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Abstract: Accurate localization of the radio transmitter is an important work in radio management.
Previous research is more focused on two-dimensional (2-D) scenarios, but the localization of
an unknown radio transmitter under three-dimensional (3-D) scenarios has more practical significance.
In this paper, we propose a novel 3-D localization algorithm with received signal strength difference
(RSSD) information and factor graph (FG), which is suitable for both line-of-sight (LOS) and
non-line-of-sight (NLOS) condition. Considering the stochastic properties of measurement errors
caused by the indoor environment, RSSD measurements are processed with mean and variance
in the form of Gaussian distribution in the FG framework. A new 3-D RSSD-based FG model is
constructed with the relationship between RSSD and location coordinates by local linearization
technique. The soft-information computation and iterative process of the proposed model are
derived by using the sum-product algorithm. In addition, the impacts of different grid distances
and number of signal receivers on positioning accuracy are explored. Finally, the performance of
our proposed approach is experimentally evaluated in a real scenario. The results show that the
positioning performance of the proposed algorithm is not only superior to the k-nearest neighbors
(kNN) algorithm and least square (LS) algorithm, but also it can achieve a mean localization error
as low as 1.15 m. Our proposed scheme provides a good solution for the accurate detection of
an unknown radio transmitter under indoor 3-D space and has a good application prospect.

Keywords: received signal strength difference (RSSD); radio transmitter; 3-D localization; factor
graph (FG); sum-product algorithm

1. Introduction

The development of wireless network, mobile computing, pervasive computing, and other
technologies makes location-based services and applications increasingly popular. Compared with
two-dimensional (2-D) localization, simple plane positioning cannot meet the requirements of
location services, and 3-D spatial localization has more practical application prospects. In contrast
to the conventional positioning signal receiver, this paper aims to solve the three-dimensional (3-D)
positioning issue of the unknown radio transmitter (such as illegal radio and pseudo base station)
whose transmitting power and frequency are unknown. Therefore, achieving the precise localization
of an unknown radio transmitter is a challenging task in radio management. Moreover, it is of great
significance to strengthen the monitoring of radio spectrum resources, protect the interests of legitimate
users and combat the occupation of illegal signal resources.

Currently, a variety of positioning techniques have been developed based on the measurements
from the signal receiver, which is denoted as access point (AP). The measurement information mainly
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includes time of arrival (TOA) [1], time difference of arrival (TDOA) [2], angle-of-arrival (AOA) [3],
received signal strength (RSS) [4,5], and hybrid of them [6–8]. Among them, RSS is widely used for
its advantages of simple positioning algorithm, low cost, low power consumption and no additional
hardware. The conventional RSS-based fingerprint positioning technique can be roughly divided into
two phases: the off-line training phase and the on-line positioning phase. In the off-line training phase,
RSS measurements of different locations in the positioning area are sampled manually and stored with
the corresponding location coordinates in the fingerprint database. In the on-line positioning phase,
server matches the fingerprint information at the location of the positioning target with the fingerprint
database and searches the location information corresponding to the fingerprint with the appropriate
positioning algorithm as the location of the positioning target. Two typical RSS-based fingerprint
positioning algorithms are RADAR [9] and LANDMARC [10] methods. The basic principle of the above
two methods is to select k reference points using Euclidean distance in the form of RSS measurements.
The process is denoted as k-nearest neighbors (kNN) algorithm [11]. The least square (LS) algorithm
is another well-known approach with using the measurement information to estimate the geometric
distance between the target and AP and to find the optimal location of the target by minimizing
the sum of squares of errors [12]. However, the mentioned conventional algorithms do not fully
consider the stochastic properties of measurement errors, and the Euclidean distance characterized
by RSS cannot fully reflect the geometric distance. Therefore, the positioning performance cannot be
effectively improved in complex indoor positioning scenario. An accurate localization framework
by unsupervised fusion of an extended candidate location set (ECLS) was proposed to overcome the
impact of changing positioning environment and model errors [13]. Nevertheless, the RSS-based
positioning method is mainly used to solve the localization issue of signal receiver and cannot achieve
the accurate localization of the unknown radio transmitter. Instead of using the RSS measurements,
a positioning technique based on received signal strength difference (RSSD) is used to the localization
of radio transmitter. While preserving all the advantages of RSS-based localization, it can significantly
alleviate the passive dependence of localization on the radio transmitter, which could be defective,
malicious, or uncooperative [14]. Besides, the RSSD-based parameter can also eliminate the influence
of device differences on positioning accuracy caused by the difference between on-line positioning
device and off-line database establishment device [15]. An efficient RSSD-based source localization
technique was proposed for the case of unknown transmit power and uncertainty in the sensor
locations [16]. A new minimax-semidefinite programming (minimax-SDP) method for the RSSD-based
measurement model was recently developed which provides a significant improvement over other
RSSD-based methods [17].

Among all positioning algorithms, the FG-based technique is famous for the low computational
complexity and high positioning accuracy [18]. Many FG positioning methods based on different
measurement information have been developed in recent years. The TOA-FG [19] technique used
the time of signal propagation between the radio transmitter and APs to estimate the distance, but it
requires the clocks of both to be synchronous. To be free from the limitation of clock synchronization
between the radio transmitter and APs, TDOA-FG method was proposed in [20]. It should be noted
that radio transmitter and APs also need to be synchronized with the clock of the reference node.
However, both TOA-FG and AOA-FG techniques are not suitable for indoor positioning due to the lack
of line-of-sight (LOS) scenario. The RSS-FG technique not only overcomes the requirement of perfect
synchronization or time stamp but also adapts the LOS and non-line-of-sight (NLOS) positioning
scenario [21]. Yet, the RSS-FG method has been proved to be unable to achieve the localization of the
unknown radio transmitter since both transmitting frequency and power of the radio transmitter are
unknown. Therefore, the RSSD-FG [22] technique was developed to realize the localization of the
unknown radio transmitter successfully. However, the above researches only focus on positioning in
a 2-D scenario. Due to the large number of unknown parameters, it is more difficult to achieve the
localization in 3-D space, and there is no research on localization of an unknown radio transmitter using
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FG in 3-D scenario. Therefore, the realization of accurate localization of unknown radio transmitter
using FG method in indoor 3-D space has a high application prospect.

In this paper, we first combine the RSSD-based fingerprint positioning method and FG technique
to propose a 3-D RSSD-FG algorithm. A new 3-D RSSD-based FG model is constructed to express the
RSSD information and location coordinates. At first, we use the RSSD fingerprint database in the off-line
training phase to obtain the local linear relationship between RSSD information and corresponding
location coordinates. In the proposed FG model, the stochastic properties of measurement errors
are processed with Gaussian distribution, which is more reasonable to reflect the impact of indoor
uncertain interference factors. Using the sum-product algorithm, the soft information can be calculated
and constantly updated among the factor nodes and variable nodes. Then, the variable nodes of
target location can be estimated after several iterations. To verify the correctness and feasibility of
the proposed algorithm, we conduct the experiments in a real office environment on the first floor
of the National Radio Monitoring Center (Beijing), where realistic measurements are performed.
The experimental results show that the positioning accuracy of the proposed algorithm is higher than
that of the KNN and LS algorithms in the case of different grid distances or different AP numbers,
and the probability of positioning error within 1.5 m can reach over 70%. It can be concluded that our
proposed algorithm can significantly improve the positioning accuracy compared with the conventional
positioning algorithms.

2. The system and principle

2.1. Positioning System for the Unknown Radio Transmitter

A typical RSSD-based indoor fingerprint positioning system for the radio transmitter is described
in Figure 1. The positioning area is divided into several cubes with the vertices set as the reference
points. Then, four APs are placed in the positioning area to collect the RSS measurements from the
radio transmitter. The length between two adjacent reference points is defined as grid distance (d).
In RSSD-based database establishment phase, we select a known radio transmitter to traverse the
obtained reference points and record the collected RSS measurements information from the APs.
After that, the subtraction of RSS measurements from two different APs is stored in the fingerprint
database along with the location of reference point. In our research, the RSSD-based database is
used because it has adaptability to various unknown radio transmitters [14]. Thus, we only need to
establish the off-line database once, which can greatly reduce the workload of constructing different
databases to match with different radio transmitters.
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Figure 1. Basic structure of the RSSD-based fingerprint positioning system with four APs and
an unknown radio transmitter.
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When an unknown radio transmitter enters the positioning area, the APs collect the real-time RSS
measurements and RSSD information will be reported to the computer server. At last, the estimated
location of positioning target can be obtained by the specific algorithm. The detailed process of our
proposed algorithm will be introduced in the next section.

2.2. Factor Graph and Sum-Product Algorithm

In this section, we first introduce the basic theoretical knowledge of the FG model and
sum-product algorithm [23]. A FG is a bidirectional graph that can decompose complex global
functions into the product of several local functions with fewer variables. A generic FG usually consists
of the variable node and the factor node as shown in Figure 2.
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Figure 2. Fragment of a FG showing the soft-information transported rules of sum-product algorithm.

The variable nodes and factor nodes are indicated by circles and squares, respectively. As shown
in Figure 2, the soft-information transported among the variable nodes and factor nodes represents
the statistical properties of the estimated variables and measurement errors in the form of a Gaussian
probability density function. In this paper, we define SI(a, b) as the soft-information transported
from node a to node b, which follows a Gaussian distribution (SI(a, b) ∼ N(ma,b, σ2

a,b)) with mean
ma,b and variance σ2

a,b. The factor node fi(·) represents the local mathematical relationship associated
with its connected variable node xi. The FG shown in Figure 2 is the description of f (x1, x2, x3, x4) =

f1(x1) · f2(x1, x2) · f3(x1, x3, x4) expressed by variable nodes (x1, x2, x3, x4) and factor nodes ( f1, f2, f3).
Thus, a complex problem described by variables in the FG can be solved by soft-information iterative
process between the variable nodes and the factor nodes. The soft information transmitted between
factor nodes and variable nodes can be obtained by using the sum-product algorithm that collects
the soft information expressed by the local function in the form of product. Moreover, each piece
of soft information from the variable node to the factor node expresses the stochastic properties of
the associated variable nodes. This kind of soft information is composed of the product of all soft
information transmitted from other factor nodes to the variable nod. For example, the soft information
SI(x1, f1) shown in Figure 2 can be obtained by

SI(x1, f1) = SI( f2, x1) · SI( f3, x1). (1)

Since the product of several independent gaussian distributions still follows the gaussian
distribution, the mean and variance of soft information SI(x1, f1) can be calculated by

mx1, f1 = σ2
x1, f1
·

3

∑
t=2

mxt , ft

σ2
xt , ft

, (2)
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and

σ2
x1, f1

=
3

∑
t=2

1
σ2

xt , ft

. (3)

The soft information transported from a factor node to a variable node can be obtained by the
product of the local function related to the factor node and each piece of the soft information passing
from other variable nodes. However, it is important to note that the variable nodes passing the soft
information to the factor node does not contain the variable node receiving soft information. Taking
SI( f3, x1) for an example, the soft information can be expressed by

SI( f3, x1) =
∫

x3

∫
x4

f3(x1, x3, x4)·SI(x3, f3) · SI(x4, f3)dx3dx4, (4)

where f3(x1, x3, x4) is the local function associated with the variable nodes x1, x3, and x4. With the
above calculation rules, all the soft information between variable nodes and factor nodes in the FG can
be obtained. When the soft information converges through some iterative processes, the estimate value
of each variable can be obtained by the product of all the soft information transported from factor
nodes to the variable node. All soft information passed to the variable node x1 can be expressed by

SI(x1) = SI( f1, x1) · SI( f2, x1) · SI( f3, x1). (5)

3. The Proposed Algorithm

3.1. 3-D RSSD-Based FG Model

In this section, we construct a 3-D RSSD-based FG model to estimate the location of an unknown
radio transmitter as shown in Figure 3. The proposed 3-D RSSD-based FG model also consists of
the variable nodes (x, y, z, Ri, pi) and the factor nodes (Ai, Di, Pi), where i is the index number of AP
(i = 1, 2, . . . , N).
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Figure 3. The proposed 3-D RSSD-based factor graph model.

First, different APs of the positioning area take the acquired RSS measurements as the input
parameter of the proposed FG model. Thus, the reported RSS measurement from i-AP can be
expressed as

p̂w,i = p̃w,i + ei, (6)
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where p̃w,i is the error free measurement from i-th AP in unit of watts, ei represents the measurement
error caused by the interference factors of the positioning environment that follows the Gaussian
distribution (ei ∼ N(0, σ2

i )) as done in [24,25]. The error caused by the NLOS components can be
included to the variance of the measurement error as shown in [26]. In this way, our method is also
applicable to NLOS scenario. To better reflect the local linearity feature in the proposed algorithm,
the measured RSS p̂w,i is expressed in the form of logarithmic scale ( p̂i = 10 · log10( p̃w,i + ei)).
In addition, the logarithmic RSS has also been demonstrated to have an approximate Gaussian
distribution [21]. The factor node Pi expresses the Gaussian statistical distribution relationship of the
mean ( p̃i) and variance (σ2

pi
) generated by logarithmic RSS measurement. Therefore, the variable

node pi follows the Gaussian distribution as (pi ∼ N( p̃i, σ2
pi
)). Then, the factor node Di represents the

relationship of logarithmic RSS subtraction between two different APs. The combination of the two
different APs can be “12, 23, . . . , i1”. For example, the variable node R1 can be obtained by

R1 = p1 − p2. (7)

Thus, other different AP combinations can be obtained in the same way such as R2 = p2 − p3,
R3 = p3 − p4, . . . , and Ri = pi − p1, where i is the AP combination serial number. According to the
path loss propagation model, the RSS received by AP is related to the geometric distance between
the radio transmitter and AP. Then, each location coordinate of the positioning area corresponds to
a specific RSSD value of an AP combination. Thus, the relationship between logarithmic RSSD (r) and
location coordinates (x, y, z) can be modeled as

kx · x + ky · y + kz · z + kr · r = c, (8)

where kx, ky, kz, and kr are coefficients of the equation, c is a nonzero constant. To obtain the
coefficients in Equation (8), the sub-localization region in which the target is located should be
first determined. This paper use the pattern-recognition method [21] to select five reference points.
Since the logarithmic RSSD measurements and the location of the five selected reference points have
been obtained, five formulas like (8) in matrix form for i-th AP combination are given by

B · K = C, (9)

where

B =


x1 y1 z1 R̃i,1
x2 y2 z2 R̃i,2
x3 y3 z3 R̃i,3
x4

x5

y4

y5

z4

z5

R̃i,4
R̃i,5

 , K =


kx,i
ky,i
kz,i
kr,i

 , C =


1
1
1
1
1

 . (10)

In Equation (10), kx,i, ky,i, kz,i, and kr,i are the coefficients of the equation related to i-th AP
combination. (xj, yj) is the location coordinate of j-th reference point. where j = 1, 2, 3, 4, 5. R̃i,j is the
mean logarithmic RSSD measurement of j-th reference point from i-th AP combination. According
to lest square algorithm, the coefficient matrix K can be calculated by K = (BT · B)−1 · BT · C, where
(·)T and (·)−1 are defined as the matrix transpose and matrix inverse, respectively. In this manner,
the relationship between location coordinates and i-th logarithmic RSSD within the choosing the
sub-localization region is obtained. Due to the sub-localization region located at the target is known,
the logarithmic RSSD variable r can be replaced with the variable of the target logarithmic RSSD
Ri. Then, the local linear relationship represented by factor node Ai between logarithmic RSSD
measurement of i-th AP combination and location coordinate of the target is given by

kx,ix + ky,iy + kz,iz + kr,iRi = 1. (11)
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Thus, the other local linear relationships corresponding to different AP combinations can be
obtained in the same way. After the local function relationships of all factor nodes and variable nodes
are established, factor nodes use these local functions to transport the soft information from variable
nodes. Finally, the soft information of the target variable nodes (x, y, z) are obtained by the product of
all soft information transported from the connected factor nodes. In this way, the soft information of
the target variable nodes will be updated continuously with the iterative process of the soft information
transferred between the factor node and the variable node. The iterative process and calculation of all
soft information will be introduced in the next subsection.

3.2. Soft Information Calculation and Iterative Process

In this subsection, we introduce the detailed description of calculating the soft information and
the iterative process of the proposed FG model. First, the soft information transported from variable
nodes x, y, and z to factor node Ai can be calculated with the product of all the soft information
transported from the rest of the factor nodes to the variable node. Then, the soft information SI(x, Ai),
SI(y, Ai), and SI(z, Ai) can be given by

SI(x, Ai) =
N

∏
t 6=i

(At, x), (12)

SI(y, Ai) =
N

∏
t 6=i

(At, y), (13)

and

SI(z, Ai) =
N

∏
t 6=i

(At, z). (14)

Here, it should be noted that the product of some independent Gaussian probability density
function is still a Gaussian probability density function [27]. Therefore, taking SI(x, Ai) for an example,
the mean and variance are given by

mx,Ai = σ2
x,Ai

(
N

∑
t 6=i

mAt ,x

σ2
At ,x

), σ2
x,Ai

= 1/(
N

∑
t 6=i

1
σ2

At ,x
). (15)

In the same way, the soft information SI(x, Ai) and SI(y, Ai) can also be obtained. Next, factor
node Ai combine with the information coming from the variable nodes x, y, and z to update the new
soft information related to x, y, and z under the local linear function described in (11). According to
Equation (11), the mean and variance of soft information SI(Ai, x) can be obtained by

mAi ,x = (1− ky,imy,Ai − kz,imz,Ai − kr,imRi ,Ai )/kx,i (16)

and
σ2

Ai ,x = (k2
y,iσ

2
y,Ai

+ k2
z,iσ

2
z,Ai

+ k2
r,iσ

2
Ri ,Ai

)/k2
x,i. (17)

Thus, SI(Ai, y) and SI(Ai, z) can also be obtained in this way. The soft information transported
from variable node Ri to factor Ai is equal to factor node Di to variable node Ri, where mRi ,Ai = mDi ,Ri

and σ2
Ri ,Ai

= σ2
Di ,Ri

. According to Equation (7), the mean and variance of soft information SI(Di, Ri) is
expressed by

mDi ,Ri = mpi ,Di −mp1,Di (18)

and
σ2

Di ,Ri
= σ2

pi ,Di
+ σ2

p1,Di
. (19)
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The factor nodes P1 and Pi directly transport the soft information to node Di, where mp1,Di =

mP1,p1 , σ2
p1,Di

= σ2
P1,p1

and mpi ,Di = mPi ,pi , σ2
pi ,Di

= σ2
Pi ,pi

. Then, the mean and variance of SI(P1, p1) and
SI(Pi, pi) can be directly obtained by the RSS measurements. Finally, the soft information of the target
estimated location can be updated by combining all the soft information from all the factor node Ai to
the variable node x, y, and z, respectively. The calculation formulas of SI(x), SI(y), and SI(z) can be
calculated by

mx = σ2
x · (

N

∑
i=1

mAi ,x

σ2
Ai ,x

), σ2
x = 1/(

N

∑
i=1

1
σ2

Ai ,x
), (20)

my = σ2
y · (

N

∑
i=1

mAi ,y

σ2
Ai ,y

), σ2
y = 1/(

N

∑
i=1

1
σ2

Ai ,y
), (21)

and

mz = σ2
z · (

N

∑
i=1

mAi ,z

σ2
Ai ,z

), σ2
z = 1/(

N

∑
i=1

1
σ2

Ai ,z
). (22)

With the formulas from (20)–(22), the estimated location coordinates of the target are mx,
my, and mz, respectively. As mentioned above, all soft information can be calculated by the sum-product
algorithm, and the whole iterative process will be repeated repeatedly. Figure 4 is the flow chart of
the proposed algorithm. To facilitate understanding, we summarized the detailed iteration process as
shown in Table 1. According to the simulation experience, the soft information will converge with the
number of iterations reaching 10. Although the mathematical proof of convergence is not given in this
paper, the experimental result verifies it. This may be due to the proposed method considering the
stochastic properties of measurement errors. In addition, the initialization of the target location does
not have a critical impact on convergence and can be set to arbitrary value. The iterative process will
not stop until the iteration number reaches the set value.
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Figure 4. Flow chart of the proposed algorithm.
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Table 1. The operations of each node in Figure 3.

Node Input (Mean, Variance) Output (Mean, Variance)

Pi ( p̂i, 0) (mPi ,pi , σ2
Pi ,pi

)

pi (mPi ,pi , σ2
Pi ,pi

) (mpi ,Di , σ2
pi ,Di

)

Di (mpi ,Di , σ2
pi ,Di

), (mp1,Di , σ2
p1,Di

) mDi ,Ri = mpi ,Di −mp1,Di , σ2
Di ,Ri

= σ2
pi ,Di

+ σ2
p1,Di

Ri (mDi ,Ri , σ2
Di ,Ri

) mRi ,Ai = mDi ,Ri , σ2
Ri ,Ai

= σ2
Di ,Ri

Ai (mRi ,Ai ,σ
2
Ri ,Ai

), (myi ,Ai , σ2
yi ,Ai

),(mzi ,Ai , σ2
zi ,Ai

) mAi ,x = (1− ky,imy,Ai − kz,imz,Ai − kr,imRi ,Ai )/kx,i,

σ2
Ai ,x

= (k2
y,iσ

2
y,Ai

+ k2
z,iσ

2
z,Ai

+ k2
r,iσ

2
Ri ,Ai

)/k2
x,i

mAi ,y = (1− kx,imx,Ai − kz,imz,Ai − kr,imRi ,Ai )/ky,i,

σ2
Ai ,y

= (k2
x,iσ

2
x,Ai

+ k2
z,iσ

2
z,Ai

+ k2
r,iσ

2
Ri ,Ai

)/k2
y,i

mAi ,z = (1− kx,imx,Ai − ky,imy,Ai − kr,imRi ,Ai )/kz,i,

σ2
Ai ,z

= (k2
x,iσ

2
x,Ai

+ k2
y,iσ

2
y,Ai

+ k2
r,iσ

2
Ri ,Ai

)/k2
z,i

x (mAi ,x, σ2
Ai ,x

) mx = σ2
x · (

n
∑

i=1

mAi ,x

σ2
Ai ,x

), σ2
x = 1/(

n
∑

i=1

1
σ2

Ai ,x
)

y (mAi ,y, σ2
Ai ,y

) my = σ2
y · (

n
∑

i=1

mAi ,y

σ2
Ai ,y

), σ2
y = 1/(

n
∑

i=1

1
σ2

Ai ,y
)

z (mAi ,z, σ2
Ai ,z

) mz = σ2
z · (

n
∑

i=1

mAi ,z

σ2
Ai ,z

), σ2
z = 1/(

n
∑

i=1

1
σ2

Ai ,z
)

It is obviously obtained from Table 1 that the proposed method only requires simple arithmetic
operations on each node. As shown in [21], the computational complexity of the conventional
RSS-FG algorithm is linearly proportional to N. Compared with RSS-FG algorithm, the proposed
algorithm only adds subtraction operation and the increase of dimension does not change the order
of the local linear relationship, so the computational complexity of the proposed algorithm is also
linearly proportional to N. Therefore, the proposed 3-D RSSD-based FG algorithm also enjoys low
computational complexity the same as RSS-FG algorithm.

4. Results and Discussions

4.1. Simulation Analysis

The computer simulations were conducted on the platform of MATLAB2014a to demonstrate the
correctness of the proposed algorithm. The dimensions of the simulation space are 100 m, 100 m and
100 m in the form of length, width, and height, respectively. A well-known logarithmic shadowing
model [28] applied to generate the RSS measurements for the off-line database construction and the
on-line positioning target, which is given by

P(di,j) = P(d0)− 10 · α · log10(
di,j

d0
) + χ, (23)

where P(di,j) is the RSS of j-th reference point from i-th AP, di,j is the distance between j-th reference
point and i-th AP, P(d0) is the RSS in decibel at the reference d0, α is path loss exponent, d0 is the
reference distance, and χ represents the variance of RSS measurement following zero-mean Gaussian
distribution (χ ∼ N(0, σ2

χ)). Then, the random RSS measurement p̂i,j can be considered as Gaussian

distribution (p̂i,j ∼ N(P(d0) − 10 · α · log10(
di,j
d0
), σ2

χ)). The value of the simulation parameters of
Formula (23) are as follows: d0 = 1 m, P(d0) = 10 dB, σχ = 5.2 dB, and α = 1.8, and the on-line real-time
RSS measurement of the target can be generated as done in [21].
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First, we use four APs and 2 m grid distance, and 100 target locations were randomly selected in
the positioning area. The location coordinates of the four APs marked with black solid triangle are
(5, 3, 0) m, (15, 8, 0) m, (5, 12, 0) m and (15, 17, 0) m, respectively. The detailed process of localization
trajectory of the proposed algorithm is as shown in Figure 5. It is clear from the figure that the
estimated location of the target is close to the actual location after the number of iterations reaching 10,
where the target location is at (3, 13, 5) m and the initial location is set at (1, 1, 1) m.
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Figure 5. Positioning trajectory of the proposed algorithm with 10 iterations, 2 m grid distance, target
location at (3, 13, 5) m and target initialization at (1, 1, 1) m.

Figure 6 shows that the root mean square error (RMSE) of the proposed technique converges
as the iteration number increases. The RMSE tends to be stable at 1.45 m with the iteration number
drawing near to 10. Therefore, it can be seen that the proposed algorithm has the characteristic of
rapid convergence.
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Figure 6. RMSE of proposed algorithm with the iteration number changing from 1 to 20, four APs and
2 m grid distance.

Next, the RMSE of proposed algorithm is compared with the kNN (k = 4) algorithm and LS
algorithm in the case of different grid distances and number of APs, when the standard deviation of
RSS measurement is different. First, we compare the positioning accuracy of the three algorithms with
different grid distances when the number of APs is four. As can be seen from the simulation results
in Figure 7, the proposed algorithm is more accurate than the kNN algorithm and the LS algorithm
under corresponding grid distance and lower grid distance can effectively improve the positioning
accuracy. Taking σχ = 6 dB and d = 2 m for an example, the RMSE of the proposed algorithms is 1.41 m.
The RMSE for other two algorithms are 1.55 m for LS algorithm and 1.82 m for kNN algorithm.
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Figure 7. RMSE comparison with different grid distances.

Then, we explore the impact of different AP numbers on positioning performance when the grid
distance is 2 m. As shown in Figure 8, the RMSE of three algorithms decrease as the number of APs
increase. Compared with the kNN algorithm and LS algorithm, RMSE of the proposed algorithm
is the smallest and the positioning accuracy is the highest in the case of the corresponding number
of APs. For example, when σχ = 6 dB and N = 3, the RMSE of kNN algorithm and LS algorithm are
2.53 m and 2.06 m, respectively. In comparison, RMSE of the proposed algorithm is 1.72 m. Moreover,
the positioning accuracy of using three APs is higher than that of kNN algorithm using four APs.
Considering the requirement of positioning accuracy and cost, four APs are used in the following
experiments to conduct positioning research.
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Figure 8. RMSE of position errors with different number of APs.

Even considering the stochastic properties of RSS measurement error, the above results prove
that the proposed algorithm can obtain higher positioning accuracy than that using the conventional
deterministic algorithms. Therefore, it has better adaptability to the complex indoor environment in
practical application.

4.2. Experimental Results

To verify the performance of the proposed algorithm, experimental tests were carried out on the
first floor of the National Radio Monitoring Center, Beijing. The test field consists of two parts, an office
and its adjacent hallway. To embody the internal structure of the positioning area more intuitively,
Figure 9 shows the plane layout of the test field. The areas of the office and hallway are 17.8 m× 9.6 m
and 17.8 m × 2.1 m, respectively, and the height of the whole positioning area is 4.8 m. The space size
of the entire positioning area is length 17.8 m × width 11.7 m × height 4.8 m. The number and layout
of APs are selected with two types, which are marked with “1 #” and “2 #” as shown in Figure 9.
The location coordinates of four APs are (3, 2, 0.8) m, (7, 7, 0.8) m, (11, 2, 0.8) m, and (15, 7, 0.8) m,
respectively. The location coordinates of three APs are (9, 3, 0.8) m, (6, 6, 0.8) m, and (13, 6, 0.8) m,
respectively. There is a glass partition in the middle of the office, which length is 3.3 m. In addition,
there are four windows on one wall of the office and two doors on the wall near the hallway. The main
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items in the office are desks, chairs, computers, and other office supplies. The staff are free to enter and
leave frequently during the whole experiment. Since the positioning area includes an office with glass
partition and its adjacent hallway, the experimental scenario has the characteristics of LOS and NLOS.
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Figure 9. Plane layout of the test field with 17.8 m length and 11.7 m width and the height of test
space is 4.8 m.

The grid distances used to construct the fingerprint database are selected with 1.5 m and 2 m,
respectively. When using the minimum grid distance (1.5 m) in our test, it takes about two hours to
construct the fingerprint database. The signal receivers are used with SA44B model from Signal Hound
Co. Ltd. The radio transmitter used for fingerprint database construction and on-line positioning test
is TFG6300 model with adjustable “frequency/strength” manufactured by SUING Co. Ltd. To prove
that the proposed algorithm is not affected by the frequency and strength of the off-line fingerprint
database, the off-line database and on-line positioning test of “frequency/strength” are selected with
“1 GHz/20 dB” and “300 MHz/13 dB”, respectively. In the experiment, fifty target locations are
randomly selected in the test field for on-line positioning test, and the height of these targets ranges
from 0.5 m to 4.3 m. To lower the influence of personnel movement, indoor items and measuring
equipment error on the accuracy of p̃i, the error can be reduced by the accurate measurement equipment
and averaging a lot of sample data and the number of RSS samples in the experiment is 100.

Next, the mean position error and cumulative distribution function (CDF) are used as two key
indicators to compare the positioning performance among the proposed algorithm, kNN algorithm,
and LS algorithm. The mean position error expresses the average value of all the position errors
between the estimated targets and the real targets. The CDF expressed as a percentage represents
the number of test targets within a certain range of position error. First, mean position errors of the
three algorithms with four APs are compared under different grid distances, which are 1.5 m and
2 m as shown in Table 2. It is observed that the mean position errors of kNN algorithm and LS
algorithm are 1.41 m and 1.37 m, respectively. The mean position error of the proposed algorithm is
1.12 m in comparison. However, the positioning accuracy decreases with the increase of grid distance.
As the grid distance increases to 2 m, the mean position errors for the three algorithms are 1.25 m for
the proposed algorithm, 1.46 m for LS algorithm, and 1.62 m for kNN algorithm. For the proposed
algorithm, this is because the larger grid distance leads to less RSS information collected by the
off-line database and the local linear relationship composed of selected reference points becomes rough.
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Table 2. Mean position error comparison with different grid distances.

Grid Distance kNN LS Proposed Algorithm

1.5 m 1.41 m 1.37 m 1.12 m
2 m 1.62 m 1.46 m 1.25 m

The CDF comparison among the different algorithms is as shown in Figure 10. It is shown
that the number of qualified test targets of the proposed algorithm within different position errors is
larger than that of the other two algorithms under the corresponding grid distance. Considering the
position error within 1.5 m, the CDF for each algorithm is 54% for kNN, 68 percent for LS, and 78%
for the proposed algorithm as the grid distance is 1.5 m. When the grid distance increases to 2 m,
the CDF of proposed algorithm, kNN algorithm, and LS algorithm is 64%, 42%, and 58% respectively.
The results demonstrate that the smaller grid distance can improve the positioning accuracy. In the
case of different grid distances, the positioning performance of proposed algorithm is superior to the
other two algorithms.
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Figure 10. CDF of position errors with different grid distances.

Next, the effect of the number of AP on the positioning accuracy was explored through the
experiments. The grid distance is selected with 1.5 m to evaluate the positioning performance of the
three algorithms when the number of APs are three and four, respectively. The comparison of the
mean location errors among different algorithms with 1.5 m grid distance is as shown in Table 3.
When the number of AP is three, the mean position error of the proposed algorithm is 1.41 m. The kNN
algorithm and LS algorithm are 1.83 m and 1.58 m, respectively. As the number of AP increases to
four, the mean position errors for each algorithm is 1.65 m for kNN algorithm, 1.37 m for LS algorithm
and 1.15 m for the proposed algorithm. The above experiment results demonstrate that the increase
of the number of AP can improve the positioning accuracy. In the case of different number of AP,
the positioning performance of proposed algorithm is superior to the other two algorithms.

Table 3. Mean position error comparison with different number of APs.

Number of APs kNN LS Proposed Algorithm

3 1.83 m 1.58 m 1.41 m
4 1.65 m 1.37 m 1.15 m

Figure 11 shows that the CDF comparison of position errors under different number of APs.
With 1.5 m grid distance and three APs, the CDF of proposed algorithm within 1.5 m position error is
58%. The kNN algorithm and LS algorithm are 45% and 31%, respectively. When the number of AP is
four, the CDF of proposed algorithm increases to 72%. The CDF for other two algorithms is 41% for
kNN algorithm and 66% for LS algorithm.
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Figure 11. CDF of position errors with different number of APs.

The above experimental results show that the proposed algorithm has a higher positioning
accuracy than that of kNN algorithm and LS algorithm no matter under different grid distances or
different number of APs.

5. Conclusions

In this paper, we have proposed a new 3-D indoor localization algorithm to achieve more accurate
detection of an unknown radio transmitter. A 3-D RSSD-bsed FG model was constructed based on the
local linear relationship between RSSD and location coordinates. Using the Gaussian assumption of
measurement errors and taking the stochastic properties of measurement error into account can better
reflect the various impact factors of complex indoor environment than the conventional deterministic
algorithms. The soft information transported between factor nodes and variable nodes in the proposed
FG can be obtained by sum-product algorithm. The location variable of the target can be calculated by
a certain number of exchanging soft information, and the proposed method enjoys fast convergence.
In addition, the positioning performance was explored under different distances and different number
of APs through the simulations. After that, we implemented our proposed scheme in a real 3-D scenario
to verify the feasibility, and the mean localization error can be approximately 1.2 m. Compared with
the kNN algorithm and LS algorithm, the proposed algorithm effectively improves the positioning
accuracy by about 25% and 15%, respectively. The experiment results show that the proposed method
has better positioning performance than the other two algorithms no matter under the different grid
distances and number of APs. The impact of AP’s layout on positioning accuracy and localization of
the multi-targets will be involved in our future researches.
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Abbreviations

The following abbreviations are used in this manuscript:

2-D Two-dimensional
3-D Three-dimensional
FG Factor graph
kNN k-nearest neighbors
LS Least square
AP Access point
TOA Time of arrival
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TDOA Time difference of arrival
RSS Received signal strength
ECLS Extended candidate location set
RSSD Received signal strength difference
SDP semidefinite programming
LOS Line of sight
NLOS Non-line of sight
CDF Cumulative distribution function
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