
sensors

Article

Single Image Super-Resolution Based on Global
Dense Feature Fusion Convolutional Network

Wang Xu *, Renwen Chen, Bin Huang, Xiang Zhang and Chuan Liu

State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China;
rwchen@nuaa.edu.cn (R.C.); binhuang@nuaa.edu.cn (B.H.); kalman36912@163.com (X.Z.);
chuanliu@nuaa.edu.cn (C.L.)
* Correspondence: xuwang@nuaa.edu.cn

Received: 6 December 2018; Accepted: 8 January 2019; Published: 14 January 2019
����������
�������

Abstract: Deep neural networks (DNNs) have been widely adopted in single image super-resolution
(SISR) recently with great success. As a network goes deeper, intermediate features become
hierarchical. However, most SISR methods based on DNNs do not make full use of the hierarchical
features. The features cannot be read directly by the subsequent layers, therefore, the previous
hierarchical information has little influence on the subsequent layer output, and the performance
is relatively poor. To address this issue, a novel global dense feature fusion convolutional network
(DFFNet) is proposed, which can take full advantage of global intermediate features. Especially,
a feature fusion block (FFblock) is introduced as the basic module. Each block can directly read
raw global features from previous ones and then learns the feature spatial correlation and channel
correlation between features in a holistic way, leading to a continuous global information memory
mechanism. Experiments on the benchmark tests show that the proposed method DFFNet achieves
favorable performance against the state-of-art methods.

Keywords: dense feature fusion; convolutional neural network; image super-resolution

1. Introduction

Image super resolution, especially single image super-resolution (SISR), is a classical problem in
computer version tasks. It aims to reconstruct a visually pleasing high resolution (HR) image from the
degraded low resolution (LR) one. SISR has been applied in various fields, such as facial recognition,
medical imaging, and surveillance systems [1,2]. The relationship between HR image and LR image is
based on the situation, thus, SISR is a highly ill-posed inverse problem. A common assumption is that
the LR image is a bicubic downsampled version of the HR image but, in practical application, there are
so many other factors that need to be considered.

SISR methods can be roughly classified in three categories: interpolation method,
reconstruction-based method, and learning-based method [3–7]. As deep learning (DL) becomes
increasingly popular in image processing [8–11], Dong et al. [12] introduced a convolutional neural
network named SRCNN, to solve SISR problems for the first time. Kim et al. [13] made a deeper
network with 20 convolution layers named VDSR [13], while using skip connection to ease the
training. Kim et al. [14] also proposed a deeply recursive convolutional network (DRCN) with
recursive convolution layer and recursive supervision, which given help to control the amount of
model parameters.

The network performance can be furthermore improved if the module can be carefully designed.
Ledig et al. [15] proposed a deeper and wider network named SRResNet [15], based on residual
architecture from He et al. [16]. Tong et al. [17] introduced a dense block into SISR with a low

Sensors 2019, 19, 316; doi:10.3390/s19020316 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19020316
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/2/316?type=check_update&version=2

Sensors 2019, 19, 316 2 of 14

growth rate of 16. The same dense blocks are stacked to build a deep network SRDenseNet [17] with
dense skip connections. Tai et al. [18] proposed a deep network called MemNet [18] consisting of
cascaded memory blocks [18] which can densely fuse global features. Hu et al. [8] proposed a cascaded
multi-scale cross network (CMSC) to fuse complementary multi-scale information. Hence, the state
information of some layers can be influenced not only by the adjacent information, but also by certain
previous long-term information with direct connection.

As a network goes deeper, features become hierarchical since the receptive field of convolution
layers in the network differs. VDSR [13], DRCN [14], SRResNet [15], SRDenseNet [17], and
MemNet [18] successfully improve the performance by using the intermediate information of the
network, which means the information can provide more clues to reconstruct HR image. However,
none of them pay enough attention to the full use of the global features. Even though the gate unit in
MemNet [18] was intended to control short-term memory and long-term memory [18] through the
1 × 1 convolution layer, it could only learn the channel correlation between features but not the feature
spatial correlation. Besides, MemNet [18] interpolates LR images to get the same size as the HR images
at preprocessing, and features in MemNet [18] are not directly extracted from the original LR images.

To solve these problems, a global dense feature fusion convolutional network (DFFNet) is
proposed. DFFNet can extract dense features from an original LR image to reconstruct a HR image
directly, without any image scaling preprocessing. For an extremely deep network, it is not practical to
extract every single layer’s output feature. A feature fusion block (FFblock) is introduced as the basic
module of DFFNet. FFblock consists of a global feature fusion (GFF) unit and a feature reduction and
learning (FRL) unit, which can make full use of global features, learning the feature spatial correlation
and channel correlation. GFF unit concatenates all the output features of preceding blocks. The global
raw features of all the preceding blocks can be directly learnt by the current block at every stage in the
network. Each FFblock has a direct connection to the previous ones. Hence, a structure called global
dense feature fusion (GDFF) is established by the dense feature fusion blocks (DFFBs) composed of
cascaded FFblocks, where GFF unit has been densely utilized. GDFF leads to a continuous global
information memory mechanism, and improves the flow of global information in the network.

In summary, this work has three main contributions, including:

• A deep end-to-end unified framework global dense feature fusion convolutional network
(DFFNet) is proposed for single image super-resolution of different scale factors. The network
can learn the dense features from the original LR image and intermediate blocks and directly
reconstruct HR images without any image scaling preprocessing.

• A feature fusion block (FFblock) is introduced in DFFNet, which builds a direct connection
between any two blocks through global feature fusion (GFF) unit, FFblock learns the feature
spatial correlation and channel correlation from the previous global features to extract higher
order features.

• Dense feature fusion blocks (DFFBs) consisting of cascaded FFblocks, build global dense feature
fusion so that previous global raw features can be directly learnt by the current FFblock at any
stage in the network, and each FFblock in the DFFBs would adaptively decide how many of these
features to be reserved, leading to a continuous global information memory mechanism.

2. Related Work

SISR has become a hot research topic in the field of image processing due to its wide use and great
application value. The key technology of SISR is how to estimate the mapping relationship between
LR image and HR image. It is essential to extract image features and perform non-linear representation
to achieve high resolution image restoration.

Recently, deep learning-based methods [12–22] have achieved superior performance over
conventional methods in SISR. SRCNN [12] firstly end-to-end learns the mapping between LR image
and HR image. However, there are still existing problems, like lack of contextual connection and slow
convergence. Making a network deeper and wider is the common way to improve the performance of

Sensors 2019, 19, 316 3 of 14

SRCNN [12]. VDSR [13] increased the depth of the network by cascading same convolution layers
while introducing residual learning to ease the difficulty of training the deep network. DRCN [14]
not only utilized skip connections, but also used recursive supervision to speed up the training
progress. Tai et al. [18] introduced a recursive unit based on the residual structure and a gate unit into
memory block [18] to fuse the intermediate information. SRDenseNet [17] enhanced the flow of global
information via dense skip connections. CMSC [19] fuses complementary multi-scale information by
cascading multiple multi-scale cross modules that can learn features under different receptive fields.

However, most of these methods, such as SRCNN [12], VDSR [13], DRCN [14], and MemNet [18],
need to interpolate the LR image target size, which increases the computation complexity
quadratically [20]. As a result, it is hard to say those networks build an end-to-end map between an
LR image and HR image without extracting the features from the original LR image. To address this
problem, a transposed convolution layer was proposed by Dong et al. [20] in fast super-resolution
convolutional neural networks (FSRCNN) [20], which is adopted in SRDenseNet [17] as well.
Shi et al. [21] proposed an efficient subpixel convolutional neural network named ESPCN [21], directly
upscaling the features into HR image. This structure was also adopted in SRResNet [15]. ESPCN [21]
and FSRCNN [20] make it possible to extract features from the original LR image to reconstruct a HR
image directly.

Huang et al. [22] proposed DenseNet, which introduced a dense block that let any two layers
in the block have a direct connection. The same structure is also introduced in MemNet [18] and
SRDenseNet [17]. More differences between MemNet [18], DenseNet [22], SRDenseNet [17], and our
DFFNet will be discussed in Section 4.

The methods mentioned above have achieved state-of-art performance. However, all of them
ignore the useful features in the middle of the network. Since global intermediate features are
hierarchical in a very deep network, it would be helpful for SISR if the features could be fully used.
To address this issue, a global dense feature fusion convolutional network is proposed to adaptively
learn the global features in the intermediate layers from the LR image efficiently. The network will be
detailed in the next section.

3. DFFNet for Image Super-Resolution

3.1. Basic Architecture

The architecture of our DFFNet consists of three parts: coarse feature extraction block (CFblock),
dense feature fusion blocks (DFFBs), and reconstruction block (Recblock), as shown in Figure 1. Denote
x and y, that represent the input and output of the network, and a convolution layer is utilized in
CFblock to extract the coarse features from the LR image:

F0 = fextract(x) = W0 × x, (1)

where fextract denotes the coarse extraction function, W0 is the weight of the convolution layer, and F0

is the output of CFblock. In the DFFBs, supposing there are N feature fusion blocks, the output of each
FFblock can be represented as

F1 = fFFblock1(F0)

F2 = fFFblock2(F0, F1)

· · ·
Fn = fFFblockn(F0, F1, . . . , Fn−2, Fn−1), n ≥ 2

(2)

where fFFblockn denotes the n-th FFblock function, and F0, F1, . . . , Fn−2, Fn−1 and Fn are the input and
output of the function, respectively. In particular, the first FFblock could only receive feed-forward
features F0 from CFblock, which is illustrated in Figure 1 as well. Before Recblock, another convolution
layer (Mid_conv) is stacked after DFFBs to further extract features FN+1. FN+1 is then added with the

Sensors 2019, 19, 316 4 of 14

coarse features F0, leading to a long-term skip connection (LTSC). Experiments show that LTSC is
helpful for performance improvement and training stability. At last, a structure similar to ESPCN [10]
is utilized in Recblock, as shown in Figure 1. The output of DFFNet can be formulated as

y = fDFFNet(x) = frec(FN+1 + F0), (3)

where frec denotes Recblock function, fDFFNet denotes the function of basic DFFNet.

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

added with the coarse features 0F , leading to a long-term skip connection (LTSC). Experiments
show that LTSC is helpful for performance improvement and training stability. At last, a structure
similar to ESPCN [10] is utilized in Recblock, as shown in Figure 1. The output of DFFNet can be
formulated as

1 0() ()DFFNet rec Nf f F F+= = +y x , (3)

where recf denotes Recblock function, DFFNetf denotes the function of basic DFFNet.

Figure 1. The basic architecture of the proposed dense feature fusion convolutional network
(DFFNet).

Figure 2. Feature fusion block. Global feature fusion (GFF) unit concatenates all the global features
from previous blocks on channel dimension. Green flat cube denotes the coarse feature extraction
block (CFblock) output features 0F , blue flat cubes denotes output features from previous 1, 2, …,
(n − 2)-th FFblocks and the yellow cube denotes the output features

1n
F

−
 from the last feature fusion

block (FFblock) n − 1. Blue arrow denotes the flow of global information.

3.2. Feature Fusion Block

This section presents details about the proposed feature fusion block, as shown in Figure 2.
FFblock contains two parts, including global feature fusion unit (GFF unit), and feature reduction
and learning unit (FRL unit).

Figure 1. The basic architecture of the proposed dense feature fusion convolutional network (DFFNet).

3.2. Feature Fusion Block

This section presents details about the proposed feature fusion block, as shown in Figure 2.
FFblock contains two parts, including global feature fusion unit (GFF unit), and feature reduction and
learning unit (FRL unit).

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

added with the coarse features 0F , leading to a long-term skip connection (LTSC). Experiments
show that LTSC is helpful for performance improvement and training stability. At last, a structure
similar to ESPCN [10] is utilized in Recblock, as shown in Figure 1. The output of DFFNet can be
formulated as

1 0() ()DFFNet rec Nf f F F+= = +y x , (3)

where recf denotes Recblock function, DFFNetf denotes the function of basic DFFNet.

Figure 1. The basic architecture of the proposed dense feature fusion convolutional network
(DFFNet).

Figure 2. Feature fusion block. Global feature fusion (GFF) unit concatenates all the global features
from previous blocks on channel dimension. Green flat cube denotes the coarse feature extraction
block (CFblock) output features 0F , blue flat cubes denotes output features from previous 1, 2, …,
(n − 2)-th FFblocks and the yellow cube denotes the output features

1n
F

−
 from the last feature fusion

block (FFblock) n − 1. Blue arrow denotes the flow of global information.

3.2. Feature Fusion Block

This section presents details about the proposed feature fusion block, as shown in Figure 2.
FFblock contains two parts, including global feature fusion unit (GFF unit), and feature reduction
and learning unit (FRL unit).

Figure 2. Feature fusion block. Global feature fusion (GFF) unit concatenates all the global features
from previous blocks on channel dimension. Green flat cube denotes the coarse feature extraction
block (CFblock) output features F0, blue flat cubes denotes output features from previous 1, 2, . . . , (n −
2)-th FFblocks and the yellow cube denotes the output features Fn−1 from the last feature fusion block
(FFblock) n − 1. Blue arrow denotes the flow of global information.

Global feature fusion unit is designed to further improve the flow of information by fusing
global raw features from all the preceding FFblocks and CFblock. Global features from previous blocks
are concatenated as the output of the GFF unit:

f usionn = [[F0, F1, F2, . . . , Fn−2], Fn−1], n ≥ 2, (4)

Sensors 2019, 19, 316 5 of 14

where f usionn is the output of GFF unit in n-th FFblock, [F0, F1, F2, . . . , Fn−2] denotes the global output
features of CFblock and previous 1, 2, . . . , (n − 2)-th FFblocks, and Fn−1 is the output of (n − 1)-th
FFblock. In particular, when n = 1, f usion1 = F0, since the first FFblock only receives feed-forward
features F0 from CFblock. If GFF unit output has GFn feature-maps:

GFn = GF0 + GF1 + · · ·+ GFn−1 , (5)

where GF0 is the number of features of CFblock output, and GFn−1 is the number of features of (n
− 1)-th FFblock output. Each FFblock builds dense direct connections to all the subsequent ones.
Therefore, by densely utilizing GFF unit, DFFBs builds global dense feature fusion (GDFF) which leads
to a continuous global information memory mechanism.

Feature reduction and learning unit is introduced to make further use of the global features
and, unlike the gate unit in MemNet [18], two 3 × 3 convolution layers (C_1 and C_2) are utilized.
Design of FRL unit is based on the residual structure in SRResNet [15]. Batch normalization (BN)
layers are removed. As the experiment results shown in Figure 3, BN layer does not help performance
improvement. Compared to 1 × 1 convolutional layer in the gate unit, the 3 × 3 convolution layers
both learn the feature spatial correlation and channel correlation, then adaptively decide how much of
the previous global features and feed-forward features should be reserved:

Fn = fFFblockn(F0,F1, . . . , Fn−2, Fn−1)

= (Wn,2 × σ(Wn,1 × f usionn))
(6)

where Fn is the output of the n-th FFblock, and Wn,1 and Wn,2 are the weight parameters of C_1 and
C_2, respectively. σ denotes the non-linear activation function ReLU [23]. In DFFNet, the number of
feed-forward features G remains the same, thus, GF0= GF1 = · · ·= GFn= GFn+1 = G.

However, as the network goes forward, the number of GFF unit output features grows up, linearly.
It is necessary to reduce parameters of FFblock when the network goes extremely deep. We let C_1
output have [θGFn] features, where θ is the compression factor. When θ = 1, C_1 has the same number
of features as GFF unit output. In our basic DFFNet, θ is set to 0.25.

3.3. Reconstruction Block

As shown in Figure 1, the first 3 × 3 convolution layer (Re_conv_1) in Recblock is utilized
to extract dense features. If the scale factor is r (e.g., ×2 and ×3), the output of Re_conv_1 has
2G × r2 feature-maps. A subpixel convolution layer [21] (Re_sub_pixel_1) is stacked after Re_conv_1.
Re_sub_pixel_1 is a periodic shuffling operator that rearranges the elements of a H × W × C · r2 tensor
to a tensor of shape rH × rW × C, which is illustrated in Figure 1. The output of Re_conv_1 has
2G feature-maps with size rHLR × rWLR, where HLR and WLR is the height and width of the input.
For a large-scale factor ×4, another convolution layer (Re_conv_1_1) and subpixel convolution layer
(Re_sub_pixel_2) would be stacked after Re_sub_pixel_1. The last 3 × 3 convolution layer (Re_conv_2)
outputs three feature-maps, forming the reconstructed RGB image.

3.4. Implementation Details

In our basic DFFNet, we set kernel size of all the convolution layers to 3 × 3, and the number of
feed-forward features G remains the same, at 32, and we set zero padding to input of all layers to keep
feature sizes fixed. The number of FFblocks in DFFBs is set to N = 32. Finally, DFFNet outputs three
channel colorful images and can process gray image as well. For a detailed presentation of DFFNet,
please see in Appendix A.

Given training datasets
{

img(i)lr , img(i)hr

}M

i=1
, where the M denotes the number of image patches,

img(i)hr denotes the HR image, and img(i)lr denotes the LR image, and L1 loss is used as training loss
function:

Sensors 2019, 19, 316 6 of 14

Loss =
1
M

M

∑
i=1

∥∥∥img(i)hr − fDFFNet(img(i)lr)
∥∥∥ (7)

Although most methods use L2 loss, the L1 loss is demonstrated to be more powerful for
performance and convergence [24].

4. Discussions

Difference to DenseNet. DenseNet [22] builds its architecture on the dense connections within
any two layers in the dense block [22]. However, this densely connected structure is utilized only
in a local way, since the size of features is different in different dense blocks, so it is impossible for
the dense block to read raw features from the subsequent ones. Moreover, batch normalization (BN)
layers are removed in our DFFNet, which increase computation complexity and do not help improve
performance. To keep the feature sizes fixed in the network, a pooling layer is not used in DFFNet.
Furthermore, feature fusion block is utilized to read the global features directly from all the preceding
blocks, and learn to extract higher order features, leading to a contiguous memory mechanism which
the DenseNet [22] cannot achieve.

Difference to SRDenseNet. The dense block in SRDenseNet [17] has the same architecture as the
one in DenseNet [22]. SRDenseNet [17] introduces the dense block to solve SISR and enhance it with
dense skip connections. Although the dense block can read features from the convolution layers in
the block while building a local residual learning with local skip connection, the block is, however,
unable to directly read global raw features from the preceding ones in a global way, like our DFFblock
does. Global dense feature fusion is introduced in DFFNet, and each FFblock can learn from all the
global raw features of preceding blocks and then adaptively decide how much of the current and
prior information should be reserved. With full use of global raw features, DFFNet achieves better
performance than SRDenseNet [17].

Difference to MemNet. The difference between MemNet [18] and DFFNet can be summarized
in two points. First, the gate unit in memory block fuses the global features with 1 × 1 convolution
layer, thus, the memory block could only learn the channel correlation between features. Two 3 × 3
convolution layers are utilized in feature fusion block (FFblock). FFblock can not only learn the channel
correlation between features, but also the feature spatial correlation and, as a result, our FFblock can
make further use of the intermediate features in a more global way than the memory block. Second,
MemNet [18] does not directly extract features from an LR image; it has to resize the LR image with
interpolation preprocessing to get the target size of the HR image, while our DFFNet extracts the
features from the original LR image and utilizes Recblock to reconstruct HR image directly with
dense features.

5. Experiments

5.1. Datasets and Metrics

A public high-quality dataset DVI2K [25] with 2K resolution released by Timofte et al. [25] is used
for model training. DVI2K [25] includes 800 training images, 100 validation images, and 100 test images
containing various types of images of landscapes, such as people, animals, insects, plants, buildings,
and complex textures. The LR images used for training are obtained by bicubic downsampling with
different scale factors, including ×2, ×3, and ×4, by adopting MATLAB function imresize with the
option bicubic from 800 training images. Standard benchmark datasets, Set5 [26], Set14 [27], B100 [28],
Urban100 [29], are used for testing. For comparison, the SISR results with different three scale factors
are evaluated with peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) index [30] on
luminance channel (Y channel) in transformed YCbCr color space, and the same name of pixels as
scale factors (×2, ×3 and ×4) are ignored, from the border, in the SISR results.

Sensors 2019, 19, 316 7 of 14

5.2. Training Details

For training, in each training batch, we use 16 RGB image patches with size 48 × 48 randomly
cropped from LR images and the corresponding HR images for all model with different scale factors
(×2, ×3, and ×4). Patches are augmented during training with random horizontal flip, vertical flip,
and 90-degree rotation with random probability of 0.5. We normalize the image patches values and
subtract them by the mean RGB value of the DIV2K [25] dataset as preprocessing. We implement our
DFFNet with the Tensorflow framework and train the model with ADAM optimizer [31] by setting
β1 = 0.9, β2 = 0.999, and ε = 10−8. The training loss function is L1 loss. The learning rate is initialized as
0.0001 for all layers, and halved at every 200 epochs, and an epoch consists of 1000 updates. The model
with different scale factors will be individually trained. It takes about 1 day with a GPU GTX1080 Ti
for 300 epochs to train a basic DFFNet.

We train our model of DFFNet with scale factor ×2 (denoted as ×2 model), as described in
Section 3.4, firstly, from scratch. After the ×2 model converges, we use it as a pre-trained network for
the model with scale factor ×3 (denoted as ×3 model), we use ×2 model parameters to initialize all
parameters in ×3 model, except the parameters in Recblock, and then fine-tune the ×3 model with the
learning rate of 0.00005, about 50 epochs. The converged ×3 model will later be used as a pre-trained
network for the model with scale factor ×4 (denoted as ×4 model). Training settings are kept as same
as for the ×3 model.

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

different three scale factors are evaluated with peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) index [30] on luminance channel (Y channel) in transformed YCbCr color space,
and the same name of pixels as scale factors (×2, ×3 and ×4) are ignored, from the border, in the SISR
results.

5.2. Training Details

For training, in each training batch, we use 16 RGB image patches with size 48 × 48 randomly
cropped from LR images and the corresponding HR images for all model with different scale factors
(×2, ×3, and ×4). Patches are augmented during training with random horizontal flip, vertical flip, and
90-degree rotation with random probability of 0.5. We normalize the image patches values and
subtract them by the mean RGB value of the DIV2K [25] dataset as preprocessing. We implement our
DFFNet with the Tensorflow framework and train the model with ADAM optimizer [31] by setting

1β = 0.9, 2β = 0.999, and ε = 10−8. The training loss function is L1 loss. The learning rate is
initialized as 0.0001 for all layers, and halved at every 200 epochs, and an epoch consists of 1000
updates. The model with different scale factors will be individually trained. It takes about 1 day with
a GPU GTX1080 Ti for 300 epochs to train a basic DFFNet.

We train our model of DFFNet with scale factor ×2 (denoted as ×2 model), as described in Section
3.4, firstly, from scratch. After the ×2 model converges, we use it as a pre-trained network for the model
with scale factor ×3 (denoted as ×3 model), we use ×2 model parameters to initialize all parameters in
×3 model, except the parameters in Recblock, and then fine-tune the ×3 model with the learning rate of
0.00005, about 50 epochs. The converged ×3 model will later be used as a pre-trained network for the
model with scale factor ×4 (denoted as ×4 model). Training settings are kept as same as for the ×3 model.

Figure 3. Effects of different feature reduction and learning (FRL) units added with batch
normalization (BN) layer, or no BN layer, on model convergence. The curves are based on peak signal-
to-noise ratio (PSNR) tested on Set5 with scale factor ×2 in 150 epochs. Other settings of model are the
same as described in Section 3.4, except N = 16.

5.3. Ablation Study

Table 1 presents the ablation study on the effects of global dense feature fusion (GDFF) and long-
term skip connection (LTSC). Four networks in Table 1 have the same numbers of FFblocks and feed-
forward features as the standard model. The baseline model (denoted as M_base) is obtained without
GDFF and LTSC, based on the standard DFFNet, which has the plain structure. The performance
(PSNR = 28.87 dB) of M_base is poor, even worse than Bicubic (PSNR = 33.66 dB). This is caused by
the difficulty of training [1], and demonstrates that stacking many basic convolution layers does not
result in better performance.

Table 1. Ablation study on effects of global dense feature fusion (GDFF) and long-term skip
connection (LTSC). We present the best performance (average PSNR) on Set5 with scale factor ×2 in
200 epochs.

Figure 3. Effects of different feature reduction and learning (FRL) units added with batch normalization
(BN) layer, or no BN layer, on model convergence. The curves are based on peak signal-to-noise ratio
(PSNR) tested on Set5 with scale factor ×2 in 150 epochs. Other settings of model are the same as
described in Section 3.4, except N = 16.

5.3. Ablation Study

Table 1 presents the ablation study on the effects of global dense feature fusion (GDFF) and
long-term skip connection (LTSC). Four networks in Table 1 have the same numbers of FFblocks
and feed-forward features as the standard model. The baseline model (denoted as M_base) is
obtained without GDFF and LTSC, based on the standard DFFNet, which has the plain structure.
The performance (PSNR = 28.87 dB) of M_base is poor, even worse than Bicubic (PSNR = 33.66 dB).
This is caused by the difficulty of training [1], and demonstrates that stacking many basic convolution
layers does not result in better performance.

Table 1. Ablation study on effects of global dense feature fusion (GDFF) and long-term skip connection
(LTSC). We present the best performance (average PSNR) on Set5 with scale factor ×2 in 200 epochs.

M_Base M_LTSC M_GDFF M_GDFF_LTSC

GDFF × × √ √

LTSC × √ × √

PSNR 28.87 35.00 37.94 38.08

Sensors 2019, 19, 316 8 of 14

Then, we add LTSC and GDFF to M_base, resulting in M_LTSC and M_GDFF. Results show
that each structure can efficiently improve the performance of M_base. This is mainly because each
structure enhances the flow of information and gradient. A combination of the two structures would
perform better than either in isolation. When we used two structures simultaneously (denote as
M_GDFF_LTSC), DFFNet with LTSC and GDFF obviously performs the best.

The visualization of convergence process is presented in Figure 4. The curves verify the analyses
above, and show that LTSC and GDFF both stabilize the training process while accelerating model
convergence. GDFF can further improve the performance. From the red curve of M_GDFF_LTSC,
we can see that LTSC can effectively reduce performance drop while improving performance, when
combined with GDFF. Visual and quantitative analyses demonstrate that DFFNet can benefit greatly
from LTSC and GDFF.

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

 M_Base M_LTSC M_GDFF M_GDFF_LTSC
GDFF × × √ √
LTSC × √ × √
PSNR 28.87 35.00 37.94 38.08

Then, we add LTSC and GDFF to M_base, resulting in M_LTSC and M_GDFF. Results show that
each structure can efficiently improve the performance of M_base. This is mainly because each
structure enhances the flow of information and gradient. A combination of the two structures would
perform better than either in isolation. When we used two structures simultaneously (denote as
M_GDFF_LTSC), DFFNet with LTSC and GDFF obviously performs the best.

The visualization of convergence process is presented in Figure 4. The curves verify the analyses
above, and show that LTSC and GDFF both stabilize the training process while accelerating model
convergence. GDFF can further improve the performance. From the red curve of M_GDFF_LTSC, we
can see that LTSC can effectively reduce performance drop while improving performance, when
combined with GDFF. Visual and quantitative analyses demonstrate that DFFNet can benefit greatly
from LTSC and GDFF.

Figure 4. Model convergence process of different combination of GDFF and LTSC. The curves for
each structure are based on average PSNR tested on Set5 with scale factor ×2 in 200 epochs. Other
settings of the model are the same as described in Section 3.4.

5.4. Benchmark Results

We compare our DFFNet with other methods on the benchmark testings, including Bicubic,
SRCNN [12], VDSR [13], DRCN [14], SRResNet [15], LapSRN [32], CMSC [19], SRDenseNet [17], and
MemNet [18]. We present quantitative results for ×2, ×3, and ×4 in Table 2. When compared with
persistent models, such as MemNet [18] and SRDenseNet [17], our DFFNet performs best on all
benchmarks with all scale factors. When the scale factor becomes larger (e.g., ×3, ×4), it is harder for
all models to reconstruct HR images from LR images with much lower resolution, because more
details need to be reconstructed. Nonetheless, our DFFNet still outperforms the others. Specifically,
most images in Urban100 contain self-similar textures, although dense skip connections [6] in
SRDenseNet [17] and gate unit in MemNet [18] can fuse global information to restore similar
structures in images, and our DFFNet gives PSNR/SSIM of 26.20 dB/0.7893, which is 0.7 dB/0.0263
and 0.15 dB/0.0074 better than MemNet [18] and SRDenseNet [17] on Urban100 with scale factor ×4.
This demonstrates that our feature fusion block (FFblock) is more effective than memory block in
MemNet [18] and dense block in SRDenseNet [17], and further illustrates that fusing the global
intermediate features via global dense feature fusion (GDFF) provides more clues to reconstruct HR
image from the degraded image. When compared with other methods, our DFFNet still achieves the
best average results on all datasets.

We also made comparison of model complexity with other methods in Table 3. DFFNet has
many more parameters than other compared methods, which would occur when the network goes

Figure 4. Model convergence process of different combination of GDFF and LTSC. The curves for each
structure are based on average PSNR tested on Set5 with scale factor ×2 in 200 epochs. Other settings
of the model are the same as described in Section 3.4.

5.4. Benchmark Results

We compare our DFFNet with other methods on the benchmark testings, including Bicubic,
SRCNN [12], VDSR [13], DRCN [14], SRResNet [15], LapSRN [32], CMSC [19], SRDenseNet [17],
and MemNet [18]. We present quantitative results for ×2, ×3, and ×4 in Table 2. When compared
with persistent models, such as MemNet [18] and SRDenseNet [17], our DFFNet performs best
on all benchmarks with all scale factors. When the scale factor becomes larger (e.g., ×3, ×4), it
is harder for all models to reconstruct HR images from LR images with much lower resolution,
because more details need to be reconstructed. Nonetheless, our DFFNet still outperforms the others.
Specifically, most images in Urban100 contain self-similar textures, although dense skip connections [6]
in SRDenseNet [17] and gate unit in MemNet [18] can fuse global information to restore similar
structures in images, and our DFFNet gives PSNR/SSIM of 26.20 dB/0.7893, which is 0.7 dB/0.0263
and 0.15 dB/0.0074 better than MemNet [18] and SRDenseNet [17] on Urban100 with scale factor
×4. This demonstrates that our feature fusion block (FFblock) is more effective than memory block
in MemNet [18] and dense block in SRDenseNet [17], and further illustrates that fusing the global
intermediate features via global dense feature fusion (GDFF) provides more clues to reconstruct HR
image from the degraded image. When compared with other methods, our DFFNet still achieves the
best average results on all datasets.

We also made comparison of model complexity with other methods in Table 3. DFFNet has
many more parameters than other compared methods, which would occur when the network goes
deep and, so, many features need to be fused. Despite this drawback, our DFFNet is still three
times faster than MemNet [18] with better performance for DFFNet, which does not need any image
scaling preprocessing.

Sensors 2019, 19, 316 9 of 14

Table 2. Public benchmark test results. Average PSNR/SSIMs for scale factor ×2, ×3, and ×4 on datasets Set5, Set14, BSD100, and Urban100.

Dataset Scale Bicubic SRCNN DRCN SRResNet VDSR LapSRN CMSC SRDenseNet MemNet DFFNet

Set5
×2 33.66/0.9299 36.66/0.9542 37.63/0.9588 -/- 37.53/0.9587 37.52/0.9591 37.89/0.9605 -/- 37.78/0.9597 38.13/0.9607
×3 30.39/0.8682 32.75/0.9090 33.82/0.9226 -/- 33.66/0.9213 33.82/0.9227 34.24/0.9266 -/- 34.09/0.9248 34.58/0.9272
×4 28.42/0.8104 30.48/0.8628 31.53/0.8854 32.05/0.8810 31.35/0.8838 31.51/0.8855 31.91/0.8923 32.08/0.8934 31.74/0.8893 32.44/0.8949

Set14
×2 30.24/0.8688 32.42/0.9063 33.04/0.9118 -/- 33.03/0.9124 33.08/0.9130 33.41/0.9153 -/- 33.28/0.9142 33.62/0.9176
×3 27.55/0.7742 29.28/0.8208 29.76/0.8311 -/- 29.77/0.8314 29.79/0.8320 30.09/0.8371 -/- 30.00/0.8350 30.32/0.8408
×4 26.00/0.7027 27.49/0.7503 28.02/0.7670 28.53/0.7804 28.01/0.7674 28.19/0.7720 28.35/0.7751 28.50/0.7782 28.26/0.7723 28.65/0.7810

BSD100
×2 29.56/0.8431 31.36/0.8879 31.85/0.8942 -/- 31.90/0.8960 30.41/0.9101 32.15/0.8992 -/- 32.08/0.8978 32.29/0.9002
×3 27.21/0.7382 28.41/0.7863 28.80/0.7963 -/- 28.82/0.7976 27.07/0.8272 29.01/0.8024 -/- 28.96/0.8001 29.21/0.8057
×4 25.96/0.6675 26.90/0.7101 27.23/0.7233 27.57/0.7354 27.29/7251 25.21/0.7553 27.46/0.7308 27.53/0.7337 27.40/0.7281 27.76/0.7376

Urban100
×2 26.88/0.8403 29.50/0.8946 30.75/0.9133 -/- 30.76/0.9140 37.27/0.9740 31.47/0.9220 -/- 31.31/0.9195 32.32/0.9302
×3 24.46/0.7349 26.24/0.7989 27.15/0.8276 -/- 27.14/0.8279 32.19/0.9334 27.69/0.8411 -/- 27.56/0.8376 28.25/0.8545
×4 23.14/0.6577 24.52/0.7221 25.14/0.7510 26.07/0.7839 25.18/0.7524 29.09/0.8893 25.64/0.7692 26.05/0.7819 25.50/0.7630 26.20/0.7893

Sensors 2019, 19, 316 10 of 14

Table 3. Comparisons of model complexity. The results are evaluated on Set14 with scale factor ×3,
where the inference speed denotes the average run time of an image in Set14.

SRCNN VDSR MemNet DFFNet (ours)

Parameters (M) 0.02 0.90 2.44 27.75
Inference speed (s) 0.004 0.03 0.369 0.113

PSNR (dB) 29.28 29.77 30.00 30.32

Visual comparisons on scale factor ×4 are shown in Figures 5–8. For image 86,000.bmp and
102,061.bmp, it is observed that most compared methods, such as VDSR and DRCN, would produce
visible artifacts and blurred textures and edges, and even fail to recover some small textures.
By contrast, our DFFNet can reconstruct clearer textures and sharper edges with fewer artifacts,
closer to the original image. For the line in img044.bmp in Figure 7, as pointed out by the red
arrow, all the other methods cannot successfully recover it, while our DFFNet can recover it with an
obviously sharper edge. This is mainly because our DFFNet takes full advantage of global intermediate
information with global dense feature fusion.

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

deep and, so, many features need to be fused. Despite this drawback, our DFFNet is still three times
faster than MemNet [18] with better performance for DFFNet, which does not need any image scaling
preprocessing.

Table 2. Public benchmark test results. Average PSNR/SSIMs for scale factor ×2, ×3, and ×4 on datasets
Set5, Set14, BSD100, and Urban100.

et Scale Bicubic SRCNN DRCN SRResNet VDSR LapSRN CMSC SRDenseNet MemNet DF

×2 33.66/0.9299 36.66/0.9542 37.63/0.9588 -/- 37.53/0.9587 37.52/0.9591 37.89/0.9605 -/- 37.78/0.9597 38.13
×3 30.39/0.8682 32.75/0.9090 33.82/0.9226 -/- 33.66/0.9213 33.82/0.9227 34.24/0.9266 -/- 34.09/0.9248 34.58
×4 28.42/0.8104 30.48/0.8628 31.53/0.8854 32.05/0.8810 31.35/0.8838 31.51/0.8855 31.91/0.8923 32.08/0.8934 31.74/0.8893 32.44

4
×2 30.24/0.8688 32.42/0.9063 33.04/0.9118 -/- 33.03/0.9124 33.08/0.9130 33.41/0.9153 -/- 33.28/0.9142 33.62
×3 27.55/0.7742 29.28/0.8208 29.76/0.8311 -/- 29.77/0.8314 29.79/0.8320 30.09/0.8371 -/- 30.00/0.8350 30.32
×4 26.00/0.7027 27.49/0.7503 28.02/0.7670 28.53/0.7804 28.01/0.7674 28.19/0.7720 28.35/0.7751 28.50/0.7782 28.26/0.7723 28.65

00
×2 29.56/0.8431 31.36/0.8879 31.85/0.8942 -/- 31.90/0.8960 30.41/0.9101 32.15/0.8992 -/- 32.08/0.8978 32.29
×3 27.21/0.7382 28.41/0.7863 28.80/0.7963 -/- 28.82/0.7976 27.07/0.8272 29.01/0.8024 -/- 28.96/0.8001 29.21
×4 25.96/0.6675 26.90/0.7101 27.23/0.7233 27.57/0.7354 27.29/7251 25.21/0.7553 27.46/0.7308 27.53/0.7337 27.40/0.7281 27.76

100
×2 26.88/0.8403 29.50/0.8946 30.75/0.9133 -/- 30.76/0.9140 37.27/0.9740 31.47/0.9220 -/- 31.31/0.9195 32.32
×3 24.46/0.7349 26.24/0.7989 27.15/0.8276 -/- 27.14/0.8279 32.19/0.9334 27.69/0.8411 -/- 27.56/0.8376 28.25
×4 23.14/0.6577 24.52/0.7221 25.14/0.7510 26.07/0.7839 25.18/0.7524 29.09/0.8893 25.64/0.7692 26.05/0.7819 25.50/0.7630 26.20

Table 3. Comparisons of model complexity. The results are evaluated on Set14 with scale factor ×3,
where the inference speed denotes the average run time of an image in Set14.

 SRCNN VDSR MemNet DFFNet (ours)
Parameters (M) 0.02 0.90 2.44 27.75

Inference speed (s) 0.004 0.03 0.369 0.113
PSNR (dB) 29.28 29.77 30.00 30.32

Visual comparisons on scale factor ×4 are shown in Figures 5–8. For image 86,000.bmp and
10,2061.bmp, it is observed that most compared methods, such as VDSR and DRCN, would produce
visible artifacts and blurred textures and edges, and even fail to recover some small textures. By
contrast, our DFFNet can reconstruct clearer textures and sharper edges with fewer artifacts, closer
to the original image. For the line in img044.bmp in Figure 7, as pointed out by the red arrow, all the
other methods cannot successfully recover it, while our DFFNet can recover it with an obviously
sharper edge. This is mainly because our DFFNet takes full advantage of global intermediate
information with global dense feature fusion.

Figure 5. Visual results of 86,000.bmp in BSD100 processed by different methods with scale factor ×4.
(a) Original; (b) SRCNN (23.38/0.7349); (c) DRCN (25.88/0.7776); (d) VDSR (25.84/0.7769); (e)
SRDenseNet (26.21/0.7945); (f) MemNet (26.12/0.7967); (g) DFFNet (26.45/0.8041).

Figure 5. Visual results of 86,000.bmp in BSD100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (23.38/0.7349); (c) DRCN (25.88/0.7776); (d) VDSR (25.84/0.7769); (e)
SRDenseNet (26.21/0.7945); (f) MemNet (26.12/0.7967); (g) DFFNet (26.45/0.8041).

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

Figure 6. Visual results of 102061.bmp in BSD100 processed by different methods with scale factor ×4.
(a) Original; (b) SRCNN (25.82/0.7730); (c) DRCN (26.29/0.7945); (d) VDSR (26.38/0.7984); (e)
SRDenseNet (26.52/0.8064); (f) MemNet (26.62/0.8134); (g) DFFNet (26.83/0.8155).

Figure 7. Visual results of img044.bmp in Urban100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (29.21/0.8007); (c) DRCN (30.29/0.8307); (d) VDSR (29.77/0.8308); (e)
SRDenseNet (30.94/0.8575); (f) MemNet (31.29/0.8664); (g) DFFNet (31.77/0.8729).

Figure 8. Visual results of comic.bmp and ppt3.bmp in Set14 processed by different methods with
scale factor ×3. From left to right are Bicubic, SRCNN, VDSR, DRCN, and DFFNet. All compared the
methods would produce obvious blur and artifacts in local areas, while our proposed method can
recover clearer images with shaper edges and fewer artifacts.

6. Conclusions

Figure 6. Visual results of 102061.bmp in BSD100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (25.82/0.7730); (c) DRCN (26.29/0.7945); (d) VDSR (26.38/0.7984);
(e) SRDenseNet (26.52/0.8064); (f) MemNet (26.62/0.8134); (g) DFFNet (26.83/0.8155).

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

Figure 6. Visual results of 102061.bmp in BSD100 processed by different methods with scale factor ×4.
(a) Original; (b) SRCNN (25.82/0.7730); (c) DRCN (26.29/0.7945); (d) VDSR (26.38/0.7984); (e)
SRDenseNet (26.52/0.8064); (f) MemNet (26.62/0.8134); (g) DFFNet (26.83/0.8155).

Figure 7. Visual results of img044.bmp in Urban100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (29.21/0.8007); (c) DRCN (30.29/0.8307); (d) VDSR (29.77/0.8308); (e)
SRDenseNet (30.94/0.8575); (f) MemNet (31.29/0.8664); (g) DFFNet (31.77/0.8729).

Figure 8. Visual results of comic.bmp and ppt3.bmp in Set14 processed by different methods with
scale factor ×3. From left to right are Bicubic, SRCNN, VDSR, DRCN, and DFFNet. All compared the
methods would produce obvious blur and artifacts in local areas, while our proposed method can
recover clearer images with shaper edges and fewer artifacts.

6. Conclusions

Figure 7. Visual results of img044.bmp in Urban100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (29.21/0.8007); (c) DRCN (30.29/0.8307); (d) VDSR (29.77/0.8308);
(e) SRDenseNet (30.94/0.8575); (f) MemNet (31.29/0.8664); (g) DFFNet (31.77/0.8729).

Sensors 2019, 19, 316 11 of 14

Sensors 2019, 19, x FOR PEER REVIEW 1 of 14

Figure 6. Visual results of 102061.bmp in BSD100 processed by different methods with scale factor ×4.
(a) Original; (b) SRCNN (25.82/0.7730); (c) DRCN (26.29/0.7945); (d) VDSR (26.38/0.7984); (e)
SRDenseNet (26.52/0.8064); (f) MemNet (26.62/0.8134); (g) DFFNet (26.83/0.8155).

Figure 7. Visual results of img044.bmp in Urban100 processed by different methods with scale factor
×4. (a) Original; (b) SRCNN (29.21/0.8007); (c) DRCN (30.29/0.8307); (d) VDSR (29.77/0.8308); (e)
SRDenseNet (30.94/0.8575); (f) MemNet (31.29/0.8664); (g) DFFNet (31.77/0.8729).

Figure 8. Visual results of comic.bmp and ppt3.bmp in Set14 processed by different methods with
scale factor ×3. From left to right are Bicubic, SRCNN, VDSR, DRCN, and DFFNet. All compared the
methods would produce obvious blur and artifacts in local areas, while our proposed method can
recover clearer images with shaper edges and fewer artifacts.

6. Conclusions

Figure 8. Visual results of comic.bmp and ppt3.bmp in Set14 processed by different methods with
scale factor ×3. From left to right are Bicubic, SRCNN, VDSR, DRCN, and DFFNet. All compared
the methods would produce obvious blur and artifacts in local areas, while our proposed method can
recover clearer images with shaper edges and fewer artifacts.

6. Conclusions

In this paper, we proposed a global dense feature fusion convolutional network (DFFNet) for
SISR, where a feature fusion block (FFblock) is introduced as the basic module. Each FFblock can read
raw features directly from all the preceding blocks in DFFNet, learning and adaptively controlling the
reserve of previous global features. The global dense feature fusion (GDFF) in dense feature fusion
blocks further builds the dense connections between FFblocks and coarse feature extraction block
(CFblock) while stabilizing the training process and improving the flow of global information and
gradient, leading to a continuous global information memory mechanism. Moreover, our DFFNet
extracts features from the original LR images and reconstructs HR images with dense features directly,
without any image scaling preprocessing. By fully utilizing the global features, our DFFNet leads to a
deep and wide network. Quantitative and visual benchmark evaluation results demonstrate well that
our DFFNet achieves superior performance over state-of-the-art methods.

Author Contributions: All authors have read and approved the manuscript. W.X. proposed the research idea of
this paper, and was responsible for the experiment, data analysis and result interpretation. R.C. was responsible
for the verification of the research scheme. B.H. collected experimental data and conducted literature search, and
verified the experimental results. X.Z. and C.L. was responsible for the visualization of experimental data and
chart making. The paper was mainly written by W.X., with the participation of X.Z. and C.L. Revision and review
of the manuscript was completed by R.C.

Funding: This research was funded by the National Natural Science Foundation of China grant number 51675265,
Advantage Discipline Construction Project Funding of University in Jiangsu Province grant number PAPD, and
Independent Research Funding of State Key Laboratory of Mechanics and Control of mechanical Structures grant
number 0515K01.

Acknowledgments: This work is supported in part by the National Natural Science Foundation of China
(51675265), Advantage Discipline Construction Project Funding of University in Jiangsu Province (PAPD),
and Independent Research Funding of State Key Laboratory of Mechanics and Control of mechanical
Structures(0515K01).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this section, we present the architecture of DFFNet in a more detailed way. The configuration of
DFFNet has been described in Section 3.4. The number of FFblock, N = 32; the number of feed-forward

Sensors 2019, 19, 316 12 of 14

features, G = 32; the compression factor, θ = 0.25. Given a preprocessed RGB image of shape 48 × 48 × 3
as input, dimensions and parameters of each block in the DFFNet have been summarized in Table A1.
For the n-th FFblock, the output of GFF unit and C_1 have 32n and 8n feature-maps, respectively, as
shown in Table A1. Before Recblock, all the outputs have the same size as the input since we have set
zero padding for input of all layers to keep feature sizes fixed. We list the specifications of Recblock with
a different scale factor separately in Table 3, since some parameters of Recblock depend on scale factor.

Table A1. Specifications for each block in DFFNet. Suppose that the input of DFFNet has the shape of
48 × 48 × 3.

CFBlock
Filters Size Output

32 3× 3 48× 48× 32

GFF Unit
FRL Unit

C_1 C_2

Output Filters Size Output Filters Size Output

FFblock

1 48 × 48 × 32 8 3 × 3 48 × 48 × 8 32 3 × 3 48 × 48 × 32
2 48 × 48 × 64 16 3 × 3 48 × 48 × 16 32 3 × 3 48 × 48 × 32
3 48 × 48 × 96 24 3 × 3 48 × 48 × 24 32 3 × 3 48 × 48 × 32
4 48 × 48 × 128 32 3 × 3 48 × 48 × 32 32 3 × 3 48 × 48 × 32
5 48 × 48 × 160 40 3 × 3 48 × 48 × 40 32 3 × 3 48 × 48 × 32
6 48 × 48 × 192 48 3 × 3 48 × 48 × 48 32 3 × 3 48 × 48 × 32
7 48 × 48 × 224 56 3 × 3 48 × 48 × 56 32 3 × 3 48 × 48 × 32
8 48 × 48 × 256 64 3 × 3 48 × 48 × 64 32 3 × 3 48 × 48 × 32
9 48 × 48 × 288 72 3 × 3 48 × 48 × 72 32 3 × 3 48 × 48 × 32

10 48 × 48 × 320 80 3 × 3 48 × 48 × 80 32 3 × 3 48 × 48 × 32
11 48 × 48 × 352 88 3 × 3 48 × 48 × 88 32 3 × 3 48 × 48 × 32
12 48 × 48 × 384 96 3 × 3 48 × 48 × 96 32 3 × 3 48 × 48 × 32
13 48 × 48 × 416 104 3 × 3 48 × 48 × 104 32 3 × 3 48 × 48 × 32
14 48 × 48 × 448 112 3 × 3 48 × 48 × 112 32 3 × 3 48 × 48 × 32
15 48 × 48 × 480 120 3 × 3 48 × 48 × 120 32 3 × 3 48 × 48 × 32
16 48 × 48 × 512 128 3 × 3 48 × 48 × 128 32 3 × 3 48 × 48 × 32
17 48 × 48 × 544 136 3 × 3 48 × 48 × 136 32 3 × 3 48 × 48 × 32
18 48 × 48 × 576 144 3 × 3 48 × 48 × 144 32 3 × 3 48 × 48 × 32
19 48 × 48 × 608 152 3 × 3 48 × 48 × 152 32 3 × 3 48 × 48 × 32
20 48 × 48 × 640 160 3 × 3 48 × 48 × 160 32 3 × 3 48 × 48 × 32
21 48 × 48 × 672 168 3 × 3 48 × 48 × 168 32 3 × 3 48 × 48 × 32
22 48 × 48 × 704 176 3 × 3 48 × 48 × 176 32 3 × 3 48 × 48 × 32
23 48 × 48 × 736 184 3 × 3 48 × 48 × 184 32 3 × 3 48 × 48 × 32
24 48 × 48 × 768 192 3 × 3 48 × 48 × 192 32 3 × 3 48 × 48 × 32
25 48 × 48 × 800 200 3 × 3 48 × 48 × 200 32 3 × 3 48 × 48 × 32
26 48 × 48 × 832 208 3 × 3 48 × 48 × 208 32 3 × 3 48 × 48 × 32
27 48 × 48 × 864 216 3 × 3 48 × 48 × 216 32 3 × 3 48 × 48 × 32
28 48 × 48 × 896 224 3 × 3 48 × 48 × 224 32 3 × 3 48 × 48 × 32
29 48 × 48 × 928 232 3 × 3 48 × 48 × 232 32 3 × 3 48 × 48 × 32
30 48 × 48 × 960 240 3 × 3 48 × 48 × 240 32 3 × 3 48 × 48 × 32
31 48 × 48 × 992 248 3 × 3 48 × 48 × 248 32 3 × 3 48 × 48 × 32
32 48 × 48 × 1024 256 3 × 3 48 × 48 × 256 32 3 × 3 48 × 48 × 32

Mid_conv
filters size output

32 3 × 3 48 × 48 × 32

For scale factor ×2

Recblock

Re_conv_1
filters size output

256 3 × 3 48 × 48 × 256

Re_sub_pixel filters size output
/ / 96 × 96 × 64

Re_conv_2
filters size output

3 3 × 3 96 × 96 × 3

For scale factor ×3

Recblock

Re_conv_1
filters size output

576 3 × 3 48 × 48 × 576

Re_sub_pixel filters size output
/ / 144 × 144 × 64

Re_conv_2
filters size output

3 3 × 3 144 × 144 × 3

For scale factor ×4

Recblock

Re_conv_1_1
filters size output

256 3 × 3 48 × 48 × 256

Re_sub_pixel_1 filters size output
/ / 96 × 96 × 64

Re_conv_1_2
filters size output

256 3 × 3 96 × 96 × 256

Re_sub_pixel_2 filters size output
/ / 192 × 192 × 64

Re_conv_2
filters size output

3 3 × 3 192 × 192 × 3

Sensors 2019, 19, 316 13 of 14

References

1. Ziwei, L.; Chengdong, W.; Dongyue, C.; Yuanchen, Q.; Chunping, W. Overview on image super resolution
reconstruction. In Proceedings of the IEEE Control and Decision Conference, Changsha, China, 31 May–2
June 2014; pp. 2009–2014.

2. Xu, S.; Xiao-Guang, L.; Jia-Feng, L.; Li, Z. Review on Deep Learning Based Image Super-resolution
Restoration Algorithms. Acta Autom. Sin. 2017, 43, 697–709.

3. Timofte, R.; Smet, V.D.; Gool, L.V. A+: Adjusted Anchored Neighborhood Regression for Fast
Super-Resolution. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November
2014; pp. 111–126.

4. Jiang, J.; Ma, X.; Chen, C.; Lu, T.; Wang, Z.; Ma, J. Single Image Super-Resolution via Locally Regularized
Anchored Neighborhood Regression and Nonlocal Means. IEEE Trans. Multimedia 2017, 19, 15–26. [CrossRef]

5. Chen, C. Noise Robust Face Image Super-Resolution through Smooth Sparse Representation. IEEE Trans.
Cybern. 2016, 47, 3991–4002.

6. Zhu, Z.; Guo, F.; Yu, H.; Chen, C. Fast single image super-resolution via self-example learning and sparse
representation. IEEE Trans. Multimedia 2014, 16, 2178–2190. [CrossRef]

7. Chen, C.; Fowler, J.E. Single-image super-resolution using multihypothesis prediction. In Proceedings of the
2012 IEEE Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, CA, USA, 4–7 November 2012; pp. 608–612.

8. Jin, Y.; Kuwashima, S.; Kurita, T. Fast and Accurate Image Super Resolution by Deep CNN with Skip
Connection and Network in Network. In Proceedings of the International Conference on Neural Information
Processing, Guangzhou, China, 14–18 November 2017; Springer: Cham, Switzerland, 2017; pp. 217–225.

9. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution
Semantic Segmentation. arXiv, 2016; arXiv:1611.06612.

10. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image
Segmentation. arXiv, 2017; arXiv:1706.05587.

11. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. arXiv, 2016; arXiv:1602.07261.

12. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution. In
Proceedings of the ECCV 2014, Zurich, Switzerland, 6–12 September 2014.

13. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In
Proceedings of the CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016.

14. Kim, J.; Le, J.K.; Le, K.M. Deeply-recursive convolutional network for image super resolution. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 1637–1645.

15. Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.;
Wang, Z.; et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv,
2016; arXiv:1609.04802.

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

17. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

18. Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings
of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4549–4557.

19. Hu, Y.; Gao, X.; Li, J.; Huang, Y.; Wang, H. Single Image Super-Resolution via Cascaded Multi-Scale Cross
Network. arXiv, 2018; arXiv:1802.08808.

20. Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In
Proceedings of the European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 11–14
October 2016.

21. Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single
image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings
of the CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016.

http://dx.doi.org/10.1109/TMM.2016.2599145
http://dx.doi.org/10.1109/TMM.2014.2364976

Sensors 2019, 19, 316 14 of 14

22. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In
Proceedings of the CVPR 2017 Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.

23. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the AISTATS 2011,
Ft. Lauderdale, FL, USA, 11–13 April 2011.

24. Dai, D.; Timofte, R.; Gool, L.V. Jointly Optimized Regressors for Image Super-resolution. Comput. Gr. Forum
2015, 34, 95–104. [CrossRef]

25. Timofte, R.; Agustsson, E.; Van Gool, L.; Yang, M.H.; Zhang, L.; Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M.;
et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In Proceedings of the
CVPR 2017 Workshops, Honolulu, HI, USA, 21–26 July 2017.

26. Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution
based on nonnegative neighbor embedding. In Proceedings of the BMVC 2012, Surrey, UK, 3–7 September
2012.

27. Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the
International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010.

28. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the ICCV 2001,
Vancouver, BC, Canada, 7–14 July 2001.

29. Huang, J.-B.; Singh, A.; Ahuja, N. Single image super resolution from transformed self-exemplars. In
Proceedings of the CVPR 2015, Boston, MA, USA, 7–12 June 2015.

30. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to
structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]

31. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the ICLR 2015, San Diego,
CA, USA, 7–9 May 2015.

32. Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Deep Laplacian Pyramid Networks for Fast and Accurate
Super-Resolution. arXiv, 2017; arXiv:1704.03915.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/cgf.12544
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	DFFNet for Image Super-Resolution
	Basic Architecture
	Feature Fusion Block
	Reconstruction Block
	Implementation Details

	Discussions
	Experiments
	Datasets and Metrics
	Training Details
	Ablation Study
	Benchmark Results

	Conclusions
	
	References

