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Abstract: The detection of flaw echoes in backscattered signals in ultrasonic nondestructive testing
can be challenging due to the existence of backscattering noise and electronic noise. In this article,
an empirical mode decomposition (EMD) methodology is proposed for flaw echo enhancement.
The backscattered signal was first decomposed into several intrinsic mode functions (IMFs) using
EMD or ensemble EMD (EEMD). The sample entropies (SampEn) of all IMFs were used to select the
relevant modes. Otsu’s method was used for interval thresholding of the first relevant mode, and a
window was used to separate the flaw echoes in the relevant modes. The flaw echo was reconstructed
by adding the residue and the separated flaw echoes. The established methodology was successfully
employed for simulated signal and experimental signal processing. For the simulated signals, an
improvement of 9.42 dB in the signal-to-noise ratio (SNR) and an improvement of 0.0099 in the
modified correlation coefficient (MCC) were achieved. For experimental signals obtained from two
cracks at different depths, the flaw echoes were also significantly enhanced.

Keywords: ultrasonic flaw echo enhancement; empirical mode decomposition; sample entropy;
Otsu’s method for thresholding; flaw echo separation

1. Introduction

The ultrasonic technique has been widely used in nondestructive testing. Usually, the
backscattered signal is complex due to the existence of electronic noise and backscattering noise.
Consequently, flaw echo detection may be challenging. Numerous methods have been proposed to
enhance flaw echoes, such as split spectrum processing [1–4], wavelet transforms [5–10], the Stockwell
transform [11–14], and empirical mode decomposition (EMD) [15–22] (including the so-called ensemble
EMD, i.e., EEMD [23]).

Split spectrum processing has significant advantages in processing ultrasonic signals with
scattered noise. Split-spectrum analysis separates the spectrum of the signals to obtain several
sub-bands, and uses some nonlinear de-noising criteria (such as thresholding method, etc.) to process
the signals in each sub-band to achieve the purpose of de-noising. The difficulty of split spectrum
processing is how to determine the filter type, central frequency, bandwidth and other parameters.
In addition, split spectrum processing lacks the capability of multiresolution analysis.

Wavelet transform is a classical multiresolution analysis method. The difficulty of wavelet
transform is how to choose the appropriate wavelet base function and decomposition layer.
The disadvantage of conventional wavelet transform is that the phase information of signals is lost.

S transform is the development of short-time Fourier transform and wavelet transform.
S transform combines the multiresolution analysis ability of wavelet transform and the phase retention
ability of short-time Fourier transform. Meanwhile, the S transform adopts Gaussian window function,
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which satisfies the normalization characteristic, so the S transform is invertible, that is, the original
signal can be obtained from the converted time spectrum. However, due to the fact that the standard
deviation of Gaussian window function in S transform is inversely proportional to the frequency and
lacks flexibility, S transform may output the result of poor time-frequency resolution. At present, to
compensate for the limitations of S transform, researchers introduce additional parameters to control
the window function morphology, so that the generalized S transform has the ability to flexibly adjust
the time-frequency resolution.

For a single component signal, Hilbert transform can be applied to obtain its analytical signal, and
then the envelope spectrum and instantaneous frequency of the signal can be obtained. Detection of
a flaw signal from the envelope spectrum is a common method of ultrasonic nondestructive testing.
For a multi-component signal, it is necessary to decompose them into single component signals,
and then obtain their analytical signals separately. Empirical mode decomposition (EMD) is an
adaptive decomposition method. The original signal is decomposed into a series of intrinsic
mode functions. The main disadvantages of EMD are the possibility of endpoint effect and mode
mixing. Ensemble empirical mode decomposition (EEMD) can solve the mode mixing issue.
EEMD decomposes the original signal by adding Gaussian white noise, and takes the result of
the lumped average as the mode function. The main difficulty of EEMD is to select the intensity of
Gaussian white noise and the times of lumped average.

In this article, an EMD-based methodology for ultrasonic flaw echo enhancement was established.
The proposed methodology enhanced the flaw echo through six steps. First, the backscattered
signal was adaptively decomposed into several intrinsic mode functions (IMFs) by EMD or EEMD.
Second, the sample entropies (SampEn) [24,25] of all IMFs were calculated, and the differences in
consecutive SampEn values were studied. Third, those IMFs with a large SampEn were considered to
be irrelevant modes and were discarded, significantly suppressing the electronic noise. Fourth, the
intervals containing the flaw echo were determined based on IMF interval thresholding and mode
cell merging. Otsu’s method [26] was used to search the threshold in IMF interval thresholding. Fifth,
a Turkey-Hanning window was used to separate the flaw echo for each relevant mode. Finally, the
denoised signal was reconstructed by combining the separated flaw echoes and the residue.

The remainder of this article is organized as follows. In Section 2, reviews of the required
tools, including EMD and EEMD, EMD-based denoising methods, SampEn, and Otsu’s method
for thresholding, are presented. An analysis of the modes extracted from the backscattered signal,
including the mixing of noise and flaw echoes, and the SampEn is given in Section 3. The proposed
EMD-based methodology for ultrasonic flaw echo enhancement is given in Section 4 and tested using
a simulated signal in Section 5. In Section 6, experimental validations of the proposed EEMD-based
methodology are presented. Finally, conclusions are drawn in Section 7.

2. Required Tools

2.1. EMD and EEMD

In EMD, a signal is adaptively decomposed into a collection of IMFs. The EMD results can be
presented as

x(t) =
L

∑
i=1

h(i)(t) + r(t) (1)

where x(t) is the observed signal, h(i)(t)(i ≤ L) are the extracted IMFs, and r(t) is the residue.
Unfortunately, EMD is susceptible to mode-mixing. EEMD is an effective technique for alleviating

mode-mixing in EMD by repeatedly adding Gaussian white noise and finding the mean of the
individual ensemble IMFs as the final IMF.
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2.2. Denoising Strategies Based on EMD

Partial reconstruction, direct thresholding, and interval thresholding are three typical strategies
adopted in EMD-based denoising.

Partial reconstruction removes noise from the observed signal by discarding irrelevant modes,
which can be expressed as

x̂(t) =
L

∑
i=M1

h(i)(t) + r(t) = x(t)−
M1−1

∑
i=1

h(i)(t) (2)

where h(i)(t)(i < M1) are the irrelevant modes.
Direct thresholding is a direct application of wavelet thresholding in the EMD case. For the hard

thresholding case, the denoised IMF is given by

h̃(i)(t) =

 h(i)(t),
∣∣∣h(i)(t)∣∣∣ > Ti

0,
∣∣∣h(i)(t)∣∣∣ ≤ Ti

(3)

where Ti is the threshold of h(i)(t). The denoised signal can be given by

x̃(t) =
M2

∑
i=M1

h̃(i)(t) +
L

∑
i=M2+1

h(i)(t) + r(t) (4)

The interval thresholding divides an IMF into several mode cells and treats each mode cell
as a whole to perform thresholding. Generally, a mode cell is defined as the signal between two
adjacent zero-crossings. For the interval z(i)j = [z(i)j z(i)j+1] defined by two zero-crossings z(i)j and z(i)j+1,
the denoised IMF in the hard thresholding case is given as

h̃(i)(z(i)j ) =

 h(i)(z(i)j ),
∣∣∣h(i)(r(i)j )

∣∣∣ > Ti

0,
∣∣∣h(i)(r(i)j )

∣∣∣ ≤ Ti
(5)

where h(i)(z(i)j ) are all of the samples from z(i)j to z(i)j+1, and h(i)(r(i)j ) is the single extremum of h(i)(t) in

the interval z(i)j .
Interval thresholding generally outperforms direct thresholding as it avoids catastrophic

consequences for the continuity of the reconstructed signal, which are inevitable in direct thresholding.

2.3. Sample Entropy

Approximate entropy [27] and SampEn are two popular metrics for signal complexity
measurement. Entropy values increase with increased signal complexity. It has been reported that
SampEn outperforms approximate entropy in many aspects, such as reduced bias, independence from
the signal, and relative consistency. SampEn was used here for signal complexity assessment.

The SampEn of a specified time series {u(i), i = 1, 2, · · · , N} can be obtained through the
following steps.

Step 1: Form m−dimensional vectors as

Um(i) = [u(i), u(i + 1), . . . , u(i + m− 1)] (6)

where i = 1, 2, . . . , N −m + 1.
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Step 2: Define the distance of two such vectors:

d[Um(i), Um(j)] = max
k=0−(m−1)

|u(i + k)− u(j + k)| (7)

Step 3: Consider the first N −m vectors of length m so that for i = 1, · · · , N −m, both Um(i) and
Um+1(i) can be defined.

Step 4: Given a threshold r > 0, define

Bm
i (r) =

1
N−m−1 ∑ Θ(r− d[Um(i), Um(j)])

Am
i (r) =

1
N−m−1 ∑ Θ(r− d[Um+1(i), Um+1(j)])

(8)

where j = 1, 2, . . . , N −m, j 6= i, and Θ(·) is defined as

Θ(x) =

{
1, x ≥ 0
0, x < 0

(9)

Step 5: Calculate Bm(r) and Am(r):

Bm(r) = 1
N−m

N−m
∑

i=1
Bm

i (r)

Am(r) = 1
N−m

N−m
∑

i=1
Am

i (r)
(10)

Step 6: For a limited series, the SampEn (denoted by s) is estimated as

s = SampEn(m, r) = − ln
Am(r)
Bm(r)

(11)

In general, the dimension and threshold are often set to m = 2 and r = (0.1 ∼ 0.25)SDu, where
SDu is the standard deviation of the time series {u(i)}.

2.4. Otsu’s Method for Thresholding

Otsu’s method determines a threshold by maximizing the between-class variance σ2
B. For a

histogram with H levels (i.e., bins), the probability at each level can be first obtained:

pi =
ni
N

, i = 1, 2, · · · , H (12)

where ni is the number of elements in the ith level, and N is the number of elements in the histogram.
Obviously, pi ≥ 0 and ∑ pi = 1 are satisfied.

The histogram can be divided into two classes, C1 and C2, with a threshold. σ2
B is defined as

σ2
B = ω1(µ1 − µ0)

2 + ω2(µ2 − µ0)
2 (13)

where
ω1 = ∑

C1

pi, ω2 = ∑
C2

pi, ω1 + ω2 = 1 (14)

µ0, µ1, µ2 are the means of the histogram, class C1 and class C2, respectively. Therefore,
Equation (15) can be obtained:

µ0 = ω1µ1 + ω2µ2 (15)

According to Equations (13)–(15), σ2
B can also be expressed as

σ2
B = ω1ω2(µ1 − µ2)

2 (16)
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3. Analysis of Modes from Ultrasonic Signals

3.1. The Clutter Model

For metallic materials, when an incident ultrasonic wave propagates into the specimen, the
backscattered signal will be primarily composed of three components: (1) the flaw echo signal s(t), (2)
backscattering noise v(t) due to the grains, and (3) electronic noise n(t) due to the instruments and the
environment. n(t) can be approximated as Gaussian white noise. The frequency spectra of s(t) and
v(t) can be expressed as [2]

V(ω) = Ht
2(ω)

K

∑
k=1

βk
ω2

xk
e−αs2xkω4

e−iω
2xk
c0 (17)

S(ω) = Ht
2(ω) exp(−αs2dflawω) exp(−i

2dflaw
c0

) (18)

where Ht(ω) is the frequency response of the ultrasonic transducer, and dflaw is the location of the
flaw. αs is the material attenuation coefficient, c0 is the velocity of the longitudinal waves, and K is the
total number of scatterers. βk and xk are the scattering coefficient and the position of the kth scatterer,
respectively. The amplitudes of s(t) and v(t) are often normalized for brevity.

The similarity function obtained by deconvolution can be used to distinguish the flaw signals in
ultrasonic inspection from other no flaw signals, such as specimen geometric reflection. It was found
that the deconvolution patterns of the geometric reflection were impulse-like patterns, whereas those
of flaws were bipolar patterns [28]. Therefore, geometric reflection was not considered in the model.

The observed backscattered signal x(t) can be expressed as

x(t) = s(t) + µv(t) + σnn0(t) (19)

where n0(t) is standard Gaussian white noise. µ and σn are scale factors.
Typical simulated results are depicted in Figure 1. The centre frequency of the ultrasonic

transducer was 5 MHz, and the sampling frequency was 100 MHz. The scale factors were set to
µ = 0.3 and σn = 0.2. It can be seen in Figure 1a that the flaw echo had been polluted by intense noise.
In addition, frequency aliasing of the flaw echo, backscattering noise, and wide-band Gaussian white
noise can be found in Figure 1b.
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example. 

Figure 1. Simulated results. (a) Waveforms and (b) frequency spectra.

3.2. Signal Decomposition

The EMD results for the observed signal x(t) are shown in Figure 2.
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As shown in Figure 2, intense white noise was found in the low-order IMFs; in particular, IMF 1
resembled pure noise. The flaw echo was clearly detected in IMF 3. Consequently, the flaw echo was
significantly enhanced by discarding IMF 1 and IMF 2 from the observed signal. However, partial
reconstruction is often inadequate; further processing is required. Here, we take IMF 3 as an example.

The flaw echo is an instant signal. Ideally, oscillations can only be detected in the interval in which
the flaw echo is located in IMF 3, in contrast to Figure 2. The difference mainly arises from frequency
aliasing of the flaw echo, backscattering noise and wide-band Gaussian white noise. In addition, even
in the noiseless case, the IMFs still contain false oscillations, as they resemble AM-FM modulated
sinusoids. Consequently, further denoising is required to suppress the mixed noise lying outside the
interval in which the flaw echo is located.

3.3. SampEn Values of IMFs

The SampEn values of all of the IMFs were calculated and are listed in Table 1, where the threshold
r in the SampEn calculations was set to (0.1, 0.15, 0.2)SDu.

Table 1. SampEn of the IMFs.

r/SDu 0.1 0.15 0.2

s1 2.0121 1.7943 1.535
s2 1.8823 1.4872 1.213
s3 0.7224 0.6242 0.5682
s4 0.646 0.5984 0.5616
s5 0.5501 0.4921 0.4472
s6 0.4717 0.3589 0.2708
s7 0.1095 0.0821 0.065
s8 0.0526 0.036 0.0276

It can be noted that the SampEn tends to decrease with increasing IMF order, which indicates that
the noise intensity in each IMF decreases as IMF order increases. It is noteworthy that the SampEn
values of the first two IMFs, i.e., s1 and s2, were much higher than the others. In addition, a sharp drop
between s2 and s3 was detected.

4. Proposed Methodology

According to Section 3.2, flaw echo enhancement can be achieved by discarding irrelevant modes
and suppressing the mixed noise in the remaining relevant modes. Specifically, the relevant modes
are determined by the SampEn of all IMFs or their differences, and the mixed noise is suppressed by
separating the flaw echo from those relevant modes by windowing.
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4.1. Relevant Mode Selection

The IMFs with intense noise were of much higher complexity than other IMFs. Consequently,
those relevant modes were determined according to the SampEn of the IMFs. Specifically, the parameter
M1, which determined the first relevant mode, was determined by si or the difference of si.

Given a predefined SampEn threshold Ts, M1 can be determined as

M1 = (maxi) + 1, s.t. si > Ts (20)

Using the difference of si, i.e., dsi, M1 can also be determined:

M1 = argmin
i
{dsi} = argmin

i
{si − si−1} (21)

To determine Ts, we should note that the SampEn is dependent on the threshold r. For example,
Table 1 shows that s1 and s2 decreased rapidly with increasing r. Consequently, the selection of Ts was
dependent on r. For this article, r = 0.15SDu and Ts = 1 were selected.

4.2. Mixed Noise Suppression

Two steps are required to suppress mixed noise: determine the location of the flaw echo in the
first relevant mode and separate the flaw echo from all of the relevant modes.

For the first relevant mode, i.e., h(M1)(t), a collection of mode cells is built according to the
zero-crossings. The set of absolute values of the extrema in h(M1)(t), which is denoted

∣∣∣r(i)j

∣∣∣ =

[
∣∣∣r(i)1

∣∣∣, ∣∣∣r(i)2

∣∣∣, · · · ], can be determined. Otsu’s method is used for searching the threshold of
∣∣∣r(i)j

∣∣∣, i.e.,
Ti. It is performed on the first relevant mode, and all of the mode cells in which the flaw echoes are
located can be detected.

All of the adjacent mode cells in which the flaw echo is located are further merged, yielding an
interval in which the flaw echo is located. For example, three adjacent mode cells, z(i)j = [z(i)j z(i)j+1],

z(i)j+1 = [z(i)j+1z(i)j+2] and z(i)j+2 = [z(i)j+2z(i)j+3], can be merged into one interval [z(i)j z(i)j+3]. In other words,
the interval in which the flaw echo is located is often composed of several mode cells containing the
flaw echo.

Thus far, the location of the flaw echo in the first relevant mode has been detected. Next, the flaw
echoes in all relevant modes will be separated.

A window was determined and used for separating the flaw echoes in the relevant modes. Herein,
the Turkey-Hanning window was used. The window was defined as

ω(m) =


(1−cos 2π m

M+1 )
2 , 1 ≤ m ≤ M

2
1, M

2 < m ≤ M
2 + W

1−cos 2πm−W
M+1

2 , M
2 + W < m ≤ M + W

(22)

where W determined the width of the pass zone and M determined the width of the transition zone.
As an example, Figure 3 shows the waveform of a Turkey-Hanning window.Sensors 2019, 19, x FOR PEER REVIEW  8 of 13 
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Figure 3. Waveform of a Turkey-Hanning window.
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The parameters W and M were determined according to the width of the interval in which the flaw
echo was located. To preserve the flaw echo, W was set to the width of this interval. M was selected
more flexibly. In this article, M = [W/4] was adopted, where the operator “[]” indicated rounding.

4.3. Summarization of the Proposed Methodology

In this methodology, the flaw echo was enhanced in six steps.
Step 1. Signal decomposition. Decompose the observed signal x(t) into a collection of the residue

r(t) and the IMFs’ h(i)(t)(i = 1, 2, · · · , L) using EMD or EEMD.
Step 2. SampEn calculation. Obtain the SampEn of all of the IMFs.
Step 3. Relevant mode selection. Determine the first relevant mode using the SampEn or the

differences between them.
Step 4. Determine the interval in which the flaw echo is located in the first relevant mode. Otsu’s

method is used for threshold selection. Any two adjacent mode cells in which the flaw echo is located
are merged into one interval.

Step 5. Separate the flaw echo using the Turkey-Hanning window in each relevant mode, which
yields a collection of denoised modes h̃(i)(t) (M1 ≤ i ≤ L).

Step 6. Reconstruct the denoised signal:

x̃(t) =
L

∑
i=M1

h̃(i)(t) + r(t) (23)

5. Simulated Signal Processing

5.1. Performance Assessment

To assess the performance of the EMD-based methodology, two metrics are introduced.
The signal-to-noise ratio (SNR) is the first metric. Suppose that s(t) is a noiseless signal; the SNR

of signal x(t) is then defined as

SNR = 10lg

N
∑

i=1
s2(i)

N
∑

i=1
(x(i)− s(i))2

(24)

Well-preserved flaw echoes are expected in practice. Specifically, the amplitudes and shapes of
flaw echoes are expected to be unchanged. This can be assessed by the modified correlation coefficient
(MCC), which is defined as

MCC =

∣∣∣∣Ax − As

As

∣∣∣∣(1−
n
∑

i=m
(s(i)− s)(x(i)− x)√

n
∑

i=m
(s(i)− s)2 n

∑
i=m

(x(i)− x)2
) (25)

where m and n are instants defining the interval in which the flaw echo is located. Ax and As are the
amplitudes of the flaw echoes in x(t) and s(t), respectively.

A high SNR and low MCC are expected.

5.2. Signal Processing Results

The relevant modes were first determined. On one hand, with the predefined parameters
r = 0.15SDu and Ts = 1, it can be seen in Table 1 that s1, s2 > Ts and s3 < Ts and were satisfied.
Consequently, M1 = 3 was determined according to Equation (20). On the other hand, it could be
inferred from Table 1 that ds3 = s3 − s2 < dsk(k 6= 3) was satisfied, which also indicates M1 = 3
according to Equation (21). Thus, these two methods yielded the same relevant mode selection results.
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Consequently, the electronic noise could be significantly suppressed if we reconstructed the flaw echo
via partial reconstruction by discarding h(1)(t) and h(2)(t). The corresponding reconstructed signal,
x̂(t), is depicted in Figure 4a.
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Figure 4. Processing results of the simulated signal. (a) The reconstructed signal given by partial
reconstruction; (b) the detection interval in which the flaw echo was located; (c) the denoised signal.

h(3)(t) was used to determine the interval in which the flaw echo was located. The corresponding
result is depicted in Figure 4b, for which the threshold given by Otsu’s method was 0.2902. The flaw
echoes in all relevant modes h(i)(t) (3 ≤ i ≤ 8) were separated by the Turkey-Hanning window, and
the denoised signal was reconstructed. The denoised signal is depicted in Figure 4c, which indicated
that the electronic noise and backscattering noise were significantly suppressed, and the flaw echo
were preserved well.

The performance of the EMD-based methodology was assessed using the SNR and the MCC.
The results are provided in Table 2, which shows that the methodology achieved a high SNR and low
MCC as expected. The improvements in SNR and MCC were 12.89 dB and 0.0099, respectively.

Table 2. Performance assessment.

SNR/dB MCC/ × 10−2

observed −3.47 1.05

partial reconstruction denoised 1.81
9.42

0.06
0.06

6. Experimental Study

The ultrasonic testing system was primarily composed of an ADVANTECH industrial personal
computer (IPC), an Olympus ultrasonic probe with a centre frequency of 5 MHz, and a PCIUT3100
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ultrasonic acquisition card installed on the IPC. A 6061 aluminium alloy specimen with two artificial
cracks was used for ultrasonic testing. The specimen material density was 2.7 × 103 kg/m3 and the
sound wave velocity was 6300 m/s. The two cracks, denoted F1 and F2, were machined using wire
electrical discharge machining. The buried depths of F1 and F2 were 60 mm and 35 mm, respectively,
and the sampling frequency was 100 MHz. The ultrasonic testing system and the specimen are shown
in Figure 5.
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(c) Geometry of the specimen. (d) Schematic diagram of flaws location and size, with dimensions
in millimeters.

The ultrasonic signals acquired from cracks F1 and F2 are shown in Figure 6. The backscattered
signals from instant 1001 to instant 3000 were used for further analysis.Sensors 2019, 19, x FOR PEER REVIEW  11 of 13 
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The processing results of the backscattered signal from crack F1 are shown in Figure 7.
The backscattered signal was first decomposed into a collection of IMFs, as shown in Figure 7a.
For brevity, only the first five IMFs are shown. Correspondingly, the SampEn values of the first five
IMFs were calculated and are listed in Table 3. As the first relevant mode, the third IMF was used to
determine the interval in which the flaw echo was located based on Otsu’s method for thresholding
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and merging of adjacent mode cells, as shown in Figure 7b. The denoised signal is shown in Figure 7c,
indicating that both the backscattering noise and the electronic noise were significantly suppressed.

Sensors 2019, 19, x FOR PEER REVIEW  11 of 13 

 

 
(a) 

 
(b) 

Figure 6. The ultrasonic signals. (a) Acquired from F1; (b) acquired from F2. 

Table 3. SampEn of the first five IMFs. 

s1 s2 s3 s4 s5 

1.4902 1.1739 0.5684 0.5508 0.4764 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Processing results of the backscattered signal from F1. (a) The IMFs extracted; (b) the interval 
in which the flaw echo was located; (c) the denoised signal. 

As supplementary information, Figure 8 shows the denoised signal of the backscattered signal 
from F2, with a significant reduction of the noise. 

Figure 7. Processing results of the backscattered signal from F1. (a) The IMFs extracted; (b) the interval
in which the flaw echo was located; (c) the denoised signal.

Table 3. SampEn of the first five IMFs.

s1 s2 s3 s4 s5

1.4902 1.1739 0.5684 0.5508 0.4764

As supplementary information, Figure 8 shows the denoised signal of the backscattered signal
from F2, with a significant reduction of the noise.
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7. Conclusions

An EMD-based methodology was proposed for ultrasonic flaw echo enhancement. The observed
signal was decomposed into IMFs by EMD or EEMD. The relevant modes were determined according
to the SampEn of the IMFs. Otsu’s method was used for interval thresholding of the first relevant mode,
obtaining the interval in which the flaw echo was located. The flaw echoes in all IMFs were separated
by the Turkey-Hanning window. The separated flaw echo and the residue were added together,
yielding the denoised signal. Simulation results demonstrated that the EMD-based methodology
achieved a high SNR and low MCC. Applications of the EMD-based methodology in flaw echo
enhancement in experimental signals was also presented.
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