the port side [12]. The dotted line in Figure 1 is the estimation
trajectory op.

Figure 1. Principle diagram of dynamic inertial measurement method.

The dynamic filtering algorithm of wavelet combined with Kalman filter is used on the two systems
respectively, which can realize the noise reduction while removing the outliers [13]. The difference
between the INS and the SINS angular motion filtering results is the angular motion of deck deformation.
The curvature and torsion of deck deformation can be calculated according to differential geometry
by using the angular motion results of deck deformation and the velocity of the SINS. And then the
deformation is compared with the original design value to observe whether it exceeds the specified
range. If the deformation of any part beyond the acceptable threshold is measured, the part will be
located and repaired accordingly.

3. Estimation Models

3.1. Ship Benchmark Model

The INS selects the local horizontal coordinate system (also known as the geographic coordinate
system) as the reference coordinate system (L system). In the local horizontal coordinate system,
the three coordinate axes point to the east along the local latitude line (e-axis), the true north along
the local meridian (n-axis), and the zenith along the normal of the local reference ellipsoid (u-axis)
respectively. The dynamic model of the INS is as follows.

State equation of ship’s position is[ .
φ

.
λ

.
h

]T
= D

[
ve vn vu

]T
, (1)
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where ϕ, λ, and h are latitude, longitude, and altitude respectively. And D is given as below

D =


0 1

M+h 0
1

(N+h)cosφ 0 0

0 0 1

, (2)

where M is the radius of curvature of the earth meridian circle, and N is the radius of curvature of the
prime vertical.

M ≈ Re(1− 2ε+ 3εsin2φ),
N ≈ Re(1 + εsin2φ).

(3)

Earth radius Re = 6, 378, 137 and flat rate ε = 1/298.257 are known in Equation (3).
State equation of ship’s velocity [3] is

.
ve
.
vn
.
vu

 =


fe
fn
fu

− (
2ΩL

iE + ΩL
EL

)
ve

vn

vu

+ gL, (4)

where i represents the inertial coordinate system and E represents the ground-solid coordinate system.
ΩL

iE and ΩL
EL are the anti-symmetric matrices of the angular velocity vectors ωL

iE and ωL
EL respectively,

and gL is the gravity vector. Earth rotation angular velocity ωie = 7.291158 × 10−5rad/s is known.
The angular velocity vectors ωL

iE and ωL
EL are shown as below.

ωL
iE =


0

ωiecosφ
ωiesinφ

 ωL
EL =


−

.
φ

.
λcosφ
.
λsinφ

 . (5)

Therefore, the anti-symmetric matrices ΩL
iE and ΩL

EL become

ΩL
iE =


0 −ωiesinφ ωiecosφ

ωiesinφ 0 0
−ωiecosφ 0 0

 ΩL
EL =


0 −

.
λsinφ

.
λcosφ

.
λsinφ 0

.
φ

−

.
λcosφ −

.
φ 0

 . (6)

In the local horizontal coordinate system, the normal gravity vector has only the u-axis
component, so

gL =
[

0 0 −γh
]T

, (7)

where
γh = 9.8

(
1 + 5.271× 10−3sin2φ+ 2.327× 10−5sin4φ

)
− 3.086× 10−6h

(
m/s2

)
. (8)

State equation of ship’s attitude angle is[ .
r

.
p

.
a

]T
=

[
ωr ωp ωa

]T
, (9)

where r, p, and a are the roll angle, the pitch angle and the azimuth angle respectively, and the angular
velocities corresponding to them are ωr, ωp, and ωa.

State equation of ship’s attitude angular velocity is
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Therefore, the state vector of the INS is chosen as

XL =
[
φ λ h ve vn vu r p a ωr ωp ωa

]T
. (11)

And the state equation of the INS in the local horizontal coordinate system is

.
XL(t) = FL(t)XL(t) + WL(t), (12)

where FL is a 12 × 12 dimensional state transition matrix, the 12-dimensional state noise vector is

WL =
[

0 0 0 0 0 −γh 0 0 0 0 ωiecos
.
φ ωiesin

.
φ

]T
. (13)

The position and attitude angular velocity of the INS are taken as observation information, and the
observation vector of the INS is

ZL(t) =
[
ϕ λ h ωr ωp ωa

]T
(14)

so the observation equation of the INS is

ZL(t) = HL(t)XL(t) + VL(t), (15)

where the observation matrix consists of a 3 × 3 dimensional unit matrix I3×3 and 3 × 9 dimensional
zero matrix 03×9.

HL =

[
I3×3 03×9

03×9 I3×3

]
. (16)

The observation noise vector is a 6-dimensional zero-mean white noise vector [14], which is E[VL(t)] = 0
E
[
VL(t)VT

L (τ)
]
= R(t)δ(t− τ)

, (17)

So the continuous space state model of the INS is established. Next is the establishment of the
SINS model.

3.2. Sliding Estimation Model

As shown in Figure 1, the SINS slides uniformly on the estimation trajectory. Its kinematic model
in the local horizontal coordinate system is as follows.

The position state equation of the SINS on the estimation trajectory is given as

.
s =

[ .
sx

.
sy

.
sz

]T
=

[
vx vy vz

]T
. (18)

The velocity state equation of the SINS on the estimation trajectory is defined as

.
v =

[ .
vx

.
vy

.
vz

]T
= 0. (19)

The deflection angle of the deck caused by the motion of the ship, wave, and constraint in the ocean
is at least a second-order model, and the angular motion of the estimation system is approximated as a
second-order Markov stochastic process [15]. It should be emphasized that this is just one model from
among many which could be adopted. The parameters chosen is complex enough to represent the true
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situation with a fair level of fidelity, yet simple enough to illustrate the development of the Kalman
filter. So the angular velocity state equation of the SINS on the estimation trajectory is defined as [16]

.
ω =


.
ωx
.
ωy
.
ωz

 =

−β2

1 0 0
0 −β2

2 0
0 0 −β2

3



λx

λy

λz

+

−2β1 0 0

0 −2β2 0
0 0 −2β3



ωx

ωy

ωz

, (20)

where β1, β2, and β3 are the inverse correlation times of the corresponding stochastic processes, and λx,
λy, and λz are three-axis attitude angles of the SINS. The attitude angles are obtained by the attitude
matrix RS. The coordinate transformation matrix of the SINS carrier coordinate system to the local
horizontal coordinate system is given as [17]

RS =


cosλzcosλx − sinλzsinλysinλx −sinλzcosλy cosλysinλx + sinλzsinλycosλx

sinλzcosλx + sinλycosλzsinλx cosλzcosλy sinλzsinλx − cosλzsinλycosλx

−cosλysinλx sinλy cosλycosλx


=


R11 R12 R13

R21 R22 R23

R31 R32 R33

.
(21)

The coordinate transformation matrix state equation of the SINS on the estimation trajectory is

.
RS = RSΩ = RS


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

. (22)

And the λx, λy, and λz are obtained by the following equation
λx = arctan

(
−

R31
R33

)
λy = arcsinR32

λz = arctan
(

R12
R22

) . (23)

Therefore, the state vector of the SINS on the estimation trajectory is chosen as

XS =
[

s v ω R
]T

. (24)

And the state space model of the SINS on the estimation trajectory is

.
XS = FSXS + WS, (25)

where FS is a state transition matrix, and the state noise vector is a 12-dimensional zero-mean white
noise vector, which is  E[WS(t)] = 0

E
[
WS(t)WT

S(τ)
]
= Q(t)δ(t− τ)

. (26)

The position and attitude angular velocity of the SINS are taken as observation information,
and the observation vector of the SINS is

ZS(t) =
[

sx sy sz ωx ωy ωz
]T

, (27)

so the observation equation of the SINS is

ZS(t) = HS(t)XS(t) + VS(t), (28)
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where the observation matrix consists of 3 × 3 dimensional unit matrix I3×3 and 3 × 3 dimensional zero
matrix 03×3.

HS =

[
I3×3 03×3 03×3 03×3

03×3 03×3 I3×3 03×3

]
. (29)

The observation noise vector is a 6-dimensional zero-mean white noise vector, which is E[VS(t)] = 0
E
[
VS(t)VT

S (τ)
]
= R(t)δ(t− τ)

. (30)

The above is the SINS sliding estimation model.
Based on the differential geometry knowledge, the curvature and torsion parameters of

the estimation trajectory can be calculated by using the attitude information output from the
above-mentioned mechanical arrangement and modified by filtering [18,19]. The vertical curvature is

κV =
dθy

ds
=

d(λy − p)
ds

=
ωy −ωp

v
=

ωy −ωp√
v2

x + v2
y + v2

z

, (31)

where v is the velocity of the SINS, and the horizontal curvature is

κH =
dθz

ds
=

d(λz − a)
ds

=
ωz −ωa

v
=

ωz −ωa√
v2

x + v2
y + v2

z

(32)

And the torsion is

τ =
dθx

ds
=

d(λx − r)
ds

=
ωx −ωr

v
=

ωx −ωr√
v2

x + v2
y + v2

z

. (33)

Before the curvature and torsion calculation, the filtering algorithm of wavelet combined with
Kalman filter is applied to the INS and SINS models.

4. Dynamic Filtering Algorithm

Wavelet method is popular for being treated as the mathematical microscope for analyzing signals.
The outliers are the mutation jump point in the observation sequence, which belongs to the detail
part of the observed signal. And wavelet is the most appropriate method to deal with it. The outliers,
noise, etc. in the signal are often high-frequency components, which are identified by the wavelet
function and set to zero then rebuild to achieve the purpose of removing them [20,21]. Kalman filter
is a real-time recursive algorithm that reduces the effects of white noise. The dynamic algorithm of
wavelet combined with Kalman filter is summarized into the following two steps.

The first step is to choose the wavelet basis function. Considering the boundary, a 3rd-order
Daubechies wavelet with a filter length of 6 and a support length of 5 is selected as the wavelet basis
function, and shape of the function is similar to the shape of outliers as shown in Figure 2.
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Figure 2. 3rd-order Daubechies wavelet. (a) Wavelet function; (b) Scaling function.

The second step is to filter the observed signal. The standard discrete Kalman filter algorithm is
summarized as follows [22,23]

• Prediction: X̂(k + 1|k) = Φ(k + 1|k)X̂(k|k)

• Correction: X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)
[
Z(k + 1) −H(k + 1)X̂(k + 1|k)

]
• Kalman gain matrix: K(k + 1) = P(k + 1|k)HT(k + 1)

[
H(k + 1)P(k + 1|k)HT(k + 1) + R(k + 1)

]−1

• Prediction error variance matrix: P(k + 1|k) = Φ(k + 1|k)P(k|k)ΦT(k + 1|k) + Q(k)
• Correction error variance matrix: P(k + 1|k + 1) = P(k + 1|k) −K(k + 1)H(k + 1)P(k + 1|k)

If the amount of signal points is less than six, Kalman filter can be applied directly. When the
number of signal points is greater than or equal to six, the signal will be divided into six points for
wavelet decomposition and reconstruction as Equation (34).

Zm(i− 1, k) =
∑
n

h(2k− n)Z(i, n) =
L−1∑
n=0

h(n)Z(i, 2k− n)

Zd(i− 1, k) =
∑
n

g(2k− n)Z(i, n) =
L−1∑
n=0

g(n)Z(i, 2k− n)

Z(i, k) =
∑
n

h(2k− n)Zm(i− 1, k) +
∑
n

g(2k− n)Zd(i− 1, k)

(34)

where L = 6, h is scaling function, g is wavelet function, Zm is smooth approximation and Zd is
detail signal.

The last point of the processing result is reserved and sent to Kalman filter, then the signal point
moves in turn. The above process is repeated until the measurement ends.

5. Deck Deformation Measurement Simulation

5.1. Parameter Setting

The “Kuznetsov” aircraft carrier was chosen as the simulation object. First, the initial latitude
and longitude of the ship were 110◦ and 30◦ respectively. The ship sailed eastward at a velocity of

18 kn. The angular velocity of the ship was assumed to be [ ωr ωp ωa ]
T
= [ 0 0 0 ]

T
. Second,

the SINS chose an inertial navigation system with an accuracy of 10n mile/h, and its equivalent gyro

drift was 0.1◦/h, that is, ω = [ 0.1◦/h 0.1◦/h 0.1◦/h ]
T

. The initial attitude angle was selected as

[ λx λy λz ]
T
= [ 5′ 5′ 20′ ]

T
. It assumed that the inverse correlation times of the corresponding

stochastic processes β1, β2, β3 were 0.15, 0.12, and 0.10 respectively. And the SINS moved uniformly
along the estimation trajectory at a velocity of 5 m/s, the estimation trajectory was 100 m long, the
estimation time was 20 s.
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5.2. Results and Discussion

5.2.1. Simulation Results of the Ship Benchmark Model

The state values, observation values, Kalman filter values, and db3 wavelet combined with Kalman
filter values in the absence of noise of the angular velocity of the INS are shown in Figure 3 below.

Figure 3. Comparison of angular velocity filtering results of the inertial navigation systems (INS).
(a) ωr of the INS; (b) ωp of the INS; (c) ωa of the INS.

Due to the influences of random noise, the angular velocity observation (as shown by the red line
in Figure 3) contains errors. In order to improve the estimation accuracy, the Kalman filter algorithm is
used in the dynamic measurement process (as shown by the blue line in Figure 3) alone. The recursive
estimation is performed, and the results show that the Kalman filter has a substantial noise reduction
effect. In order to pursue higher observation accuracy, the db3 wavelet combined with the Kalman
filter algorithm (as shown by the green line in Figure 3) is used to dynamically process the system.
The comparison in Figure 3 is obvious. The db3 wavelet combined with Kalman filter results is closer
to the simulated true values (as shown by the black line in Figure 3), which is better than using only
the Kalman filter. This combination algorithm is particularly advantageous in removing outliers.

5.2.2. Simulation Results of the Sliding Estimation Model

The true angular velocity values of the SINS without noise (left side of the Figure 4) are compared
with the angular velocity state values, observation values, Kalman filter values, and wavelet combined
Kalman filter values of the SINS with noise (right side of the Figure 4).
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Figure 4. Comparison of angular velocity filtering results of the sub-inertial navigation systems (SINS).
(a) Noiseless ωx of the SINS; (b) Noisy ωx of the SINS; (c) Noiseless ωy of the SINS; (d) Noiseless ωy of
the SINS; (e) Noisy ωz of the SINS; (f) Noiseless ωz of the SINS.

It can be seen from Figure 4 that the wavelet combined with Kalman filter values are closest
to the true values. The filtering effect can also be analyzed from the perspective of the frequency.
The spectrum of the observation of the angular velocity is shown on the left side of the Figure 5.
The spectrum of the angular velocity combined with Kalman filter values is shown on the right side of
the Figure 5.
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Figure 5. Spectrum analysis before and after filtering of the SINS angular velocity. (a) Spectrogram of
observation values of the ωx; (b) Spectrogram of filter values of the ωx; (c) Spectrogram of observation
values of the ωy; (d) Spectrogram of filter values of the ωy; (e) Spectrogram of observation values of the
ωz; (f) Spectrogram of filter values of the ωz.

The simulated true angular velocity of the SINS estimation system is a low frequency signal,
and the interference component such as noise are some high frequency signals. The results before
and after filtering are compared. It can be seen that the high frequency component of the signal is
suppressed, and the low frequency signal is preserved after filtering. The main frequency of the
angular velocity 0.09766 Hz remains unchanged as shown in Figure 5. The high frequency component
in Figure 5f still exists, but does not accumulate in a large amount at a certain frequency, and it can be
inferred that the filtering is effective.

The mean and RMS of the angular velocity before and after filtering are shown in Table 1.
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Table 1. Angular velocity errors of the SINS before and after filtering.

Axial Parameter Original Data Filter Data (Wavelet Combined
with Kalman Filter)

x Mean 0.9180 0.3812
RMS 1.0157 0.4036

y Mean 0.3271 0.1460
RMS 0.5328 0.1487

z Mean 0.3874 0.1974
RMS 0.5833 0.1981

As can be seen from Table 1, the precision after filtering is an order of magnitude higher than
before. Besides the mean value of angular velocity after filtering is close to its true value, which means
that the accuracy of the measurement has also been improved. The data in Table 2 were published
by Sameh Nassar and Naser El-Sheimy [24] using solely wavelet, and the accuracy is also improved.
The difference is that this paper uses the wavelet combined with the Kalman filter algorithm.

Table 2. INS position errors before and after wavelet de-noising of inertial data.

Parameter Original Data Filter Data (Wavelet)

Mean 1.76 0.64
RMS 1.98 0.76

The results show that the dynamic filtering algorithm of db3 wavelet combined with Kalman filter
is more precise than solely the Kalman algorithm or wavelet method.

5.2.3. Curvature and Torsion of the Deck

The curvature and torsion on the estimation trajectory are shown in the Figure 6.

Figure 6. Curvature and torsion of the estimation trajectory: (a) Vertical curvature of the deck;
(b) Horizontal curvature of the deck; (c) Torsion of the deck.
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Since the filtering algorithm of wavelet combined with Kalman filter has poor filtering ability to
the initial values, the initial values of curvature and torsion in Figure 6 fluctuate greatly. The vertical
curvature of Figure 6a gradually decreases with the change of the estimation position, the horizontal
curvature of Figure 6b remains stable. The torsion of Figure 6c also becomes smaller as the estimation
position is closer to the center of the deck, and the negative sign represents left-handed rotation.
It shows that the deformation of the deck edge is obvious, while the deformation of the deck center is
small, which is consistent with the actual situation.

The curvature and torsion parameters obtained in Figure 6 are compared with the original design
values, and the part exceeding the design deformation range is found, and the specific position of the
estimation track is located, as shown in Figure 7.

Figure 7. Sliding position of the estimation trajectory: (a) Original trajectory and deformation trajectory;
(b) Partial enlargement of the xoy plane (Potential danger zone).

The specific location of the SINS is given in Figure 7. It is clearly shown in Figure 7 that the
measurement trajectory is relatively smooth without outliers, which is in line with the actual situation,
indicating that the wavelet combined with Kalman filter algorithm has significant advantages in
improving measurement accuracy. As shown in Figure 6, the first 3 s of torsion and curvature exceed
the threshold, i.e., the first 6 meters are the potential danger zone. A partial enlargement of the xoy
plane is drawn. Accordingly, the potential danger zones on the deck are repaired or reinforced to
ensure that the accuracy of various equipment on the ship is not affected when the ship is sailing.

In summary, the appropriate scenario design yields ideal results. It is suitable to describe the
deflection of the deck with a second-order Markov model, which verifies the effectiveness of the
measurement method. Furthermore, it can be inferred that if the deck deformation is described by a
more accurate model, the simulation results will be more accurate.

6. Conclusions

In this paper, the deflection of the deck is measured by a fixed INS and a sliding SINS, instead of
the previous inertial measurement matching method. Additionally, a second-order Markov model
is used to simulate the op estimation trajectory with a length of 100 m on the landing deck of the
“Kuznetsov”. The results show that the first 6 m are potential danger zone. Additionally, the data
obtained by wavelet combined with Kalman filter algorithm indicate that the noise and outliers can
be removed without changing the main frequency of 0.09766 Hz, and the accuracy is improved by
an order of magnitude. Therefore, three remarkable advantages of the proposed method are high
accuracy, dynamic and widespread measurement range. However, the proposed method requires
extremely high accuracy of the sensors and it is necessary to ensure that the SINS closely fits the deck
during the measurement process.
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In conclusion, this dynamic measurement method is promising in experiment and engineering
practice. In the future, more complicated deck situations should be measured.
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