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Abstract: Image saliency detection is a very helpful step in many computer vision-based smart
systems to reduce the computational complexity by only focusing on the salient parts of the image.
Currently, the image saliency is detected through representation-based generative schemes, as these
schemes are helpful for extracting the concise representations of the stimuli and to capture the
high-level semantics in visual information with a small number of active coefficients. In this
paper, we propose a novel framework for salient region detection that uses appearance-based
and regression-based schemes. The framework segments the image and forms reconstructive
dictionaries from four sides of the image. These side-specific dictionaries are further utilized to
obtain the saliency maps of the sides. A unified version of these maps is subsequently employed
by a representation-based model to obtain a contrast-based salient region map. The map is used
to obtain two regression-based maps with LAB and RGB color features that are unified through
the optimization-based method to achieve the final saliency map. Furthermore, the side-specific
reconstructive dictionaries are extracted from the boundary and the background pixels, which are
enriched with geometrical and visual information. The approach has been thoroughly evaluated on
five datasets and compared with the seven most recent approaches. The simulation results reveal
that our model performs favorably in comparison with the current saliency detection schemes.

Keywords: salient region detection; appearance based model; regression based model; human visual
attention; background dictionary

1. Introduction

Salient Region Detection (SRD) is a procedure to confine the image according to human visual
attention and discovers the most useful and informative portion of an image. This procedure tries to
approximate the possibility that the image region that is taking more attention comes out as a salient
object. It is also a very helpful step because it is applied in many computer vision applications to reduce
the computational complexity by only focusing on the salient parts of the image. The conventional
saliency methods are separated into two groups as the bottom-up [1] and top-down [2]. The first
category is a bottom-up method, which is a stimuli-driven approach and it only depends on the prior
knowledge of the object and the background. Whereas, the second category is a top-down approach,
which is data-driven and does not need prior information to detect the saliency.
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The major portion of SRD literature [3–5] is comprised of the bottom-up approaches [1], as these
methods only consider low-level features and demonstrate a remarkable performance. The dense and
sparse appearance-based models are separately applied in [6,7] for the salient region computation.
The dense reconstruction error-based methods [8] have persuasive results when the image border
is large and contains the sparsely connected regions. However, these methods lose their efficiency
when the background contains a latent pattern or the background is complicated with small-scale
high-contrast patterns. The dense appearance-based models [7] provide a more expressive and generic
description of the background. These methods are more sensitive towards the background noise.
So, the dense representation error-based models are very less useful in detecting the salient objects with
a cluttered background. The methods based on a background template set [9–11], and co-similarity
matrix [7] have convincing results whenever the salient objects pop out closer to the center part of the
scene. However, when the salient objects significantly touch the image boundary, parts of them are
wrongly considered as background. Consequently, the extracted saliency is less accurate when the
salient object part is popping out or touching the boundary. In this case, the foreground parts of the
image are mistakenly considered as the reconstructive dictionary and obtain zero weights, and the
salient objects in the remaining parts of the image are found to be less accurate.

In this paper, we introduce a novel SRD method which fuses the compact appearance and
discrimination of the individual scenes into a combined framework. Firstly, the input images are
segmented into superpixels. Secondly, we employ the appearance-based model to measure the
rareness of the features. Thirdly, we apply the regression-based model to rank the previously
computed results on the basis of the foreground and the background multi-feature cues, respectively.
Finally, we utilize an optimization method to produce an even and accurate salient region map.
Our appearance-based model is very simple and easily detects the objects closer to the boundary of
the scene. Our regression-based model makes the initial saliency map smoother and it is very helpful
in highlighting the salient object part. The proposed method utilizes the visual, geometrical and
location information for SRD and shows improved results as compared to the previous contrast-based
methods. To fuse the previously obtained results, we applied an enhancement procedure to compute
more even and precise salient region maps. We compare our method visually as well as graphically
against the seven current SRD methods on the five benchmark databases. From the qualitative and
quantitative evaluation, we found that our method performance remains very consistent on all the
selected databases. The main contributions of our method are summarized as follows:

• The designed model is robust and easily handles the cluttered and noisy background which was a
problem for dense appearance-based models. Also, the side-specific dictionaries of the proposed
model are helpful in detecting the salient objects adjacent to the boundary.

• Sometimes the small segments from the background are extremely highlighted and affect the
computed saliency. The averaging process of the proposed model is very helpful to overcome this
issue by measuring the saliency of a superpixel as an average residual in this segment.

• To enhance the discrimination between the foreground and the background, we engage a
multi-feature graph-learning procedure which incorporates the intrinsic weight of regions to
implement the uniformity among the similar image patches by utilizing the prior information.

• Furthermore, we optimize the salient regions map by applying the guided filter, which removes
the artifacts and further improves the qualitative as well as the quantitative results.

The remaining part of the paper is organized as follows. The current literature about the SRD
is discussed in Section 2. In Section 3, different stages of our method like dictionary construction,
saliency detection, and refinement processes are discussed in detail. The comparison of our model
with the seven most recent methods is given in Section 4. The conclusion of our method is summarized
in Section 5.
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2. Related Work

Several computational methods are proposed for SRD. The majority of the preceding schemes
are appearance-based models, these models mainly depend upon the global or local contrast for their
saliency map computation.

2.1. Dictionary Learning-Based SRD

The dictionary-based approaches [2,12–15] facilitate learning multifaceted labeling procedures
and represent the image in a space where it can be easily processed. In [12], the basis vector is computed
on the belief that the repeatedly activated bases contain less energy as compared to the rare bases.
This model works selectively because the unpredicted bases are selected as salient clues. A dictionary
for an image patch is constructed from a depository of natural images in [6]. Then, the sparse
representation is utilized to find the contrast between each image patch. Shen et al. [13] optimize the
objective of feature transformation and low-rank decomposition for training the dictionary. However,
these methods manually trained their dictionaries using the top-down way. In [1,14], the authors
constructed the dictionary by only utilizing the center-surrounded patches without any training.
However, the saliency results are not satisfactory because the inner-region of the salient object is
not detected properly. In recent dictionary-based method [8], the author utilized the boundary
information to extract the background dictionary. The saliency computed through this background
dictionary is not clear because only the boundary information for background dictionary construction
is insufficient. Currently, some methods engaged the center-remaining strategy [16], while other used
the more background regions [17] to construct their background dictionary. However, most of the time,
the background templates contain limited information that leads to incorrect SRD.

2.2. Sparse Representation-Based SRD

The image boundary is always standing out as a part of the background. So, it can be very helpful
in constructing the background template set [8–10]. The authors computed the sparse representation
error through this background template set. However, the computed results are not significant when
the salient object is touching the image boundary. The center-surrounded strategy is helpful in
detecting, so the authors in [16] engaged the center-remaining procedure to extract the dictionary.
Then, the sparse reconstruction error is calculated through this dictionary. The computed saliency
results averaged and improved through a multi-label inference process. To enhance the difference
between the salient object and the background, a sparse coding-based generative model is discussed
in [17]. To capture all information related to the image a superpixel sparse reconstruction-based model
is defined in [9]. However, the results generated by these models are not very clear because these
methods only utilizing the local image information for SRD. Consequently, all these methods improved
their results through an enhancement process, which recovers the lost information.

2.3. Global or Local Measures-Based SRD

The previously designed SRD techniques are broadly divided into two categories, local and
global methods. The local methods compute the saliency by the rarity of neighbors or surrounded
regions. While the global methods extract saliency using the uniqueness of features over the entire
scene. In [14], the authors computed the saliency as the center-remaining difference of many features.
Graph-based SRD method [18] exploits the rarity of different local features to compute the saliency
map. A fuzzy growing approach is utilized to compute the saliency with the contrast of neighboring
superpixels [19]. Ming Lin et al. [20] proposed the saliency of superpixels by incorporating the global
features, namely spatial distribution and uniqueness. They used the PCA method to incorporate
color and pattern distinctness to find the SRD. In [7], the authors computed the saliency by the global
contrast between the image patches and their spatial position. They performed sampling based on
the conventional three-color cues maps and PCA to extract the main features of the image patches.
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To extract a saliency map with high resolution that is dependent on color contrast, a Histogram
Contrast (HC) method is defined in [21]. In [22], a non-local histogram approach is engaged to improve
the efficiency of the method, and a smoothing procedure is applied to get rid of quantization artifacts.
However, these proposed techniques are only suitable for simple natural images and lose their accuracy
for highly patterned and textured images.

2.4. Multiple Feature-Based SRD

The existing approaches for SRD are mainly focusing on the color features while ignoring the
other features like texture, structure, and the orientation. Therefore, these types of methods are not
successful when dealing with an image that contains rich textural features. Many approaches for SRD
use the RGB color model and few of them depending upon LAB or YCbCr color space for their result
calculation. The authors consider the near-infrared region with the RGB color model for SRD [23],
as tthe near-infrared region provides more clues for recognition and categorization than the RGB color
model. SRD using sparsity-based and graph-based models is proposed in [24]; the authors combine
the multi-features of colors with sparse representation model to compute the saliency. A method for
SRD by combining multiple features of color distribution and contrast is proposed in [25], the authors
exploited a multi-features color difference measure, a multi-features color distribution measure, and a
multi-features salient object measure to compute the saliency. To exploit the multi-features constructing
through image manifold of the different feature, a multi-feature enhancement procedure is discussed
in [16]. However, these methods add some high contrast pixels with the salient object that lead to
insignificant detection.

2.5. Foreground or Background-Based SRD

The discriminative schemes are also very important because these schemes help in enhancing the
contrast between the background and foreground regions for SRD [25]. A number of discriminative
strategies based models have appeared in current years. Shuang Li et al., [26] suggested that the
saliency of a region is computed by the distance from the most assured background and foreground
seeds. Hongyang Li et al., [27] proposed that the saliency of an object is estimated through propagating
the cues extracted mainly from the certain object regions and background. The graph-based methods
can capture more grouping features in the scene with the graph likeness. Graph similarity typically
controls the performance of a graph-based method [11]. Some of them used the semi-supervised
learning to approximate the similarities by incorporating local-grouping features deduced from the
whole image. The foreground represents appearance consistency and uniformity, while the background
many times reveals global or local connectivity with each of the four image boundaries [28]. In [17],
a two-stage saliency scheme is defined which is based on relevance to the given query. After that,
they used the graph-based manifold ranking procedure to rank the foreground and background cues.
However, if the contrast is far from being between the foreground and the background, the computed
saliency results are not accurate. Furthermore, it is very difficult to choose the position and the number
of salient queries because these cues are generated through the random walks on the graphs, especially
for the images that contain, unlike salient objects.

2.6. Deep Convolutional Neural Networks-Based SRD

Since Deep Convolutional Neural Networks (CNN)-based methods [29–31] are engaged for
SRD, tremendous progress has been achieved because of the availability of large visual datasets
and GPU computing resources. The development of deeper and larger DCNNs [29–31] that could
automatically learn more and more powerful feature representations with multiple levels of abstraction
from big data. Significant progress has been made in the past few years to boost the accuracy levels of
SRD [29–31], but existing solutions often rely on computationally expensive feature representation and
learning approaches, which are too slow for numerous applications. In addition to the opportunities
they offer, the large visual datasets also lead to the challenge of scaling up while retaining the
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efficiency of learning approaches and representations for both handcrafted and deeply learned features.
In addition, given sufficient amount of annotated visual data, some existing features, especially
DCNN features [29–31], have been shown to yield high accuracy for visual recognition. However,
there are many applications where only limited amounts of annotated training data can be available or
collecting labeled training data is too expensive. Such applications impose great challenges to many
existing features.

3. The Proposed Salient Regions Detection Approach

In this section, we present the particulars of our proposed approach in detail. In the first stage,
we employ the Appearance-Based Model (ABM) to compute the coarse dense salient region map. In the
second stage, we engage the Regression-Based Model (RBM) to enhance the discrimination between
the foreground and background cues, respectively. Each of the individual stages of the proposed
salient region detection method is illustrated in Figure 1.

Figure 1. The pipeline of proposed salient region detection model.

3.1. The Visual Feature Extraction

To encode and accomplish better structural information regarding the image, we first segment the
input image into superpixels by utilizing the Simple Linear Iterative Clustering (SLIC) mechanism [32].
SLIC adapts a k-means clustering approach to efficiently generate superpixels. Despite its simplicity,
SLIC adheres to boundaries as well as or better than previous methods. At the same time, it is faster and
more memory efficient, improves segmentation performance, and is straightforward to extend to super
voxel generation. SLIC algorithm group pixels into perceptually meaningful atomic regions which can
be used to replace the rigid structure of the pixel grid. SLIC captures image redundancy, provide a
convenient primitive from which to compute image features, and greatly reduce the complexity of
subsequent image processing tasks. Superpixels present a better method for obtaining the features of
an image. As discussed in [6], the conventional color model is supportive for SRD because the colors
surround the major part of the image. To capture more information relating to the image, we used
the mean of the RGB and CIE Lab color space to represent a superpixel as Z = [R G B L a b x y gi ui],
where R, G, B, and L, a, b express the values of RGB color model and CIE Lab color space, respectively
while the x and y express the coordinates of the pixels. Whereas ui is used to indicate the density of
edges. Where gi is used to highlight the salient object part through the following Gaussian function:

gi = exp[−( xi − xc

2σ2
x
− yi − yc

2σ2
y

)] (1)

where, σx = xc and σy = yc are the image center co-ordinates, xi and yi indicate the superpixel
co-ordinates, si and sj are the ith and jth superpixels of the image. Sometimes due to less contrast
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or same color of the foreground and the background part is mistakenly considered as foreground.
To overcome this issue, our focus is salient object instead of image center. To achieve this objective,
we calculate salient object center using the following equation:

sc =

xc = ∑n
i,j=1

si
∑n

j=1 sj
xi

yc = ∑n
i,j=1

si
∑n

j=1 sj
yi

(2)

Subsequently, the image is presented as Z = [z1, z2, z3, ...., zn]εRD×N , where N and D are the
number of segments and features dimensions of the image, respectively. As a result, the calculated
saliency maps with textural information have more effective representation as shown in Figure 2b,c,
respectively.

(a) OI (b) SRD map (c) Updated SRD map (d) GT

Figure 2. The need for visual features for extracting a good saliency result is obvious from the depicted
results. It is worth noting that the results in the second column are comparably less significant and
missing a lot of real image information.

3.2. Heuristic Background Dictionary

In current SRD schemes, the background contrast, background prior, and boundary information
is used to compute their SRD map. Following the previous assumptions, we also assembled a part
of the background and boundary clues and named it as a Heuristic Background Dictionary (HBD).
Since constructing this HBD, we also used the idea of center-remaining difference to capture high
contrast around the salient objects near the center of the image. The HBD has persuasive results for
simple natural images, however, for complex natural images, the resultant map contains a large amount
of background noise. When the foreground region and background regions are implicated, and the
contrast is much smaller, the HBD is less helpful for finding the foreground region. Consequently,
when the background is complex it is difficult for ABM to train the HBD which is not capable of
extracting complete information from the background, as a result, the salient region map contains
background noises. To achieve improved SRD results, we accumulate the accurate background and
boundary clues as for the dictionary bases. We computed the value of a segment i through the
following expression:

Useg(i) =
∑L={right,le f t,top,down} Si,L.ϕ(seg(i) /∈ segL)

∑L={right,le f t,top,down} ϕ(seg(i) /∈ segL)
(3)

where, ϕ(.) and segL represent the indicator function boundary segment set, respectively. According
to [33,34], the different dataset contains the different size of the salient part and the largest salient
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object contains the 35% of the image. In a 15-pixel wide narrow border region, 98% belongs
to the background [35]. Using this information, we selected the 30% of background pixels for
constructing the dictionary. We used the dictionary-learning procedure to avoid the redundant
sampling and computational problem in which the background samples are directly utilized as
dictionary bases. This training procedure computes more compact heuristic background dictionary
T = [t1, t2, t3, ..., tn] ∈ Qp×n. We use the following function to compute HBD as:

JT,E = arg min
T,E

{
‖Υ− TE‖2

F + ν‖E‖1

}
s. t. t>j tj = 1, ∀j (4)

where, Υ ∈ Rp×n used to signify the background segments sets, E is Representation-Coefficient Matrix
(RCM) of Υ based on T, while ν is used to balance the `F − norm and `1− norm terms. The Equation (4)
represents a joint-optimization function of T and E. Firstly, the T is initialized and fixed after that
E is solved using [36] as it becomes a standard optimization problem. Then, we update T by fixing
E through the Lagrange multiplier. This procedure is iterated till the values of IT,E are close enough
and at that time, we are able to obtain a more reconstructive dictionary.

The compact appearance frameworks construct their background coefficient matrix which
detains all of the fundamental characteristics of the background part, however, it is very sensitive to
background noises. The dense appearance models provide more meaningful and basic descriptions
of the background region as compared to the foreground region. For messy and complicated scenes,
the ABM is less useful in computing the salient objects. So, we use the background contrast from four
sides of the image boundary and designed four HBDs. Suppose, if the HBD cannot capture all of the
information from one side of the image it will definitely collect some background information from the
other sides. The salient objects are more accurately captured if we apply the clues and seed extracted
from the four sides of the image. The proposed model HBD is designed to handle these issues. In view
of the fact that the distinctive border of the image may possibly enclose a component of the salient
object parts, the HBD is very effective and capable of appreciably eradicating these regions of the
image that are considered as background noises as revealed in Figure 3. Subsequently, the left behind
a set of superpixels is preferred as HBDs, which contain additional stable and consistent background
information.

(a) OI (b) Result without HBD. (c) SRD map with HBD. (d) Ground truth
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(e) SRD map with background noise. (f) SRD map with background noise.

Figure 3. Cont.
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(g) SRD map without background noise. (h) SRD map without background noise.

Figure 3. The effectiveness of the heuristic background dictionary for highly precise and exact salient
object maps extraction.

3.3. Appearance-Based Salient Region Detection

Superpixels appearance based saliency computation is the most important step of our model.
The image boundary superpixel contains very important information which can be engaged to obtain
the saliency maps. The methods based on a background dictionary [9–11] have convincing results
whenever the salient objects pop out closer to the center part of the scene. However, when the
salient objects significantly touch the image boundary and parts of them are wrongly considered as
background. However, our designed HBD T = [t1, t2, ..., tm] has D-dimensional cues of boundary and
35% of background segments. We apply this reconstructive background dictionary to remove the
background noise and to compute ABM saliency map. The classical SRD method [7,8] computes the
dissimilarity between the coefficient of segment i as follows:

αi = V>T (zi − z̄) (5)

where, z̄ = ∑n
i=1 zi is the mean feature of Z and the eigenvalue and eigenvector is calculated via the

normalized covariance matrix of T, VT = [v1, v2, v3....vÉ]. Then, the largest eigenvalues are selected
to form the PCA bases for the reconstructive background dictionary. The corresponding saliency of
segment i can be calculated using the following expression:

ei = ‖zi − (VTαi + z̄)‖2
2 (6)

We believe that the dense representation is more expressive to the background features, and it
is more sensitive towards the noise. In general, the background part of the image is comparably
uniform, sparse, on the contrary, the foreground part is comparably lesser and dense. The key motive
for selecting the PCA framework is this when the salient objects are located at the image boundaries.
In these typical cases, the background is the main ingredient. So, PCA can easily detect the foreground
and filter outs the background. The PCA only deals with simple natural images, however, for complex
natural images the resultant map contains a large amount of foreground noise. For cluttered images,
the ABM is less effective in measuring salient regions. Dense appearance models, data points through
a multivariate Gaussian distribution in feature space, and therefore, it is very difficult to detain
multiple scattered patterns particularly when the number of examples is limited. To accomplish better
performance of salient region detection, we need to accumulate more correct background information
as reconstructive background dictionary bases. We use the background contrast from four sides of the
image boundary and designed four HBDs. By utilizing the reconstructive background coefficient set
from the top side, we compute the dense representation co-efficient of segment i as follows:

αi,right = V>Si,right
(zi − z̄) (7)
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The saliency value of each segment is proportional to the dense representation. The dense
representation of segment i using the topside dictionary can be calculated using the following
expression:

ei,right = ‖zi − (VSi,right αi,right + z̄)‖2
2 (8)

Particularly, the coarse salient region map of each superpixel z in a region r is extracted as follows:

SABM
i,top =

1
|r| ∑

zi∈r
(1− di)× ei,top (9)

where di is the Euclidean distance of the superpixel xi from the center part of the image, and |r| express
the numbers of superpixels in r. At the end, we normalize SABM

i,right, i = 1, ..., n in the range [0, 1] to
generate the coarse salient region map from topside. Then the saliency maps are generated from
remaining sides likewise and combined to generate SABM salient region map as depicted in Figure 4.
Commonly, the salient part of the image is compact and restricted in a small part which is similar
in appearance and consistency, whilst the background part is spread over the whole scene with the
same pattern and uniformity. Thus, the superpixels in their correspondences sharing their geometrical
appearance information and also their saliency scores. This thing specifies that the average remaining
in a superpixel is equal to the saliency values in each region. Additionally, this averaging framework is
designed to get rid of the most basic issue in saliency like: a number of small segments having higher
contrast values are described through high saliency values sometimes, so the overall saliency of the
entire salient object is comparably decreased.

(a) OI (b) DRE map (c) ABM map (d) GT

Figure 4. The validity of obtaining a background coefficient matrix is noticeable from the demonstrated
results. The results are arranged as OI, the dense representation error map, ABM map, and the GT.

3.4. Saliency Enhancement through a Regression-Based Model

We compute a graph G = (V, E), where V is set of superpixels and E represents the boundary
edges of the image. In [16,24,25], the following function is used to determine the saliency of all the
superpixels as:
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F = arg min
F

( n

∑
i,j=1

wij(pi − qj)
2︸ ︷︷ ︸

Smoothness

+β
n

∑
i=1

(Fi − ri)
2︸ ︷︷ ︸

Fitting

)
(10)

where ri is the ranking value for ith superpixel, pi =
Fi√
gii

is saliency of ith superpixel, and qj =
Fj√gjj

is the saliency of jth superpixel. W = (wij)n×n is the weight among two superpixels in the CIE LAB
color space and is defined as follows:

wij = exp−
‖ ci − cj ‖

2σ2
w

(11)

while ci and cj represent mean of superpixels i and j in a color model, respectively. Here σw is engage
to balance the color weight. Equation (10) illustrates the energy function, the first expression in the
Equation (10) is smoothness constraint while the second part is fitting constraint. Therefore, the ranking
values of unranked data are computed by solving the above function as:

C = (D− ϕW)−1 (12)

where, D = diag{d11, .., dnn}, and dii = ∑j Wij are degree matrix and weight matrix, respectively.
While the parameter ϕ keeps a balance between the smoothness constraint and the fitting
constraint. Basically, the optimized graph affinities are described through the inverse matrix
C, these graph-affinities are extracted from the prearranged data signified as a graph through
semi-supervised learning without integrating. It also specifies the overall weight between two
connected superpixels and extracts their grouping information for SRD. We suppose that an image
contains k types of features, so weight matrix and degree matrix are computed for k features as:
Wk = (wk

ij)n×n, and Dk = (dk
ij)n×n. In our designed cost function, we take two n× 1 vectors U and V,

which are attained from the previous saliency results by normalizing in the interval of 0 ∼ 1. After that,
we introduce two diagonal matrices v = [vii] = diag(V) and u = [uii] = diag(U). To combine
numerous features in a single salient region map containing the smoother foreground and suppress
background, we define our novel pairwise potential model as:

Fl = arg min
Fl ,l=1..,k

k

∑
l=1

(
λ

n

∑
i=1

m

∑
j=1

wl
ij(Fl

i − Fl
j )

2

︸ ︷︷ ︸
Smoothness

+
n

∑
i=1

ul
ii(Fl

i − 1)2

︸ ︷︷ ︸
Foreground

+
n

∑
i=1

(1− vl
ii)(Fl

i )
2

︸ ︷︷ ︸
Background

)
(13)

where, Fi and Fj are saliency values of segment i and segment j, respectively. While the λ is a balancing
parameter. The first term on the right-hand side in energy function is the smoothness constraint. For a
good saliency map the salient object should be even and smooth. The second term is used here to
assign higher values to the foreground region. We employ this term for multi-features foreground
computation and highlighting the foreground part. The last defined constraint is background constraint
which assigns less weight to the background regions and also helps in creating well-defined boundaries
of the salient objects. Previously designed methods are dependent on the color information for
computing their saliency. However, the computed images lose their accuracy when the salient objects
are pattern objects. To fully capture the salient objects, we combine the boundary, texture, geometry
and spatial information to obtain our saliency results. The mean of color features are obtained from
the superpixels and utilized after normalizing it. While the textural features like HOG and LBP feature
are also extracted from the superpixels but after normalizing their histogram. The sum of texture and
color discontinuities is computed through gradient G and utilized it as the boundary information.
All of the above features are utilized to compute the weights of superpixels as:
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wl
ij = exp−

( k

∑
l=1

(‖cl
i − cl

j‖
σ2

w

)
+ β

k

∑
l=1

dL(Ll
i , Ll

j) + γ
k

∑
l=1

dH(Hl
i , Hl

j)

)
(14)

where, the β and γ are used to control the weights between the superpixels. Here, we assign highest
weight to the color parameter because it is more reliable than other features. We take the value of
k = 2, because in this framework we are only dealing with two features. After putting the value of k
this optimization function can be written as:

F1, F2 = arg min
F1,F2

1
2
(
λF>1 (D1 −W1)F1 +

1
2

u(F1 − D−1
1 )>D1(F1 − D−1

1 ) + λF>2 (D2 −W2)F2+

1
2

u(F2 − D−1
2 )>D2(F2 − D−1

2 ) +
1
2

F1(1− v)F>1
) (15)

We took the value of k = 2 to compute the optimal solution of this energy function. We take the
derivative of this function with respect to F1 and F2 and putting it equal zero. Then we obtained the
following expression as:

E1 = 2λ(D1 −W1) + uD1 + (I − v) (16)

E2 = 2λ(D2 −W2) + uD2 + (I − v) (17)

Motivated from [6], which observed the paired advantages of Lab and RGB color models for
salient region detection, we engaged two types of visual information like E1 and E2 to extract our
results. After that, we take the average of the salient region maps and normalize the computed result
between the range [0, 1] to obtain the final saliency region map. Figure 5 demonstrates the computed
results through the proposed model with single and multi-featured.

(a) OI (b) ABM map (c) RBM map (d) GT

Figure 5. Some examples demonstrating the difference between single and multi-level cues integration
step. The results are arranged as OI, salient region map with single feature integration, and the saliency
map extracted through multi-label features incorporation.

Instinctively, a region with higher contrast in representation to the neighboring elements always
receives high saliency scores. However, the proposed multi-feature inference mechanism not only
processes the salient regions of the image depending upon their degree of relevance but also assigns
higher saliency scores computed from multi-features spaces. This property effects in highlighting the
salient object parts more uniformly and suppressing the background regions. We can note that the ABM
is more robust in dealing with the salient object at the image boundary. However, for complex natural
images, the resultant map contains a large amount of foreground noise. The RBM is more efficient in
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dealing with the complex background but loses its efficiency when the objects are at the boundary of the
image. Consequently, both the RBM and ABM are essential for computing a good salient region map
as shown in Figure 6. In very complex background images, sometimes, background pixels included in
the results, we can see artifacts in the computed maps due to the pre-processing. So, in order to remove
these artifacts and background pixels, we engage the guided filter [37]. The guided filter produces the
background and artifacts free smooth result as revealed in Figure 7.

(a) OI (b) Segmented map (c) ABM map (d) RBM map (e) Optimized map

Figure 6. We individually compare the salient region map of each stage of the proposed method by
using ASD database [38]. The results are organized as OI, the segmented image, ABM salient region
map, enhanced salient region map through RBM, and the final salient region map .

(a) OI (b) MI (c) RS (d) AM (e) BD (f) MC (g) HS (h) UC (i) Our (j) GT

Figure 7. Visual comparison of our scheme with some recent approaches using the ASD database.
The SRD results are arranged as OI, MI, RS, AM, BD, MC, HS, UC, our scheme, and the GT. We can
note that the SRD maps of our proposed scheme are very close to the GT.
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4. Experimental Results

We analyzed and investigate our model on the five largest benchmark datasets against the seven
state-of-the-art methods. For performance assessment, four evaluation measures are selected to
completely analyze the proposed algorithm against seven preceding schemes. In the next section,
we discuss the details of the selected benchmark datasets for performance evaluations.

4.1. Benchmark Datasets

To analyze the computed saliency results, there are many databases available that differ from one
and another in size, number objects, and background. We employ a different database to assess and
analyze the performance of our proposed algorithm. We assess our salient region detection model
on five different standard databases that are: (1) ASD [38], (2) ECSSD [39], (3) DUT-OMRON [28],
(4) SED2 [40], and (5) MSRA [41]. We prefer these databases for the following reasons: (1) background
nature, (2) complexity level, (3) a large number of images, (4) the different number of objects in a
scene, and (5) potential benchmark databases. Firstly, we test the performance of the proposed model
in the ASD database. The images in this database have a large variety in the background structure
like a simple, smooth, complex, and multifaceted nature. The ASD database contains 1000 images
with pixel-wise annotated ground truths. The purpose to include SED2 databases is to assess the
performance of our model with an image contains multiple objects. Lastly, we analyze our model over
Extended Complex Scene Saliency Data-set (ECSSD), which contains 1000 images that are semantically
meaningful, however, having complex and natural images.

4.2. Preceding Methods Selected for Comparison

Our SRD model is compared against seven state-of-the-art models. We first visually and then
graphically compare to check and validate our framework. The schemes we compare with our method
are chosen due to the following four reasons: (1) recency, (2) citations, (3) computation complexity,
and (4) variety. These models are: AM [29], BD [42], RS [43], MC [44], MI [30], HS [39], and UC [31].
The source codes of some of the above-defined approaches are easily accessible for public. While other
we obtained from the saliency results generated by Cheng et al. [34]. Only a few of the source codes
are directly downloaded from the author’s web, therefore, we utilized their source codes to extract the
saliency results for comparison purpose.

4.3. Evaluation Metrics

Numerous techniques are applied to evaluate the concurrence between the obtained results and
the GT. Before computing the evaluation metrics, the produced salient region maps should be changed
in binary form to estimate the generated map. We also apply the adaptive threshold as discussed
in [34], the thresholding is used to get the binary mask of salient region map S, that is calculated as:

Th =
1

w× h

h

∑
a=1

w

∑
b=1

S(a, b) (18)

whereas, w and h represent the height and width of saliency map, respectively.

4.3.1. Precision-Recall

The saliency map S is converted to the binary-mask M using the given ground truth T.
The PR-curve is computed using this expression:

Precision =
|M⋂

T|
|M| , Recall =

|T⋂M|
|T| (19)
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4.3.2. F-Score

F-score is calculated using the Precision-Recall, the evaluation of the SRD is not complete without
F-score. The F-score is computed using the following expression:

Fν =
(1 + ν2)× Precision× Recall

ν2 × (Precision + Recall)
(20)

All of the compared method take the value of ν = 0.3. So, we have take the value of ν = 0.3 for a
fair comparison.

4.3.3. Receiver Operating Characteristics

The ROC-curve is obtained using the binary mask M with a fixed threshold as:

TPR =
|M̄⋂

T|
|M̄| , FPR =

|M⋂
T̄|

|T̄|. (21)

where, T̄ is opposite of T and M̄ is opposite of M. The ROC-curve is obtained through TPR and FPR
with changing the value of the fixed threshold.

4.3.4. Mean Absolute Error

To check the worth of SRD maps might have high significance as compared to binary mask.
We also applied the MAE between the continuous SRD map S and the ground truth T, both are
normalized in the range [0, 1]. The MAE value is defined as:

MAE =
1

w× h

h

∑
a=1

w

∑
b=1
|S̄(a, b)− T̄(a, b)| (22)

4.4. Implementation and Analysis

We visually and graphically analyze the designed algorithm against preceding algorithms. We also
assess the performance of the proposed model with different parameters using PR-curves. In the next
section, we describe the comparison of our model with existing schemes.

4.4.1. Parameter Settings

The performance of our model is affected by different parameters. When we are comparing the
performance of our model, we used the following parameter settings: β = 0.10, γ = 10, λ = 0.35,
σw = 0.05, and N = 200, where N represents the number of superpixels. Figure 8 demonstrates the
effect of these balancing parameters on the performance of our model. We execute simulations 5 times
repetitively to avoid any uncertainty due to the arbitrary initialization.

4.4.2. Evaluation of Our Algorithm

In this section, we evaluate different elements of the designed framework and their impact
on the performance in detail. The PR-curves with and with the single and multi-features are also
demonstrated in Figure 9. We can also see that the final map with the multi-features is little higher than
the final map with a single feature. The final map with a single-feature loses some information during
pre-processing. We evaluate the proposed method against two most recent SRD schemes: NS [45],
and MSC [46] in Table 1. We used the F-measure, AUC, and MAE to check the performance of our
model against these two schemes. We notice that our model outperforms than the opponent schemes
in selected metrics with higher F-score, AUC and lesser MAE.
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Table 1. The performance comparison of our model with recent schemes.

Models
ECSSD SED2 DUT-OMRON ASD

NS MSC Our NS MSC Our NS MSC Our NS MSC Our

F-score 0.710 0.713 0.73 0.775 0.791 0.802 0.616 0.60 0.699 0.870 0.92 0.93
AUC 0.90 0.89 0.907 0.85 0.859 0.861 0.887 0.883 0.895 0.935 0.952 0.953
MAE 0.245 0.229 0.222 0.182 0.155 0.145 0.149 0.126 0.125 0.095 0.080 0.070
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Figure 8. PR-curves to validate our proposed method with different parameters values for the MSRA
database. The balancing parameter is tuned at different values to verify the refinement function and
their effect on the final SRD map.

4.4.3. ASD Database

We assess the performance of our scheme with previous methods using the ASD dataset as
revealed in Figure 10. The reason for selecting the ASD database is to investigate the behavior of
our scheme with images having different complexity levels and diversified pattern. We examine
and evaluate the proposed method against seven most well-known SRD schemes such as: AM [29],
BD [42], RS [43], MC [44], MI [30], HS [39], and UC [31]. We used the ROC-curve, F-measure, PR-curve,
and MAE to check the performance of our model. We notice that our model outperforms than the
opponent schemes in selected metrics with a higher precision, recall, F-measure, and lesser mean
absolute error. The RS [43], HS [39], and MC [44] also achieved good. We considers three latest deep
learning-based models for evaluation like [29–31]. We can note from the Figure 10 that proposed
model obtains similar precisions with most deep-learning methods and suppresses the recalls, so the
proposed method yields relatively lower F-measure scores. However, the proposed model is without
preparing expensive ground truth annotations for training the model and overall performs comparable
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with these deep-learning methods. The proposed method is free of computing power and ground
truth annotations and can provide simplicity and easy-to-use generality in many practical inexpensive
applications. From the results, we observe that our SRD approach is more efficient in highlighting the
salient objects as compared to the other recent models.
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Figure 9. Graphical performance comparison of different stages of our method using PR-curves to
validate the single feature, multi-featured, and enhanced results using the MSRA dataset.
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Figure 10. The graphical assessment of our model against seven current approaches AM [29], BD [42],
RS [43], MC [44], MI [30], HS [39], UC [31] and our proposed model using the ASD dataset.
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4.4.4. DUT-OMRON Database

We also evaluate the performance of the proposed model on a DUT-OMRON database. The motive
for electing DUT-OMRON database is this, it contains a large number of images with different
complexity levels of the background. Most probably all SRD approaches utilize this database to
analyze their methods, therefore, this database is our first priority to evaluate our proposed approach
as shown in Figure 11. We verify the performance of our proposed model graphically using the
preprocessing and post-processing results. We choose PR and ROC-curve to assess the performance of
our proposed method. The resulting graphs are illustrated in Figure 11. Nevertheless, MC [44], RS [43],
and BD [42] also demonstrate persuasive results. We notice from our analysis that our approach is
more effective and more efficient in highlighting the salient objects than the other discussed methods.
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Figure 11. The graphical evaluation of our method with seven current approaches such as AM [29], BD [42],
RS [43], MC [44], MI [30], HS [39], UC [31] and our proposed model on the DUT-OMRON database.

4.4.5. ECSSD Database

Moreover, we as well engaged ECSSD database [39] to assess our mechanism graphically. ECSSD
database contains more natural images with a diversified pattern for both foreground and background.
The reason for selecting ECSSD database is to investigate the behavior of our scheme with images
having different complexity levels and diversified pattern. We examine and evaluate the proposed
method against seven most well-known SRD schemes such as: AM [29], BD [42], RS [43], MC [44],
MI [30], HS [39], and UC [31] on the ECSSD database to declare the strength of our algorithm. We pick
four different criteria which are mainly used in the literature to assess the performance of SRD methods.
These criteria are PR-curve, ROC curve, F-score, and MAE to check the performance of our proposed
approach. From the series of experiments, we found that our proposed method achieves very good
results as compared to above-defined approaches. On the other hand, RS [43], BD [42], and UC [31] as
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well accomplished fine results on all four SRD metrics. Our approach remains very unswerving in all
defined evaluation measures and demonstrates significant performance as shown in Figure 12.
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Figure 12. Graphical evaluation of our model using the PR-curve, F-measure, ROC-curve, and MAE
with seven most recent models.

4.4.6. SED2 Data-Set

Additionally, we employed SED2 dataset [40] to evaluate and validate the proposed method
graphically. The motive for electing SED2 database is to assess the performance of our scheme through
an image with two objects. We analyze and compare the proposed method against fourteen most
famous state-of-the-art approaches such as: AM [29], BD [42], RS [43], MC [44], MI [30], HS [39],
and UC [31] on SED2 database to assure the validity of our algorithm. We choose four different criteria
like PR-curve, ROC curve, F-measure, and MAE to estimate the strengths and bounds of our SRD
approach. Our SRD model remains very consistent in all the define evaluation measures and shows a
remarkable performance as illustrated in Figure 13.

4.4.7. Limitations

The designed method outperforms against above-discussed state-of-the-art SRD methods with
the higher PR values. However, the performance of our scheme is not very acceptable in some cases.
These typical cases are shown in Figure 14. The proposed method has not achieved very persuasive
results when the color of the foreground is similar to the background; in this situation, the salient
object is not salient accurately, some of the background pixels are combined with the obtained results
and size of the results do not remain significant.
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Figure 13. The graphical analysis of our SRD using four different saliency measures with other
techniques.

Figure 14. A few cases where our model performance is not very persuasive.

4.4.8. Execution Time

The execution time/image of the proposed model with some previous methods by using MATLAB
implementation using the ECSSD data set is elaborated in Table 2. The running time of all the schemes
described in the table is achieved through the machine having the Intel Dual Core i3− 2310M, 2.10 GHz
CPU, and 4 GB RAM. Our designed framework is robust than the other state-of-the-art SRD methods.
Specially, the SLIC [32] consumes 0.16 s almost 50% of the original time.
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Table 2. The comparison of our model with seven state-of-the-art techniques for average running time
(seconds per image).

Method Time(s) Code

AM [29] 0.185 Matlab
BD [42] 0.453 Matlab
MC [44] 0.547 Matlab
MI [30] 0.025 Matlab
UC [31] 0.495 Matlab
RS [43] 0.108 Matlab
HS [39] 25.3 Matlab

Our 0.32 Matlab

5. Conclusions

In this work, we have introduced a new density-based and regression-based salient regions
detection model. To capture the useful structural information, we segmented the image into multiple
uniform segments. To obtain more background information and to evenly suppress the background,
we constructed side-specific dictionaries. Then, we calculated the more effective contrast-based
salient region map using our ABM. To strengthen the generated results, we use RBM to generate
the multi-label cues rarity for each segment. To incorporate pre-computed results followed by an
optimization method that construct more even, accurate and precise salient regions map. Some
previous approaches exploit the single-feature of the background or foreground to produce their
saliency results. However, the proposed model infers multi-label color features and demonstrates
better performance as compared to the preceding appearance-based learning schemes.
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