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Abstract: One control challenge in prosthetic legs is seamless transition from one gait mode to
another. User intent recognition (UIR) is a high-level controller that tells a low-level controller to
switch to the identified activity mode, depending on the user’s intent and environment. We propose
a new framework to design an optimal UIR system with simultaneous maximum performance
and minimum complexity for gait mode recognition. We use multi-objective optimization (MOO)
to find an optimal feature subset that creates a trade-off between these two conflicting objectives.
The main contribution of this paper is two-fold: (1) a new gradient-based multi-objective feature
selection (GMOFS) method for optimal UIR design; and (2) the application of advanced evolutionary
MOO methods for UIR. GMOFS is an embedded method that simultaneously performs feature
selection and classification by incorporating an elastic net in multilayer perceptron neural network
training. Experimental data are collected from six subjects, including three able-bodied subjects
and three transfemoral amputees. We implement GMOFS and four variants of multi-objective
biogeography-based optimization (MOBBO) for optimal feature subset selection, and we compare
their performances using normalized hypervolume and relative coverage. GMOFS demonstrates
competitive performance compared to the four MOBBO methods. We achieve a mean classification
accuracy of 97.14%± 1.51% and 98.45%± 1.22% with the optimal selected subset for able-bodied and
amputee subjects, respectively, while using only 23% of the available features. Results thus indicate
the potential of advanced optimization methods to simultaneously achieve accurate, reliable, and
compact UIR for locomotion mode detection of lower-limb amputees with prostheses.

Keywords: user intent recognition; transfemoral prosthesis; multi-objective optimization;
biogeography-based optimization

1. Introduction

Prosthetic legs have significantly enhanced the lifestyle of individuals with a transfemoral
amputation. Prostheses help lower-limb amputees regain their walking mobility for activities such as
level walking, stair ascent and descent, incline walking, sitting and standing, etc. One active research
area is the development of a functional control system for each walking task [1–3]. The main design
objective is to enable amputees to achieve walking that is similar to that of able-bodied persons, while
minimizing metabolic energy expenditure. Challenges include recognizing gait modes automatically,
selecting the appropriate control system corresponding to the identified gait mode, and achieving a
smooth transition in real time. Activity mode recognition must be achieved in parallel with control
system development to address these problems. Activity mode recognition is referred to as high-level
control, while control system design for each walking activity is referred to as low-level control [4].
The focus of this paper is the development of a high-level control system.
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In the design of an intent recognition system, several questions arise, including which input
signals and machine learning algorithms will provide a UIR system with fast and reliable prediction
performance. Previous research has addressed these questions in different ways. For instance, surface
electromyography (sEMG) signals were used to train UIR [5,6]. Although sEMG resulted in high
classification accuracy, Ref. [7] reported uncertain performance due to sEMG signal variability in
real-world conditions. Variation could be because of electrode shift [8], skin temperature change [9], or
muscle volume change [10]. Therefore, external sensors on the prosthesis have received significant
attention. For instance, classifiers have been trained with data collected from mechanical sensors [11],
optical distance sensors [12], and inertial measurement units [7]. In addition, Refs. [13,14] showed that
the fusion of sensory measurements could enhance learning, although the amputee subject could be
inconvenienced by wearing additional sensors. Various supervised machine learning algorithms have
been implemented to build UIR systems, including linear discriminant analysis (LDA) [15], quadratic
discriminant analysis (QDA) [16], Gaussian mixture models (GMMs) [11], support vector machines
(SVMs) [14], and artificial neural networks (ANNs) [5]. To avoid the need for user-specific classifier
training, Ref. [17] proposed a user-independent UIR system in which classifier performance is robust
to user-specific characteristics.

Current UIR systems have been designed with one goal in mind: highest possible prediction
accuracy. In clinical applications, it is extremely important that UIR can accurately predict activity
modes with substantially different characteristics because misclassification can cause a loss of
balance [7,18]. However, there remains a gap in the design of UIR with low complexity. UIR has low
complexity if it can be implemented with only significant features extracted from minimal sensing
hardware. UIR with low complexity is important because such systems: (1) eliminate unneeded
body-worn sensors that may be irritating and cumbersome; (2) avoid numerical instability and
overfitting during training; (3) are robust to noisy measurement signals and sensor failures; and
(4) decrease computational effort, which is important for real-time operation. These reasons have
motivated previous research to apply feature selection to design UIR with low complexity [7,19].
They used sequential forward selection to obtain a subset with only the most informative features. In
contrast, in this paper, we develop a new framework for UIR that simultaneously achieves maximum
accuracy and minimum complexity. Complexity and accuracy are two conflicting objectives. To the
best of our knowledge, this paper is the first attempt to find a compromise solution for this problem
using multi-objective optimization.

The main contributions of this paper are two-fold: (1) a new MOO method called GMOFS for
optimal feature subset selection; and (2) the application of four evolutionary MOBBO methods for the
UIR problem, including vector evaluated BBO (VEBBO), non-dominated sorting BBO (NSBBO), niched
Pareto BBO (NPBBO), and strength Pareto BBO (SPBBO). We have chosen to use BBO in this paper
as the evolutionary algorithm (EA) because of its demonstrated effectiveness and recent popularity
for optimizing real-world problems [20,21]. MOBBO methods have the potential to find the global
optimum [22,23]; however, they are computationally expensive due to the many required fitness
function evaluations. To avoid this drawback, we propose GMOFS for feature selection.

Several different types of feature selection methods have been proposed. Filter methods are
feature selection methods that assess the quality of a subset of features independently or with respect
to the output class [24]. Wrapper methods are feature selection methods that assess the quality of
a subset of features by measuring the prediction accuracy of a classifier that is trained with that
subset [25]. Embedded methods are feature selection methods that overcome the disadvantages of filter
and wrapper methods. Unlike filter methods, embedded methods account for the bias of the classifier,
and, unlike wrapper methods, they are computationally efficient [26,27]. Various embedded feature
selection algorithms have been proposed, mostly for linear problems with a single objective [27,28].
Embedded methods also incorporate regularization algorithms, such as ridge regression [29], least
absolute shrinkage and selection [30], and elastic nets [31].
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GMOFS is our newly proposed embedded method that simultaneously performs feature selection
and classification, and that accounts for multiple objectives in nonlinear systems such as UIR. GMOFS
incorporates an elastic net in multilayer perceptron (MLP) neural network training. The elastic net uses
a Lagrange multiplier with a complexity parameter to reduce the feature set to an optimal subset, and
the MLP classifier is trained with the optimal subset. We investigate the influence of the complexity
parameter on the solution of the constrained MLP optimization problem. We then use the optimization
solutions to obtain a GMOFS Pareto front, which is a set of non-dominated solutions that are equally
important apart from the designer’s subjective preference of objectives.

Section 2 presents a general framework for UIR. In Section 2.1, an informative set of signals
reflecting various walking tasks are collected experimentally from three able-bodied and three amputee
subjects. In addition, the data are filtered and processed to eliminate noise and missing data points.
In Section 2.2, we use both disjoint windowing and overlapped windowing to extract data frames.
The length of the data frame and the increment of the moving window are chosen to compromise
the informativeness of the data and the computational effort, while taking real-time computational
constraints into account. In Section 2.3, various time-domain (TD) and frequency-domain (FD) features
are extracted from each data frame for each measurement signal. A training data set is obtained in
which all features are normalized to have a zero mean and unity variance. In Section 2.4, we use a
pre-selection approach to exclude insignificant features, and then apply MOO for final feature selection.
We implement GMOFS and four variants of MOBBO to minimize the size of the selected feature subset
and maximize the prediction accuracy. In Section 2.5, the performance of several classifiers, including
LDA, QDA, SVMs with both linear and radial basis function (RBF) kernels, MLPs, and decision trees
(DTs), are compared, and the best one is selected for UIR. In Section 2.6, majority voting filter (MVF)
is implemented to avoid sudden jumps between identified classes and enhance UIR performance.
Section 4 discusses the experimental setup and classification results for the optimally designed UIR
system. Finally, Section 5 discusses conclusions and future work.

2. Materials and Methods

In this section, we present the methodology used to design the user intent recognition (UIR)
system. The architecture of the UIR system is illustrated in Figure 1. Our new contribution is
a novel feature selection method based on multi-objective optimization (MOO), as illustrated in
Figure 1 in the double-lined box (Section 2.4). In this box, the application of four multi-objective
biogeography-based optimization (MOBBO) methods for gait mode classification is new, and a novel
MOO-based feature selection method called gradient-based multi-objective feature selection (GMOFS)
is new. The remaining parts of the UIR system are implemented based on the existing literature.
The role of each subsystem is explained in more detail in the following subsections.

Data Collection & 

Experimental Protocol

(Section 2.1)

Data 

Windowing

(Section 2.2)

Feature 

Extraction

(Section 2.3)
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Selection

(Sections 2.4 & 3)
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Filter
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Figure 1. Architecture of user intent recognition system. The double-lined box indicates that an
evolutionary algorithm is used for optimization.
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2.1. Data Collection and Experimental Protocol

Data collection can significantly affect the accuracy of UIR. Input signals must be informative
enough to accurately discriminate between various human gait modes. In this paper, we collect vertical
hip position and thigh angle to indicate the state of the residual limb, and thigh moment to indicate
the user–prosthesis interaction. These signals are like an implicit communication link between the user
and the prosthesis and can be used to infer user intent.

To design and evaluate the performance of the UIR system, we collect these signals from three
able-bodied subjects (AB01, AB02, and AB03) and three transfemoral amputee subjects (AM01, AM02,
and AM03). All the experiments were approved by the Department of Veterans Affairs Institutional
Review Board. The above-knee amputees wore an Ottobock prosthesis on the right leg. Data were
collected for able-bodied subjects during four different activity modes: (1) standing (ST), (2) normal
walking (NW) at user-preferred speed (PS), (3) slow walking (SW), and (4) fast walking (FW). We
asked subjects to walk slower and faster than their normal walking speed for SW and FW modes,
respectively, allowing them to choose comfortable velocities for these two modes. Due to physical
limitations, we collect data during only three activity modes for the amputee subjects: ST, NW, and
SW. Table 1 shows the physical characteristics of the subjects.

Table 1. Physical characteristics of the six human test subjects. AB and AM represent able-bodied and
amputee subject, respectively.

Gender Age Weight Height Walking Speed (m/s)
(years) (kg) (cm) SW PS FW

AB01 Male 37 79.5 188 0.98 1.30 1.63
AB02 Male 20 73.9 172 0.86 1.15 1.44
AB03 Male 28 80.9 179 0.75 1.00 1.25
AM01 Male 32 79.1 174 0.60 1.00 -
AM02 Male 64 99.2 177 0.56 0.94 -
AM03 Male 35 81.7 176 0.60 0.90 -

The data were collected at the Motion Study Laboratory of the Cleveland Department of Veterans
Affairs Medical Center with 47 reflective markers on each subject’s body. Subjects were asked to walk
on a treadmill with built-in force sensors. A 16-camera Vicon system (Denver, CO, USA) recorded
kinematic data at 100 Hz. Ground reaction force along three axes were collected from the force sensors
at 1000 Hz. Data were filtered with a second-order low-pass filter with a cutoff frequency of 6 Hz.
A 3D biomechanical rigid body model was constructed from the marker data, and segmental and
joint kinematics (joint displacements) and kinetics (joint moments) were computed as inputs for the
UIR system. Detailed methods and sample results can be found in [32]. The experimental setup is
illustrated in Figure 2. Note that the lower-limb amputee demographic at the Veterans Affairs Medical
Center, where data collection was performed, is dominated by males. Over 98% of veterans who
underwent amputation in 2011 were male [33]. Our future work will need to include more subjects
and wider demographics (for example, ages and genders).

Note that, in the real-world, non-laboratory settings, we would measure the required input signals
directly rather than with cameras. For example, we could use piezo-electric sensors or multi-axis load
cells for force sensing, and optical encoders or inertial measurement units for accurate position and
angle sensing during stance and swing phases [7,11].

The able-bodied subjects were asked to perform four sequences of walking trials, each lasting
approximately 60 s. Each sequence consists of four different gait modes (ST, SW, NW, and FW)
and each mode was maintained for several seconds. Figure 3 illustrates a sample walking trial for
AB01. The amputee subjects performed six sequences of three different walking modes, each lasting
approximately 30 s.
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In summary, we note a few important points. Firstly, in this paper, the type of walking activities
used for recognition is not our main focus, but rather the assessment of the proposed methodology
to eliminate irrelevant/redundant features for UIR is our main goal. Secondly, in human activity
mode recognition applications, an entire stride is typically used for non-real-time classification [34].
However, in UIR, we use a small window of measurement signals, mostly within a few milliseconds,
to identify user’s intent for real-time prosthesis control.

Figure 2. Experimental setup for data collection. The left figure shows an able-bodied subject and the
right figure shows an amputee subject with an Ottobock prosthesis on the right leg.
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Figure 3. Sample walking trial with four different gait modes for able-bodied subject AB01. Although
data is available for both legs, we require only one side for gait mode recognition. The data from the
two legs look similar because of gait symmetry.

2.2. Data Windowing

To effectively classify human gait modes, we extract appropriate features from a frame (window)
of measurement signals. L f is the length of a frame in milliseconds. The number of samples in the
frame depends on the frame length L f and the sampling rate. A short frame fails to provide an
informative data set and may lead to significant classification bias and variance. On the other hand,
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a long frame is a computational burden for real-time implementation. In this paper, L f is chosen to
trade off feature informativeness and computational load.

We apply two different methods for data windowing: disjoint windowing and overlapped
windowing [35]. Figure 4 illustrates the two windowing approaches. In disjoint windowing, the
class outcome Oi corresponding to frame Si is output every L f ms. τ is the time required for feature
extraction, classification, commanding the appropriate low-level controller, and prosthesis response
time. In overlapped windowing, we use a sliding frame with length L f and increment I, and the class
outcome is output every I ms. Disjoint windowing is a special case of overlapped windowing when
I = L f . To achieve real-time operation, the parameters of the windowing approaches should satisfy

τ ≤ L f disjoint windowing,

τ ≤ I ≤ L f overlapped windowing.
(1)

In this paper, we apply disjoint and overlapped windowing with various frame and increment
lengths. We consider two important characteristics to determine L f [35]: (1) the minimum interval
between two distinct muscle contractions is 200 ms [36], and (2) the delay between user intent and
the resultant prosthesis motion should be no more than 300 ms [37,38]. The first property implies
that a 200 ms frame of data should have the potential to provide informative features for gait mode
classification. The second property, which is known as the real-time constraint, ensures that the
amputee will experience the prosthesis as responsive to his or her intent. The real-time constraint
requires τ ≤ L f ≤ 300 ms for disjoint windowing, and I ≤ 300 ms for overlapped windowing.
Therefore, we use overlapped windowing when the frame length is larger than 300 ms, noting that a
larger frame will require a higher computational load.

Raw data
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(a) Disjoint windowing
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(b) Overlapped windowing

Figure 4. Data windowing. Si represents the i-th data segment, L f is the frame length, τ is the required
processing time, I is the increment length for overlapped windowing, and Oi is the detected gait mode
corresponding to frame Si.

2.3. Feature Extraction

Various features can be extracted from a frame of measurement data and used for classification.
Features should be informative enough to discriminate between various gait modes. In addition,
feature extraction needs to be computationally fast for real-time implementation. In general, both
time-domain (TD) and frequency-domain (FD) features are frequently used for classification [35,39,40].
We compare TD and FD features in this paper, and select the optimal subset of features for UIR.

TD features are computationally fast, and include information about the data waveform and
frequency. We extract the following TD features from each frame of data: slope sign change (SSC), zero
crossing (ZC), waveform length (WL), variance (VAR), mean absolute value (MAV), modified MAV
(MAV1 and MAV2), root mean square (RMS), Willison amplitude (WAMP), skewness (SK), kurtosis
(KU), and correlation coefficient (COR) and angle (ANG) between two frames of data from different
measurement signals. The mathematical definitions of these TD features are given in [39].

In addition, multiple FD features have been extracted. FD features are computationally slower
than TD features, but include information about the frame’s frequency content. We use periodograms
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to measure the power spectrum density (PSD) of a frame, and calculate the following FD features:
mean frequency (MNF), median frequency (MDF), maximum frequency (MAXF), and fourth-order
auto-regressive coefficients (AR4). The mathematical definitions of these FD features are given in [39].

Previous research has shown the applicability of these TD and FD features for prosthetic limb
pattern recognition [39–41]. Therefore, we are motivated to investigate the performance of these
features for gait mode recognition.

After extracting TD and FD features from a frame of measurement data, the features are
concatenated and labeled to create a single training pattern. For instance, extraction of VAR,
MAV + RMS, and AR4 features from a frame of three measurement signals (e.g., vertical hip position,
thigh angle, and thigh moment) would produce a training vector with 3, 6, and 12 elements, respectively.
We perform the above procedure for all features and all frames of measurement data to create the
training data set. The training set is then normalized to equalize the relative magnitude of each feature.

2.4. Feature Selection

The objective of feature selection is to find a subset of the features that were obtained with the
feature extraction method. The feature selection method attempts to find a parsimonious feature subset
that results in accurate classification. However, subset size and classification accuracy are conflicting
objectives. A small feature subset will probably result in high classification error, whereas a large
feature subset will probably result in lower classification error. Therefore, feature selection can be
viewed as a multi-objective optimization (MOO) problem. In MOO problems, no single solution can
simultaneously optimize all objectives. The solutions comprise a set of possible alternative solutions
known as the optimal Pareto set [21].

We seek the most informative but parsimonious subset of features for gait mode classification.
Note that exhaustive search is not practical in cases with a high-dimensional set of features. A set of
n features has 2n − 1 different subsets (excluding the null subset). Many heuristic search strategies,
such as sequential forward selection, sequential backward elimination, and evolutionary search, have
been suggested for this type of combinatorial problem [42]. Evolutionary algorithms (EAs) have been
demonstrated as an efficient global search strategy for feature selection [43]. They generally outperform
sequential forward selection and sequential backward elimination [22]. However, EA-based search
strategies are computationally expensive due to the need for many cost function evaluations. To reduce
computational complexity, we propose a new method called gradient-based multi-objective feature
selection (GMOFS) for UIR. In addition, we propose the application of four EA-based search strategies,
using multi-objective biogeography-based optimization (MOBBO), for feature selection. We then
use two systematic approaches to compare the performance of the GMOFS search strategy with four
variants of MOBBO.

2.5. Classification

Accurate classification of gait patterns is the ultimate goal of the user intent recognition (UIR)
system. For this purpose, we assess various well-known linear and nonlinear classification techniques,
including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector
machine (SVM), decision tree (DT), and multi-layer perceptron (MLP) classifiers.

LDA and QDA classifiers do not require time-consuming iterations for training. In fact, the
parameters of these classifiers are directly obtained from the training data. Although these classifiers
are fast in terms of training, they are not as flexible as nonlinear classifiers such as SVM, DT, and MLP.
These classifiers solve an optimization problem that minimize the classification error. In most cases, it
is difficult to find optimization solutions in closed form, so we use either gradient-based optimization
algorithms such as steepest descent, or evolutionary algorithms (EAs).

We use one-against-one approach to implement multi-class SVM, and we also evaluate the
performance of different kernels, such as linear and RBF. We tune the parameters of the SVM kernels to
achieve the best classification performance. To increase the accuracy of the MLP network, we perform
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a grid search of the number of hidden nodes p from the set {3, 4, 5, 6, 8, 10, 15, 20}, and we measure the
mean classification error using five-fold cross validation (CV). Then, we choose p to obtain a trade-off
between classification accuracy and classifier complexity. An MLP with small p may not result in the
desired accuracy, but an MLP with large p may tend to memorize the noise in the training set and lead
to overfitting and poor generalization. In addition, we use Wilcoxon signed-rank tests to statistically
compare the classification methods.

2.6. Filter

To enhance the prediction performance of the UIR system, we incorporate a majority voting
filter (MVF). MVF alleviates transient jumps between classifier output classes and leads to smooth
transitions from one classified gait mode to another. We implement the MVF using 2q + 1 classified
modes [41]: the current, q previous, and q subsequent values. The MVF output is the most frequently
classified mode among those 2q + 1 values.

To obtain q subsequent classified gait modes, MVF enforces a time delay to allow the classifier to
access the required data. The real-time constraint discussed in Section 2.2 requires a time delay less
than 300 ms. Therefore, an appropriate value for q should be chosen to avoid violation of the real-time
constraint. The constraint requires

q× L f ≤ 300 ms Disjoint windowing,

q× I ≤ 300 ms Overlapped windowing.
(2)

An MVF with very small q may not significantly improve classification performance, whereas an
MVF with very large q may cause misclassification because of time delay. In this paper, we will choose
a trade-off value for q, and will investigate the effect of the MVF on classification performance.

3. Feature Selection Algorithm Development

In this section, we propose a search strategy based on biogeography-based optimization (BBO),
in addition to a new gradient-based algorithm, to find an optimal subset of features for designing
UIR with high accuracy and low complexity. We then use two systematic approaches to compare the
performance of the different search strategies.

3.1. Biogeography-Based Multi-Objective Optimization

We propose the application of multi-objective biogeography-based optimization (MOBBO) for
feature selection of the UIR system. The dimension of the optimization problem is equal to the number
of available features (independent variables). Each feature is represented by a binary value where 1
indicates that the feature is used for classification, and 0 indicates otherwise. Therefore, each individual
in the MOO algorithm is a binary sequence with length equal to the problem dimension. We evaluate
the following two objective functions for all individuals in the population:

f i
1 = number of selected features in the i-th individual,

f i
2 = average prediction error using c-fold cross validation,

(3)

where i = 1, · · · , N, and N is the population size. We combine BBO with four MOO algorithms [21]
to obtain vector evaluated BBO (VEBBO), non-dominated sorting BBO (NSBBO), niched Pareto
BBO (NPBBO), and strength Pareto BBO (SPBBO). We apply these MOBBO variants to find the
optimal Pareto set for the optimization problem. We investigate the performance of each method in a
later section.

We use linear discriminant analysis (LDA) to compute f i
2. LDA is widely used with evolutionary

algorithms to evaluate the quality of a candidate subset for feature selection [44]. LDA does not
require time-consuming iterations to build a model. This point is important because EAs require
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many objective function evaluations to find the solution. In Section 4.2, we will demonstrate that
all feature selection approaches presented in this paper are able to find the most significant features,
even though they use different selection criteria and machine learning methods. It is possible to use
either classification accuracy or error as the quality measure for the second objective. We use average
classification error of c-fold cross validation (CV). In c-fold CV, we randomly divide the training set
into c distinct folds. Then, we repeat training c times; each time, the model is trained using c − 1
folds and is tested with the remaining fold. The average of the c classification errors is used as the
quality measure.

3.2. Gradient-Based Multi-Objective Feature Selection

Although MOBBO and other gradient-free MOO methods have the potential to find the globally
optimal solution [22,23], they are computationally expensive due to the need for many iterations of the
classifier training process (multiple individuals in the population, and multiple generations). To reduce
computational complexity, we propose a novel algorithm called gradient-based multi-objective feature
selection (GMOFS). In GMOFS, feature selection and data classification are performed simultaneously.

GMOFS incorporates a regularization penalty term to the optimization problem of its learning
algorithm. The penalty term, which is handled by a Lagrange multiplier, directs the trained model
toward a parsimonious as well as accurate model. We use an MLP network as the classifier, and
include an elastic net to penalize the size of the selected feature subset. The first step of GMOFS is to
train a constrained MLP network with the cost function

J =
1
2

m

∑
l=1

K

∑
j=1

(
t(l)j − o(l)j

)2
+ λ

n

∑
i=1

(
αβ2

i + (1− α)|βi|
)

, (4)

where βi is the multiplier of the i-th input feature before input to the MLP network; t(l)j and o(l)j are the
target and actual value, respectively, of the j-th output neuron associated with the l-th training pattern;
K is the number of output neurons (classes); m is the number of training patterns; and n is the number
of input features. We use an MLP network with one hidden layer and p hidden neurons (including
the bias node). vih denotes the weight that connects the i-th input neuron to the h-th hidden neuron,
and whj denotes the weight that connects the h-th hidden neuron to the j-th output neuron. The first
term of the cost function penalizes classification error while the second term, which is the elastic net,
penalizes the number of selected features. The elastic net is a convex combination of ridge regression
(α = 1) and least absolute shrinkage and selection operator (α = 0). λ ≥ 0 is a complexity parameter
that controls the shrinkage of the input features. Large λ leads to a shrinkage of βi toward zero, which
implies that the input feature corresponding to βi is not significant. However, as shrinkage increases,
classification error tends to increase. Therefore, λ provides a trade-off between classification error and
the number of selected features. In summary, the construction of the MLP network with the elastic net
is formulated as the following optimization problem:

min
β,w,v

J subject to

{
0 ≤ βi ≤ 1,

|whj| ≤ a and |vih| ≤ b,
(5)

for all i, j, h, where βi = 0 or 1 implies that the associated feature is the least or most significant input
variable, respectively. a and b are the bounds for neuron weights whj and vih, respectively. However,
due to the direct relationship between βi and neuron weights vih and whj, we cannot conclude that an
input feature with small βi and large neuron weights is insignificant. To avoid optimization solutions
with large weights, neuron weights are constrained. Backpropagation is used to update βi, vih, and
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whj. The derivative of J with respect to output weights whj, hidden weights vih, and input weights βi
is obtained by the chain rule as

∂J
∂whj

=
m

∑
l=1

δ
(l)
j y(l)h

∂J
∂vih

=
m

∑
l=1

 ∑
k∈D2(h)

[
δ
(l)
k whk

]
y(l)h (1− y(l)h ) βix

(l)
i


∂J
∂βi
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[
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βi
|βi|

]
,

(6)

where D1(i) is the set of middle layer neurons whose inputs come from the i-th input neuron, D2(h)
is the set of output neurons whose inputs come from the h-th middle layer neuron, and δ

(l)
j =

−(o(l)j − t(l)j )(1− t(l)j )t(l)j . Detailed derivation of the derivative of J with respect to whj and vih is
available in [45]. The derivative of J with respect to input weights βi is straightforward to obtain using
the chain rule. We use the derivatives in Equation (6) and constraints in Equation (5) along with the
trust region reflective algorithm to train the constrained MLP network.

Once MLP training phase is completed, input weights βi are sorted in descending order. The
input variable with the largest βi is the most significant feature. The second step of GMOFS is to
select the most r significant features, which are associated with the r largest input weights βi, and
which satisfy

∑r
i=1 βi

∑n
j=1 β j

≥ 95%,

β1 ≥ β2 ≥ · · · ≥ βn.

(7)

The 95% threshold value in Equation (7) determines the trade-off between the number of selected
features and the accuracy of the model. A low threshold value will decrease the number of selected
features and will be more likely to remove informative features that can significantly contribute to the
accuracy of the UIR model. On the other hand, a high threshold value will be more likely to include
irrelevant features that cannot contribute to the accuracy of the model. To tune the threshold value,
we gradually increase the threshold from zero, and, for each value, we compute the accuracies of the
trained MLP once with the original βi values and once with βi = 0 for all unselected input features.
We increase the threshold value until there is no significant difference between the performances of
MLP for these two cases. That point was reached with the threshold value of 95%. We then repeat
the first two steps of GMOFS for different λ in the range [λl , λu] with a predefined increment 4λ.
The selected subsets associated with each λ comprise a population. The population size depends on
4λ. To assess the performance of the selected feature subset, we train a classifier with each selected
subset and find classification error. In this population, the subset associated with λ→ ∞ has minimum
size and maximum classification error, whereas the subset with λ = 0 has maximum size and probably
has the lowest classification error. Thus, the size of the selected subset and the classification error,
defined in Equation (3), are two conflicting objectives. To find the GMOFS Pareto front, we first obtain
the Pareto set as

Ps =

{
x∗ :

[
@x : fi(x) ≤ fi(x∗) for all i ∈ [1, 2], and f j(x) < f j(x∗) for some j ∈ [1, 2]

]}
. (8)
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x∗ denotes the set of non-dominated solutions in the population and fi(x) is the i-th objective function.
The Pareto front Pf is obtained from all function vectors f (x) that correspond to the Pareto set:

Pf = { f (x∗) : x∗ ∈ Ps} . (9)

Note that all Pareto points are equally preferable apart from subjective prioritization. The outline
of GMOFS is given in Algorithm 1.

Algorithm 1: The outline of gradient-based multi-objective feature selection (GMOFS), where
xi is the i-th feature in the training set X, and Y is the corresponding set of output classes.

Initialization: λ = λl ≤ λu, Population = ∅, k = 1
While λ ≤ λu

Step 1:
Use the training data {X, Y} to train the constrained MLP network in Equation (4)
by solving Equation (5)
Step 2:
Sort the input weights {βi} in descending order
Use Equation (7) to select subset Sk ⊂ X where size(Sk) ≤ size(X)
Step 3:
Population← Population + Sk
k← k + 1

Next λ← λ +4λ

Step 4:
For each subset Sk in Population

Use cross-validation to train and test a classifier with dataset {Sk, Y}
Calculate objective functions f k

1 and f k
2 using Equation (3)

Next subset Sk
Step 5:
Find the Pareto set using Equation (8)

3.3. Evaluation of Multi-Objective Optimization Pareto Fronts

We will compare the Pareto fronts obtained by each MOO algorithm using normalized
hypervolume and relative coverage. These methods are popular for evaluating the quality of a
Pareto front. The Pareto front normalized hypervolume is computed as follows:

Normalized Hypervolume =
∑

Np
j=1 ∏M

i=1 f ji

Np
, (10)

where M is the number of objectives, f ji is the value of the i-th objective function of the j-th Pareto
point, and Np is the number of Pareto points.

Another way to compare Pareto sets is to compute the coverage of one Pareto set relative to a
second Pareto set. This metric is determined by the number of solutions in the first Pareto set that
are weakly dominated by at least one solution in the second Pareto set [21]. A smaller number for
normalized hypervolume and relative coverage indicates better performance.

4. Results and Discussion

This section evaluates the performance of the user intent recognition (UIR) system and its
subsystems as discussed in Sections 2 and 3.
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4.1. Effect of Frame Length on Classification Performance

The objective of this section is to choose the appropriate data windowing method and frame
length. We investigate the influence of disjoint and overlapped windowing with different frame
lengths on the classification accuracy of the UIR system. We use disjoint windowing with frame lengths
L f = {100, 150, 200, 250}ms, and overlapped windowing with frame lengths L f = {200, 250, 300}ms
and increments I = {50, 150, 200} ms. We extract time-domain (TD) and frequency-domain (FD)
features from the data frames generated by the three measurement signals collected from able-bodied
subjects. Note that the size of the data set depends on the parameters of the windowing methods.
For instance, a 10-second walking sequence with disjoint windows of length 100 ms provides 100
frames and consequently 100 training patterns.

In this experiment, LDA, QDA, MLP, and SVM with RBF kernel are separately trained and
tested using 10-fold cross validation (CV) for each subject with only one feature type for each of the
measurements: WL, VAR, MAV, RMS, WAMP, ANG, and AR4. These features are used because they
are considered the most representative TD and FD features. Figure 5 illustrates the mean classification
accuracy of LDA with different frame lengths for able-bodied subjects using 10-fold CV. A single
value on the horizontal axis of the figure indicates the frame length of disjoint windowing. A pair of
values indicates the frame length and increment length of overlapped windowing; for instance, 200–50
denotes L f = 200 ms and I = 50 ms. Figure 5 shows that the classification accuracy typically improves
as the frame length increases. We observed similar trends with other classifiers. In fact, classifier type
does not influence our choice of frame length. Therefore, we only provide classification results for
LDA as a representative result.

Figure 5 shows that a larger frame is more likely to include more information, and consequently
lower bias and variance in classification performance. For instance, the increase in accuracy with WL
is approximately 18% when the frame length increases from 100 ms to 200 ms. The increases are 11.6%
and 9.8% when using the VAR and AR4 features, respectively. However, the accuracy does not vary
significantly with frame length for the remaining features in Figure 5. The figure illustrates that all
representative TD features except ANG provide better classification performance than AR4, which is
the representative FD feature.
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Figure 5. Mean LDA performance for the able-bodied subjects for different data windowing methods
and frame lengths. On the horizontal axis, a single value indicates the frame length of disjoint
windowing, and a pair of values indicates the frame length and increment length of overlapped
windowing. For instance, 200–50 indicates L f = 200 ms and I = 50 ms for overlapped windowing.
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In this experiment, very small frame length is not used because it would result in poor prediction
accuracy. Conversely, large frame length is not used because it would result in a violation of the
real-time constraint. To find the best frame length, we statistically compare performance using
Wilcoxon signed-rank tests. For this purpose, LDA is trained multiple times, each time using one
TD or FD feature type. We perform LDA training individually for each feature type rather than
the full feature set to provide a sufficient number of samples for statistical comparison. The null
hypothesis of the test is that the differences between mean classification accuracy (average accuracy
of all LDAs trained individually with every single TD and FD feature type) corresponding to two
different frame lengths are from a distribution with zero mean at the specified level of significance.
If the null hypothesis cannot be rejected, then we conclude that the two compared frame lengths are
not statistically significantly different, as indicated by an ≈ sign and a T (tie). If we can reject the null
hypothesis, then the two frame lengths are statistically significantly different, and this is indicated by a
+ sign. The better frame length is the one with better mean classification accuracy and is shown by B
(better) while the worse one is shown by W (worse). Table 2 provides the results of the statistical tests
at a 10% significance level.

Table 2 shows that frames with length larger than 200 ms perform better than frames with length
150 or 100 ms. Table 2 shows that the two overlapped frame windows with L f = 250 ms, I = 50 ms and
L f = 300 ms, I = 200 ms tie for similar performance, and perform better than the other frame lengths.

Taking into account the real-time constraint, the length of the MVF filter, and processing time, we
choose overlapped windowing with L f = 250 ms, I = 50 ms throughout the remainder of the paper as
the best trade-off, except where specifically mentioned otherwise.

Table 2. Comparison of mean classification performance for different frame lengths (row values versus
column values) using Wilcoxon signed-rank tests at a 10% significance level. Mean classification
performance is considered as the average of all linear discriminant analysis (LDA) classifiers trained
individually with every single time-domain (TD) and frequency-domain (FD) feature type. ≈ indicates
that the two compared frame lengths tie (T) with similar performance and are not statistically
significantly different. + indicates that the two frame lengths are statistically significantly different,
and B or W indicates that the row frame length performs better or worse than the column frame length,
respectively. ∗ indicates that the lower triangular half of the table is equal to its upper triangular half.

Frame
Length (ms) 150 200 200–50 200–150 250 250–50 300–200

100 vs. W (+) W (+) W (+) W (+) W (+) W (+) W (+)
150 vs. − W (+) W (+) W (+) W (+) W (+) W (+)
200 vs. ∗ − W (+) T (≈) W (+) W (+) W (+)

200–50 vs. ∗ ∗ − T (≈) T (≈) W (+) W (+)
200–150 vs. ∗ ∗ ∗ − W (+) W (+) W (+)

250 vs. ∗ ∗ ∗ ∗ − W (+) W (+)
250–50 vs. ∗ ∗ ∗ ∗ ∗ − T (≈)

We use principal component analysis (PCA) [46] and Fisher linear discriminant analysis
(FLDA) [47] to visualize the training set. A training pattern is a vector of all TD and FD features
extracted from a frame of raw data. We performed 2D dimension reduction for three different frame
lengths. Figure 6 illustrates the 2D scatter plot for able-bodied subject AB01. To save space, we do not
provide the same figures for other subjects because we obtained similar results for those subjects.

Figure 6 shows that FLDA provides better visualization than PCA in terms of gait mode
separability. We verify that longer frame length leads to better gait mode separation, and eventually
better classification performance. Most importantly, Figure 6 verifies the effectiveness of the TD and
FD features.
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Figure 6. Two-dimensional scatter plot for visualization using principal component analysis
(PCA) (left column) and Fisher linear discriminant analysis (FLDA) (right column) for able-bodied
subject AB01.

4.2. Multi-Objective Feature Selection

We perform feature selection in two steps. In the first step, we exclude non-informative
time-domain (TD) and frequency-domain (FD) features, and, in the second step, we use multi-objective
optimization (MOO) to further refine the selected feature set. We implement five different MOO
methods, including our newly proposed method, to find the optimal set of features. The complete set
of features includes the following TD and FD features: F1: slope sign change (SSC); F2: zero crossing
(ZC); F3: waveform length (WL); F4: variance (VAR); F5: mean absolute value (MAV); F6 and F7:
modified MAV (MAV1 and MAV2); F8: root mean square (RMS); F9: Willison amplitude (WAMP); F10:
skewness (SK); F11: kurtosis (KU); F12: median frequency (MDF); F13: mean frequency (MNF); F14:
maximum frequency (MAXF); F15 and F16: correlation coefficient (COR) and angle (ANG) between
two frames of data, respectively; and F17: fourth-order auto-regressive coefficients (AR4). We perform
preliminary feature selection using able-bodied subjects. We use MOO for final feature selection using
only one able-bodied subject to reduce computational effort. In Section 4.4, we will investigate the
performance of the selected features with other able-bodied subjects and with the amputee subjects.
We note that the optimal feature subset may vary depending on subjects. However, in this paper,
we are particularly interested in obtaining an optimal feature subset from able-bodied subjects, and
assessing its performance on amputee subjects. The reason for this approach is that able-bodied
subjects’ data are more accessible for UIR training in real-world applications. Our results in Section 4.4
will show no significant difference between UIR performances for amputee subjects when trained with
the optimal feature subset and when trained with the full feature set. Future work could compare
optimal subsets of features obtained from different individuals.

In the first step, we train LDA, QDA, SVM-Linear, SVM-RBF, and MLP for each of three
able-bodied subjects, and separately for each individual feature type listed in the previous paragraph,
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using 10-fold cross-validation (CV) for each training procedure. The mean classification accuracy over
the three subjects and the ten folds are used to assess the importance of each feature type.

Figure 7 shows the mean classification accuracy and processing ratio for each feature type.
Processing ratio indicates the relative computational load to compute each feature type—for instance,
the percentage of computational load required to compute F17 over the computational load required
to compute all feature types is 4.22%. To reduce clutter in the figure, we show LDA results as a
representative of QDA and SVM-Linear since they had similar performance. Similarly, we show
SVM-RBF as a representative of MLP. Figure 7 shows consistent performance of different classifiers
in terms of prioritizing various feature types. Figure 7 indicates that TD features require less
computational effort than FD features. For instance, F12, F13, and F14 require high computational
effort compared to other features. We exclude F12, F13, and F14 from the candidate feature set due to
their relatively high computational expense and poor classification accuracy. In addition, F6 and F7,
two variants of MAV, are excluded due to their poor classification accuracy and because they provide
information that is similar to MAV. Therefore, we exclude a total of five weak feature types, and
pre-select the remaining 12 feature types. This results in a training vector with 11× 3 + 4× 3 = 45
elements. Note that the AR4 feature type includes four components and thus contributes a total of 12
elements from the three measurement signals. Finally, vertical hip position does not cross zero (see
Figure 3), thus the number of zero crossing (ZC) feature of this signal is excluded. To verify the lack of
information in the eliminated features, we found that the combination of the excluded features with
the pre-selected features did not significantly enhance classification performance. In summary, we
have a training data set with 44 features.
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Figure 7. Mean classification accuracy of three able-bodied subjects, and processing ratio of 17 feature
types trained by LDA using 10-fold cross validation.

Now, we are ready to proceed to the feature selection step. In this step, we use vector evaluated
BBO (VEBBO), non-dominated sorting BBO (NSBBO), niched Pareto BBO (NPBBO), strength Pareto
BBO (SPBBO), and gradient-based multi-objective feature selection (GMOFS) to select an optimal
subset from the 44 pre-selected features. To reduce the computational expense, we use only the AB01
training data set in this step. We then verify that the selected subset results in a satisfactory UIR system
when trained for other subjects. Table 3 shows the tuning parameters used in this paper. To tune the
parameters, we performed a sensitivity analysis of multi-objective optimization (MOO) performance
to each parameter, one at a time, to find a local optimum of MOO performance with respect to
each parameter. For instance, GMOFS is implemented with different elastic net parameter values
α = {0, 0.5, 1}, and we found that the Pareto front with α = 0 dominates Pareto fronts that are found
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with other values of α. For training the neural network in GMOFS, we used the MATLAB function
fmincon from the Optimization Toolbox (R2014a, MathWorks, Natick, MA, USA) to implement a trust
region reflective algorithm. We mostly used default values for the fmincon parameters, but we found
that the performance of GMOFS is not very sensitive to these parameters.

We run each multi-objective method for 10 independent trials, and the best Pareto front of each
method is selected for MOO comparison. Results show that the GMOFS Pareto front statistically
significantly dominates all four multi-objective biogeography-based optimization (MOBBO) Pareto
fronts. We note that GMOFS and the MOBBO variants use different classifiers for feature selection,
namely, MLP and LDA. To obtain a fair comparison of the new components of GMOFS with the
MOBBO variants, we decouple the search strategy from classification performance. Note that LDA,
which is used in MOBBO, is one of the most popular classification algorithms and has been widely used
with evolutionary algorithms for feature selection due to its good performance and simplicity [44].

Table 3. Tuning parameters for multi-objective feature selection.

Symbol Value

MOBBO

Mutation rate µ 0.04
Number of elites E 2
Population size N 100
Number of generations Gen 1000
Problem dimension d 44
Migration model mflag sinusoidal

GMOFS

Number of hidden nodes p 5
Elastic net parameter α 0
Bound for shrinkage parameter [λl , λu] [0, 150]
Bound for neuron weights a, b 5
Increment of shrinkage parameter 4λ 1 if 0 ≤ λ ≤ 30; and 10 if 30 < λ ≤ 150

Trust region reflective

Maximum allowable iterations MaxIter 100
Termination tolerance on the independent variable TolX 0.001
Termination tolerance on the cost function TolFun 0.001
Typical values for the independent variable TypicalX 0.1
Finite difference method FinDiffType central

To conduct the fair comparison, we apply SVM with linear kernels to all of the optimal feature
subsets found by the MOO methods. Figure 8a illustrates the Pareto fronts obtained by the five
MOOs with SVM with linear kernels. Figure 8a shows that the Pareto fronts of VEBBO, SPBBO,
NSBBO, and GMOFS are close, and clearly dominate the NPBBO Pareto points. Figure 8b indicates the
combined Pareto front obtained from all of the non-dominated points in Figure 8a. GMOFS provides
the maximum contribution to the combined Pareto front, while NPBBO does not contribute any Pareto
points. All of the points in Figure 8b are labeled for easy referencing.

To systematically compare the Pareto fronts in Figure 8a, we use relative coverage and normalized
hypervolume as discussed in Section 3.3. Tables 4 and 5 provide the comparison results using these
two approaches. In Table 4, an entry in column i and row j (i 6= j) indicates the percentage of Pareto
points of the method of column i that is dominated by at least one Pareto point of the method of row j.
We see that, on average, only 7.2% of the Pareto points of VEBBO are weakly dominated by at least
one Pareto point from the other four MOO methods. Therefore, VEBBO ranks first in terms of relative
coverage. GMOFS ranks second and performs better than SPBBO, NSBBO, and NPBBO. In addition,
Table 5 shows that VEBBO and GMOFS rank first and second in terms of normalized hypervolume,



Sensors 2019, 19, 253 17 of 23

respectively. GMOFS ranks first in terms of the number of Pareto points. These results verify the
competitive performance of GMOFS compared to the other four MOO methods.

Most importantly, in terms of the advantage of GMOFS, it requires the execution of only 43
classifier training procedures (due to the number of λ increments), while each of the other four
EA-based MOO methods require 100,000 training procedures (due to the combination of population
size and generation limit).
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Figure 8. (a) Pareto fronts obtained from MOO methods with an SVM classifier with linear kernels
using AB01 training data; (b) combined Pareto front obtained from non-dominated Pareto points in (a).

Table 4. Comparison of Pareto fronts using relative coverage (RC). Only 7.2% and 30% of the VEBBO
and GMOFS points, respectively, are dominated by other Pareto points; so VEBBO and GMOFS rank
first and second, respectively, in terms of RC.

VEBBO SPBBO NSBBO NPBBO GMOFS

VEBBO − 62.5 75.0 85.7 40.0
SPBBO 0.0 − 25.0 71.4 40.0
NSBBO 14.3 50.0 − 100.0 40.0
NPBBO 0.0 0.0 0.0 − 0.0
GMOFS 14.3 50.0 50.0 100.0 −

Mean RC (%) 7.2 40.4 37.5 89.3 30.0

Table 5. Comparison of Pareto fronts using normalized hypervolume. Np is the number of Pareto
points obtained by each MOO method. VEBBO and GMOFS rank first and second, respectively, in
terms of normalized hypervolume, and GMOFS ranks first in terms of the number of points.

Np Normalized Hypervolume

VEBBO 7 0.5026
SPBBO 8 0.5814
NSBBO 8 0.5676
NPBBO 7 0.8013
GMOFS 10 0.5332

The benefit of presenting the data of Figure 8b is that it allows us to find the best subset of features
for an accurate and parsimonious classifier. Among the 12 Pareto points, we choose p9 as a potential
candidate solution. We could pick any other solution from the Pareto front depending on the priority
of the problem objectives, but p9 provides a good trade-off between classification error and number
of features. Therefore, in Section 4.4, we will investigate classification performance with candidate
solution p9 for all human subject data AB01, AB02, AB03, AM01, AM02, and AM03. However, first,
we will find the best classifier in the following section.
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Figure 9 shows that the feature selection frequencies of GMOFS and VEBBO, taken across all
Pareto points, are different. However, they both select significant features at a high frequency. There are
five common features that appear in all of the GMOFS, VEBBO, NSBBO, NPBBO, and SPBBO Pareto
points: WL from vertical hip position and thigh angle (features 6 and 7), VAR from thigh moment
(feature 11), WAMP from vertical hip position (feature 18), and ANG from thigh moment (feature 32).
Therefore, all five feature selection methods value the most informative features regardless of their
selection criterion and machine learning method. For example, Pareto point p8 (obtained by VEBBO
combined with the LDA classifier) and candidate solution p9 (obtained by the GMOFS combined with
MLP classifier) have nine features in common out of a total of 13 and 14 features, respectively.

1 4 6 9 12 15 18 21 24 27 30 33 44
0

1

2

3

4

5

6

7

Features

F
re

q
u
e
n
c
y
 o

f 
o
c
c
u
rr

e
n
c
e

(a) VEBBO

1 4 6 9 12 15 18 21 24 27 30 33 44
0

2

4

6

8

10

Features

F
re

q
u
e
n
c
y
 o

f 
o
c
c
u
rr

e
n
c
e

(b) GMOFS
Figure 9. Selection frequency of 44 features by VEBBO and GMOFS. The plots show how many times
each feature appears in the Pareto points of the given method. For instance, feature 6 is present in all
10 GMOFS Pareto points.

4.3. Comparison Results of Classification Algorithms

In this section, we use p1 through p12 to statistically compare the performance of different
classifiers for subject AB01. The objective is to find the best classifier for locomotion mode detection
among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), support vector
machine (SVM) with linear kernels (SVM-linear), SVM with RBF kernels (SVM-RBF), multi-layer
perceptron (MLP), and decision tree (DT). The tuned parameter value of RBF kernel is σ = 1. Table 6
shows mean classification accuracy and standard deviation of each classifier trained with the features
from each Pareto point using 10-fold cross validation (CV).

Table 6. Mean classification accuracy (ACC) and standard deviation (STD) for AB01 of classifiers
trained with 13 different feature subsets. NF is the number of features in each set.

Pareto
Point NF LDA QDA SVM-Linear SVM-RBF MLP DT

ACC STD ACC STD ACC STD ACC STD ACC STD ACC STD

p1 6 93.56 0.740 94.33 0.852 95.37 1.218 98.33 0.421 97.34 0.698 96.15 1.16
p2 7 95.31 0.829 96.06 0.711 96.99 0.775 98.88 0.216 98.29 0.539 96.35 1.00
p3 8 96.69 0.835 96.82 0.410 97.47 0.694 98.86 0.378 98.20 0.411 96.67 1.18
p4 9 96.86 0.684 96.95 0.484 98.07 0.576 99.31 0.234 98.34 0.459 96.73 1.25
p5 10 97.04 0.657 96.99 0.427 98.08 0.430 98.90 0.406 98.47 0.645 96.56 1.22
p6 11 96.84 0.536 97.15 0.654 98.14 0.692 98.94 0.293 98.62 0.578 96.32 1.28
p7 12 96.93 0.656 97.36 0.372 98.20 0.497 99.05 0.356 98.87 0.406 97.21 1.00
p8 13 96.61 0.384 97.62 0.554 98.25 0.534 99.14 0.305 95.76 9.180 96.86 1.36
p9 14 96.76 0.485 97.79 0.311 98.49 0.500 98.88 0.290 98.90 0.355 97.15 0.78
p10 16 96.95 0.525 97.84 0.578 98.59 0.467 98.38 0.449 98.66 0.371 96.99 0.72
p11 21 97.13 0.501 97.93 0.716 98.62 0.564 98.40 0.392 99.00 0.432 97.30 0.54
p12 27 97.41 0.568 97.77 0.861 98.70 0.422 97.58 0.663 99.07 0.373 96.91 0.64
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Table 7 presents pairwise statistical comparisons using Wilcoxon signed-rank tests at a 5%
significance level. If a pairwise p-value is less than 0.05, the mean performances of the two classifiers
are statistically significantly different, and the classifier with larger mean prediction accuracy performs
better than the other one. A pairwise p-value greater than 0.05 indicates no significant difference
between the performance of the two classifiers. Table 7 shows that the classification performance
of MLP and SVM-RBF are statistically equal, and are significantly better than the other methods.
SVM-linear is statistically better than LDA, QDA, and DT. QDA performs better than LDA and
similarly to DT. In summary, MLP and SVM-RBF are the best, SVM-linear is the second best, QDA and
DT are the third best, and LDA is the worst for locomotion mode detection.

Table 7. Comparison of classification performance using Wilcoxon signed-rank tests (W.T.) at a 5%
significance level. B or W indicates that the row method performs better or worse than the column
method, respectively, while T shows that they tie with similar performance. ∗ indicates that the lower
triangular half of the table is equal to its upper triangular half. These results are obtained using all the
data from Table 6.

DT SVM-RBF SVM-linear QDA LDA

p-Value W.T. p-Value W.T. p-Value W.T. p-Value W.T. p-Value W.T.

MLP vs. 2.44 × 10−4 B 7.32 × 10−1 T 8.50 × 10−3 B 5.02 × 10−3 B 2.44 × 10−4 B
DT vs. − 1.23 × 10−4 W 8.20 × 10−3 W 1.33 × 10−1 T 1.70 × 10−1 T

SVM-RBF vs. ∗ − 6.70 × 10−3 B 2.44 × 10−4 B 1.22 × 10−4 B
SVM-linear vs. ∗ ∗ − 1.15 × 10−4 B 1.25 × 10−4 B

QDA vs. ∗ ∗ ∗ − 2.44 × 10−4 B

4.4. Performance Assessment of Selected Subset

In this section, we evaluate UIR for all able-bodied and transfemoral amputee subjects with
feature subset p9. All classifiers are trained with three representative methods (SVM-RBF, SVM-linear,
and QDA). The RBF kernel tuning parameter is σ = 1 and σ = 4 for able-bodied and amputee subjects,
respectively. In this section, we use multiple-fold CV to train and test UIR, where each walking
sequence that consists of different gait modes is considered a fold (see Section 2.1). In training phase,
we use all walking sequences except one to train UIR. We then test the UIR accuracy on the excluded
walking sequence (fold). Accuracy is defined as the total number of correctly classified test patterns
divided by the total number of test patterns. We repeat training and testing by shifting the excluded
folds. We calculate the accuracy averaged over all folds to find the mean performance of UIR.

We use average classification error of c-fold cross validation (CV). In c-fold CV, we randomly
divide the training set into c distinct folds. Then, we repeat training c times; each time, the model is
trained using c− 1 folds and is tested with the remaining fold. The average of the c classification errors
is used as the quality measure.

We saw in Section 2.2 that overlapped windowing with frame length L f = 250 ms and increment
I = 50 ms is the best data window option. For real-time operation, a conservative choice for parameter
q = 5 satisfies the constraint q× I ≤ 300 ms. Therefore, we use a majority voting filter (MVF) with
length 2× q + 1 = 11. Results verify a fast processing time on a standard desktop computer of less
than 50 ms, on average, including feature extraction and classification with each of the three classifiers.

Figure 10 illustrates the mean classification error of QDA, SVM-linear, and SVM-RBF trained
with feature subset p9. Training was conducted individually for able-bodied subjects AB01, AB02,
and AB03 and amputee subjects AM01, AM02, and AM03, with and without MVF. Figure 10 indicates
that: (1) SVM-RBF outperforms SVM-linear and QDA, which confirms the statistical results in
Section 4.3; (2) MVF statistically significantly decreases classification error for locomotion mode
detection (p < 0.05); and (3) p9 is an effective feature subset and results in accurate as well as compact
UIR. Feature subset p9 uses only 14 features out of a total of 60 available features, which reduces the
size of the feature set by 77%.
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SVM-RBF was also trained for the able-bodied subjects with the full set of 60 features. When
combined with MVF, it results in a mean classification accuracy of 98.54%± 1.92%. In comparison,
we achieve 97.14%± 1.51% mean classification accuracy with feature subset p9, which includes only
14 features. Statistical tests at 5% significance level indicate no significant difference between UIR
performance when trained with the full feature set and subset p9.

SVM-RBF was also trained for the amputee subjects with the full set of 60 features.
When combined with MVF, it results in a mean classification accuracy of 99.37% ± 0.96%.
In comparison, we achieve 98.45%± 1.22% mean classification accuracy with feature subset p9. As with
the able-bodied subjects, statistical tests indicate no significant difference between UIR performance
when trained with the full feature set and subset p9. This indicates the satisfactory performance of our
framework, which is able to eliminate unneeded features with no significant degradation in overall
accuracy.

In this paper, we decoupled the optimization problem of window length and feature selection
by dividing it into two smaller sequential optimization problems [35]. We may obtain a suboptimal
feature subset with this approach, but this point is not critical since we were able to find accurate and
simple UIR that has no meaningful performance difference than UIR designed with the full feature set.

(a) Trained with subset p9 for able-bodied subjects (b) Trained with subset p9 for amputee subjects

Figure 10. Classification performance of QDA, SVM-Linear, and SVM-RBF with feature subset p9 for
able-bodied subjects (AB01, AB02, and AB03) and amputee subjects (AM01, AM02, and AM03).

5. Conclusions

We presented a framework for designing a UIR system. We used experimental data collected
from three able-bodied subjects and three above-knee amputee subjects to classify four and three
different gait modes, respectively. Overlapped windowing with frame length 250 ms and increment
50 ms provided a good trade-off between classification performance and real-time computation.
Several efficient TD and FD features were extracted from data frames to form the feature set. We
performed feature selection in two steps. First, we excluded non-informative features with poor
classification performance and high computational effort. Second, we used MOO to find an optimal
feature subset from the remaining features to obtain a UIR system that was both parsimonious and
accurate. For this purpose, GMOFS, a novel embedded multi-objective feature selection algorithm, was
proposed and compared with four evolutionary MOOs on the basis of normalized hypervolume and
relative coverage. Classification results confirmed the competitive performance of GMOFS. Several
classifiers were trained with the optimal feature subsets that were selected by MOO, and SVM-RBF
and MLP were found to be the best classifiers for UIR. The outputs of the classifiers were input to an
MVF to improve classification accuracy and chattering between the identified classes.

For future work, more above-knee amputee subjects will be involved in data collection and
classification. In addition, we will include other daily-life activities such as incline walking, stair ascent
and descent, standing and sitting, etc. It is also of great interest to consider other informative features
for classification, such as wavelet transform coefficients. Finally, it would be of interest to compare
GMOFS with other state-of-the-art MOO methods, and to apply GMOFS to other MOO problems.
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Abbreviations

The following abbreviations are used in this manuscript.

List of acronyms in order of appearance

Acronym Definition Acronym Definition
UIR User intent recognition ZC Zero crossing
MOO Multi-objective optimization WL Waveform length
GMOFS Gradient-based multi-objective feature selection VAR Variance
MOBBO Multi-objective biogeography-based optimization MAV Mean absolute value
SVM Support vector machine RMS Root mean square
RBF Radial basis function WAMP Willison amplitude
MVF Majority voting filter SK Skewness
sEMG Surface electromyography KU Kurtosis
LDA Linear discriminant analysis COR Correlation
QDA Quadratic discriminant analysis ANG Angle
GMM Gaussian mixture model PSD Periodogram spectrum density
ANN Artificial neural network MNF Mean frequency
BBO Biogeography-based optimization MDF Median frequency
VEBBO Vector evaluated BBO MAXF Maximum frequency
NSBBO Non-dominated sorting BBO AR Auto-regressive model
NPBBO Niched Pareto BBO CV Cross validation
SPBBO Strength Pareto BBO AB01 Able-bodied subject 01
EA Evolutionary algorithm AM01 Amputee subject 01
MLP Multilayer perceptron PS Preferred speed
TD Time domain ST Standing
FD Frequency domain NW Normal walking
FLDA Fisher’s linear discriminant analysis SW Slow walking
PCA Principal component analysis FW Fast walking
DT Decision tree
SSC Slope sign change
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