
sensors

Article

Surface Heterogeneity-Involved Estimation of Sample
Size for Accuracy Assessment of Land Cover Product
from Satellite Imagery

Huiqun Ren 1, Guoyin Cai 1,2,* and Mingyi Du 1,2

1 School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture,
Beijing 100044, China; 2108521517043@stu.bucea.edu.cn (H.R.); dumingyi@bucea.edu.cn (M.D.)

2 Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and
Architecture, Beijing 100044, China

* Correspondence: cgyin@bucea.edu.cn

Received: 3 September 2019; Accepted: 9 October 2019; Published: 12 October 2019
����������
�������

Abstract: Sample size estimation is a key issue for validating land cover products derived from
satellite images. Based on the fact that present sample size estimation methods account for the
characteristics of the Earth’s subsurface, this study developed a model for estimating sample size by
considering the scale effect and surface heterogeneity. First, we introduced a watershed with different
areas to indicate the scale effect on the sample size. Then, by employing an all-subsets regression
feature selection method, three landscape indicators describing the aggregation and diversity of the
land cover patches were selected (from 14 indicators) as the main factors for indicating the surface
heterogeneity. Finally, we developed a multi-level linear model for sample size estimation using
explanatory variables, including the estimated sample size (n) calculated from the traditional statistical
model, size of the test region, and three landscape indicators. As reference data for developing this
model, we employed a case study in the Jiangxi Province using a 30 m spatial resolution global land
cover product (Globeland30) from 2010 as a classified map, and national 30 m land use/cover change
(LUCC) data from 2010 in China. The results showed that the adjusted square coefficient of R2 is 0.79,
indicating that the joint explanatory ability of all predictive variables in the model to the sample size
is 79%. This means that the predictability of this model is at a good level. By comparing the sample
size NS obtained by the developed multi-level linear model and n as calculated from the statistics
model, we find that NS is much smaller than n, which mainly contributes to the concerns regarding
surface heterogeneity in this study. The validity of the established model is tested and is proven as
effective in the Anhui Province. This indicates that the estimated sample size from considering the
scale effect and spatial heterogeneity in this study achieved the same accuracy as that calculated from
a probability statistical model, while simultaneously saving more time, labour, and money in the
accuracy assessment of a land cover dataset.

Keywords: sample size estimation; land cover products; satellite images; surface heterogeneity;
Jiangxi Province

1. Introduction

Land cover provides basic geospatial information for applications in the fields of global
environmental change, natural resources management, carbon and nitrogen cycle, and ecological
monitoring [1–3]. Because of the continuous earth surface scanning and the correspondingly long-term
data archives, satellite remote sensing is proven as an effective way in mapping global land cover
and measuring land cover dynamic change [4]. Currently, national and international agencies have
successfully created no less than ten global scale land cover datasets with spatial resolutions of 1 km,
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500 m, 300 m, 30 m, and 12 m. These existing land cover datasets provide basic geographic information
for studying climate, hydrology, environment, ecology, and urban regions [5–8]. Their accuracies are
undoubtedly one of the most concerning issues for the potential users. Although data accuracy or
uncertainty information is given at the same time as the land cover product releases [9,10], users in
different application fields generally need to verify the accuracy before making a decision in using the
land cover product [11,12].

Sampling inspection is a commonly used method for verifying the accuracy of land cover products.
It provides reliable information on product quality and uncertainty [13,14]. Determining the sample
size, as a key procedure in the sampling scheme, lays the foundation for the later stages of sample
displacement and verification. A reasonably-estimated sample size is an effective way to avoid the
phenomena of over-sampling or under-sampling [15,16]. In addition, the sample size also affects the
number of investigators, and the cost and time of the field investigation. Therefore, the estimation of
sample size is not only important theoretically, but also plays a guiding role in scientific research and
field work investigation.

Currently, there are three major sample size estimation methods: empirical values, fixed-grid
sampling, and calculation from a statistical model. The empirical values are the sample numbers
required by researchers to test the accuracy of each category of classified satellite images. For example,
Hay provided at least 50 empirical values for samples in each category initially [17], although the
sample size could be enlarged with an increase in spatial regions and/or the amount of categories
involved in the image classification. Congalton provided 75–100 sample data for each category of
classified image, which are common empirical values for testing classified images [18]. Empirical
sample sizes are simple and can achieve the goal of sample representation through spatial optimization
in the process of sample placement. It is usually used to determine the sample size in remote sensing
products, especially in an accuracy assessment of classified images. However, with the sprawl of
spatial regions, the spatial heterogeneity can vary to a large extent around the entire region(s).

A fixed grid is another commonly used method for determining a sample size for performing
an accuracy assessment. It divides the study area into regular grids with a certain size, for instance,
1 km or 10 km, and a sample from each grid is required [19,20]. Ridder used a 10 km × 10 km grid and
randomly selected 9000 samples to assess the accuracy of a global forest dataset [21]. Stehman designed
a 5 km × 5 km grid, in which 500 grids were randomly selected by synthesizing information on global
climate zones and population density [22,23]. Through designing a sample encryption algorithm,
a dataset for the verification of global land cover products was generated. This dataset can be used to
validate other 1 km or 500 m resolution land cover datasets. The fixed grid sampling method is easy to
implement, but the determination of grid specifications relies more on expert knowledge.

A statistical model is widely used to calculate a sample size. This method is based on theories of
traditional probability and statistics [24,25]. Tong calculates sample sizes from two scales, one on the
level of map divisions, and the other on the level of map elements [26]. By establishing probability
distribution functions in each scale, the calculated sample size overcomes the problem of ‘too strict in
map divisions and too wide in map elements’, which commonly exists in classical sampling schemes.
Based on probability and statistics theory, Olofsson calculated a sample size for simple random
sampling and stratified sampling methods respectively, using a statistical model [27]. As compared
with the empirical or fixed-grid method, the statistical model is based on theories of statistics and
probability. However, the sample size obtained by this method relies on the expected classification
accuracy and sampling error information of the products. One of the main problems is that the
same remote sensing product in different test sites with different areas will obtain the same numbers
of samples, indicating that the surface spatial characteristics, such as patch numbers, aggregation,
and diversity, from different study sites, are not involved in the calculation of sample size.

Until now, the determination of a sample size has primarily relied on expert knowledge or
conditional assumptions. This often makes it difficult to ensure the rationality of the sample size.
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Therefore, this study addresses how to determine a number of samples while considering surface
spatial heterogeneity.

Statistical theory is the foundation for determining the sample size. This study derived a sample
size estimation using a stratified sampling approach. Then, a multi-level linear sample size estimation
model was developed by considering the scale effect and surface spatial heterogeneity, with emphasis
on two aspects of these issues. First, a watershed unit with ecological and geographical significance
was introduced in this study as the basic spatial unit for performing the accuracy assessment, avoiding
the objectivity issues existing in current spatial units of pixels or polygons [28]. Second, landscape
indicators were employed to describe the surface heterogeneity and complexity. As the characteristics
of the spatial heterogeneity would inevitably affect the sample size used for validating the land
cover dataset, this study computed several major landscape indicators and assessed their impacts
on the surface heterogeneity in watershed units, thereby reaching the goal of this study (to develop
a reasonable model to estimate the sample size).

The remainder of the paper is organised as follows. Section 2 introduces the study area, data sources,
and data pre-processing methods. Section 3 describes the commonly used statistical model of sample
size estimation, the selection of scale factor and landscape indicators, and the development of the
multi-level linear regression model. Section 4 presents results and an analysis of the developed model,
and Section 5 provides preliminary conclusions.

2. Study Area and Data

2.1. Study Area

The Jiangxi Province is located in south-eastern China, with a total area of 169,900 square kilometres.
It belongs to a subtropical humid climate with abundant rainfall. The landform is dominated by
mountains (36%) and hills (42%). The main land use types are forest lands and crop lands, with the
forest coverage rate reaching 60%, ranking as first in China. The typical geomorphological and climatic
features cause Jiangxi to be covered by various types of land covers. Therefore, we selected the Jiangxi
Province as the study site to develop the sample size estimation model [29,30]. The Anhui province
which is adjacent to the Jiangxi Province is selected to testify the developed model (Figure 1).
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2.2. Data Sources

In this study, the global land cover dataset ‘Globeland30’ from 2010 was selected as the test
dataset (http://www.globeland30.org). Globeland30 is a high-resolution land cover mapping product
developed by the National Geomatics Centre of China, with a spatial resolution of 30 m. It has attracted
the attention of researchers at home and abroad. The Globeland30 dataset includes 10 first-level classes.
An approach based on the integration of pixel- and object-based methods with knowledge (POK) was
used to extract land categories, effectively improving the classification accuracy [31].

The reference data is the national land use/cover change (LUCC) dataset from 2010 with a scale of
1:100,000, which was provided by the Institute of Geographic Sciences and Natural Resources Research,
Chinese Academy of Sciences (CAS). The data was produced mainly by visual interpretation from
remote sensing experts in China and was updated every five years. The LUCC data has six first-level
classes and 25 second-level classes. Field investigation has shown that the LUCC classification accuracy
is very high, with more than 90% overall accuracy (OA) for the second-level class. Both of these
two datasets use the same major data sources of Landsat imagery [32,33]. In addition, the digital
elevation model (DEM) dataset of the ‘Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model’ (ASTGTM) (http://datamirror.csdb.cn) in the study area
was downloaded to perform the division of the watershed unit.

2.3. Data Processing

2.3.1. Classification System Transformation

The Globeland30 and LUCC datasets must be pre-processed before accuracy assessment,
owing to their differences in projection and classification systems. For avoiding area deformation,
the Globeland30 dataset was projected to the Albert equal area projection (European Petroleum
Survey Group (EPSG) code: 3857), which is the projection system employed for the LUCC dataset.
Then, these two products were unified in the classification system. Based on the LUCC definition for
each product, the classification transformation is presented in Table 1 [34,35]. Finally, we obtained the
test and reference data, as shown in Figure 2.

Table 1. Land cover dataset reclassification and corresponding relation.

Globeland30 Land Use/Cover Change (LUCC)

Index Class Name Index Class Name

10 Cultivated Land
11 Paddy Land
12 Dry Land

20 Forest
21 Forest
23 Woods
24 Others

30 Grassland
31 Dense Grass
32 Moderate Grass
33 Sparse Grass

40 Shrubland 22 Shrub

50 Wetland
46 Bottom Land
64 Swampland

60 Water Bodies
41 Stream and Rivers
42 Lakes
43 Reservoir and Ponds

80 Artificial Surfaces
51 Urban Built-up
52 Rural Settlements
53 Others

http://www.globeland30.org
http://datamirror.csdb.cn
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Table 1. Cont.

Globeland30 Land Use/Cover Change (LUCC)

Index Class Name Index Class Name

90 Bare Land
65 Bare soil
67 Others
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Figure 2. Globeland30 dataset and the reclassified land cover from land use/cover change (LUCC).

2.3.2. Digital Elevation Model (DEM) Processing

The DEM was projected into the Albert equal area projection system. A hydrological analysis
was implemented by using ArcGIS 10.2 to calculate the watershed units. The watershed unit number
was decided by the threshold value of the catchment surface [36–38]. After repeated experiments and
visualization on the division of the watershed unit, we used a threshold value of flow accumulation
of 4,000,000 for the catchment surface to obtain 48 basin units. Some units with small areas emerged
adjacent to the unit that has the largest area. Finally, we collected 30 basin units as shown in Figure 3b,
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3. Methodology

3.1. Sample Size Determination from Probability Statistical Model

The estimation of the sample size is dependent on the sampling design method. For a land cover
dataset with multiple categories, a stratified random sampling design has often been recommended in
related research [39–41]. Cochran provided a set of rigorous calculation equations to obtain a sample
size from the perspective of statistical theory, which is the foundation of latter research on sampling
techniques [27,42,43]. According to the good practices for estimating accuracy recommended by
Olofsson et al. [27], the commonly used equation for calculating sample size is:

n =
(
∑

WhSh)
2

V(yst) + (1/N)
∑

WhSh
2 (1)

where, V(yst) is the standard error of the estimated OA, and is generally designated as 0.01, Wh is the
stratum weight (proportion of area of class i in the map), Sh =

√
pi(1− pi) [43], Sh represents the level i

standard deviation, and pi is the user accuracy, which can be obtained through experiments [42,44].

3.2. Determination of Variables in a Multi-Level Linear Model

On the basis of the estimated sample size from the statistical model, this study attempted to
develop a sample size estimation model by considering the scale effects of spatial units and the spatial
heterogeneity reflected from the land cover product. As at least three factors, i.e., sample size from the
statistical model, spatial effect, and heterogeneity characteristics, impacted the number of samples,
this study employed a multi-level linear regression method to develop the sample size estimation,
expressed as follows:

NS = A0 + nA1 + CA2 + LA3 = A0 +
(
∑

WhSh)
2

V(yst) + (1/N)
∑

WhSh
2 A1 + CA2 + LA3 (2)

In the above, NS is the estimated sample size, n is the sample size calculated by the probability sampling
method (Equation (1)), and C represents the sampling constraint on each watershed unit. Theoretically,
the larger the test region is, the more samples are needed, and vice versa. In that regard, the ‘best’
sample constraints for regions with different areas should be discussed in this study. L is a set of spatial
heterogeneity factors, including a number of landscape indicators that can indicate information on
the fragmentation, diversity, and stability of the watershed units. A0, A1, A2, and A3 are regression
coefficients, and will be discussed in Section 4.

With the help of watershed units, we obtained Globeland30 and LUCC data as test and reference
data respectively, for each single watershed. This following part mainly describes the calculation and
determination of n, NS, C, L, and the other variables needed in Equation (2). The main procedures are
shown in Figure 4.
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3.2.1. Determining NS, n, and C

Equation (1) in Section 3.1 is used to calculate the sample size n. We can see that all parameters
in Equation (1) are available except for Sh. To ensure the optimization and specificity of the n value
in each watershed unit, Sh is determined by stratified random sampling for the land cover products
of Globeland30. The main steps are as follows (Figure 5): First, each basin unit in the study area is
sampled by the stratified random sampling method. Sample NS values are assigned by 50, 100, 150,
. . . , 1000, i.e., with an interval of 50. Second, a user’s accuracy pi from different samples NS in each
basin unit is calculated from the constructed error matrix, while using LUCC as a reference data. Third,
Sh is obtained for each single basin unit according to the evaluated results.
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As an example, Table 2 describes the Sh results for the Number 2 basin unit. The value of h
ranges from 1 to 8, representing eight different strata or land types of Globeland30. Wh is the area
weight information of each stratum in the basin unit. The Sh for each basin unit can be obtained by the
above-mentioned stratified random sampling.

After obtaining the parameter Sh, the sample size n of each NS can be calculated from Equation
(1). As there are 10 different values of NS in each basin unit, there are 10 different corresponding values
of n. The determination of n used in the simulation of the multi-level linear sample size model for
a single basin unit should be based on the determination of NS.

Figure 6 shows broken-line maps between the NS values obtained from the successive stratified
random sampling of 30 basin units and the OA information. The blue line is the result from the
stratified random sampling method, the green line represents the result of the accuracy assessed by
the whole sample, the black dotted line gives the allowable precision range under the premise of an
absolute error of 0.01, and the red circled part is the selected region where the OA varies with NS in
the acceptable precision range. The first NS value in the circled region is regarded as the estimated
sample size [45], aiming to obtain a reasonable result in accuracy assessment by using as few samples
as possible. The sample size n corresponds to NS. Once NS is determined, n can also be obtained.
Finally, we obtained 30 records of NS and n from the 30 basin units.

Sample constraint C describes how large of a region can allocate a sample, which is a factor
affecting the number of samples. In this study, the sample constraints of each basin unit were obtained
by the following expression:

C = NS/S (3)

Here, S is the basin unit area (km2).
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Table 2. Parameter values from watershed unit Number 2.

Wh
NS

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

S1 0.23 0.47 0.41 0.42 0.49 0.49 0.41 0.45 0.41 0.39 0.46 0.45 0.47 0.43 0.44 0.39 0.46 0.47 0.40 0.45 0.44
S2 0.67 0.41 0.29 0.32 0.33 0.25 0.28 0.34 0.30 0.35 0.31 0.29 0.32 0.30 0.34 0.32 0.32 0.31 0.29 0.31 0.33
S3 0.05 - 0.00 0.33 0.33 0.27 0.00 0.00 0.25 0.00 0.35 0.28 0.20 0.26 0.40 0.29 0.35 0.31 0.22 0.33 0.25
S4 0.00 - - - - - - - - - - - - - - - - - - - -
S5 0.02 0.47 0.50 0.47 0.49 0.00 0.35 0.50 0.33 0.33 0.40 0.49 0.50 0.48 0.43 0.49 0.48 0.46 0.48 0.49 0.43
S6 0.02 - 0.00 0.47 0.50 0.35 0.50 0.50 0.45 0.47 0.46 0.50 0.49 0.48 0.50 0.39 0.50 0.45 0.50 0.50 0.47
S7 0.02 0.00 0.00 0.49 0.47 0.50 0.49 0.50 0.47 0.48 0.49 0.49 0.47 0.49 0.48 0.50 0.36 0.39 0.45 0.46 0.43
S8 0.00 - - - - - - - - - 0.00 - 0.00 - 0.00 - 0.00 - - 0.00 -

Note: S1, . . . , S8 corresponds to 10, 20, 30, 40, 50, 60, 80 and 90 land cover categories in Table 1 respectively, - represents that the stratum is not sampled in Globeland30.



Sensors 2019, 19, 4430 9 of 20
Sensors 2019, 19, x FOR PEER REVIEW 2 of 21 

 

 
Figure 6. Determination of sample size Ns. 

Figure 6. Determination of sample size Ns.



Sensors 2019, 19, 4430 10 of 20

3.2.2. Selection of Landscape Indicators

The landscape index, an index for quantitative analysis of landscape patterns, can measure the
type, quantity, shape, spatial distribution, and complexity of the analysis units [46,47]. In recent years,
an increasing number of studies have used the landscape index to describe spatial heterogeneity
information, although their focus is not on the estimation of sample size, but on the layout of sample
points [45,48] or land cover extraction [49,50]. According to the target of estimating the sample size of
the surface coverage data, 14 landscape indicators were selected to describe the spatial heterogeneity
information of the landscape levels in the watershed units from seven categories: area metrics, contrast
metrics, edge metrics, shape metrics, proximity metrics, aggregation metrics, and diversity indexes.
The ecological significance and descriptions of these indicators are presented in Table 3.

Table 3. Landscape indicators used in this study.

Class Name Unit Range

Area Metrics Largest Patch Index (LPI) % (0,1)

Contrast Metrics Mean Patch Size (MPS) hm2 >0

Edge Metrics Edge Density (ED) m/hm2 –
Patch density (PD) – >0

Shape Metrics

Landscape shape index (LSI) – ≥1

Area-weighted mean shape index (AWMSI) – (1,2)

Area-weighted Mean patch fractal
dimension (AWMPFD) – [1,2]

Proximity Metrics Mean proximity index (MPI) – >0

Diversity Metrics

Shannon’s diversity index (SHDI) – ≥0

Patch richness density (PRD) – >0

Shannon’s evenness index (SHEI) – (0,1)

Aggregation Metrics Interspersion and Juxtaposition index (IJI) % (0,100)

Contagion index (CONTAG) % (0,100)

We need to identify the most representative indicators from the 14 landscape indexes in the
7 categories. All-subsets regression, a commonly used method for feature selection, was employed
to select the indicators. By adjusting the values of R2, the ‘best’ model was selected to determine
the variables of the fitting model. As shown in Figure 7, we found that the adjusted R2 value of
the ‘best’ model was 0.78, and the corresponding landscape indices were the landscape shape index
(LSI), contagion index (CONTAG), Shannon’s evenness index (SHEI), area-weighted mean shape
index (AWMSI), area-weighted mean patch fractal dimension (AWMPFD), and patch richness density
(PRD). In addition, the R2 value of the sample size from the probability sampling theory and sample
constraints in the fitting model is greater than 0.7, indicating that both of them are independent in
the model for sample size estimation. Therefore, the 6 indicators of LSI, CONTAG, SHEI, AWMSI,
AWMPFD, and PRD were selected for the following multi-level regression analysis.
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3.2.3. Regression Analysis

Equation (2) indicates that the sample size estimation is supposed to be a multi-level linear function
of sample size from probability sampling theory, sample constraints, and spatial heterogeneity. Among
them, coefficients A0, A1, A2, and A3 are determined by regression analysis. In this study, an ordinary
least squares (OLS) regression model was used to determine these regression coefficients [51,52]. OLS
is one of the most commonly used core methods in multi-level linear regression models. Its form is as
follows:

Ŷi = B̂0 + B̂1X1i + · · · · · ·+ B̂kXki (4)

where, i = 1, 2, . . . , n, Ŷi is the predicted value of the dependent variable corresponding to the ith

observation, Xki denotes the value of the jth predictive variable corresponding to the ith observation,
and B̂0 denotes the intercept term, i.e., the predicted value of Y when all of the predicted variables
are zero. B̂k is the regression coefficient of the predictive variable j, i.e., the change of Y caused by Xj
changing a unit.

The OLS model obtains regression coefficients by reducing the difference between the real values
of response variables and the predicted values, i.e., by minimizing the sum of squares of residual
errors: ∑n

i=1
(Yi − Ŷi)

2
=
∑n

i=1
(Yi − (B̂0 + B̂1X1i + · · · · · ·+ B̂kXki))

2
=
∑n

i=1
εi

2 (5)

4. Result and Analysis

4.1. Multi-Level Regression

As shown in Figure 3b, there are 30 basin units in the study area. Therefore, we obtained a total of
30 records with optimised sample size NS. To show the correlations between sample size NS and the
explanatory variables, a scatterplot matrix was obtained, and is presented in Figure 8. The diagonal
area is the density map of the variables, whereas the blue line in the non-diagonal area represents
the linear and smooth-fitting curves. From the matrix, every predictive variable has a tilt trend
to some extent. The sample size NS decreases with the increase of sample constraints (C), SHEI,
and AWMPFD, whereas it increases with an increase of CONTAG and PRD. This means that the
relationship between the sample size NS and the independent variables is not a phenomenon of simple
positive or negative correspondence.
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After analysing the scatterplot matrix, the multi-level linear regression analysis was implemented,
and the coefficients are shown in Table 4.

Table 4. Multi-level regression coefficients of sample size NS.

Estimate Standard Error t Value Pr (>|t|) Significance Codes

(Intercept) −17,880 5846 −3.058 5.97 × 10−3 0.01
n −0.278 0.076 −3.658 1.47 × 10−3 0.01
C −9.392 1.344 −6.987 6.72 × 10−7 0.001

LSI 5.479 1.026 5.34 2.70 × 10−5 0.001
CONTAG 109.900 23.380 4.699 1.22 × 10−4 0.001

SHEI 7163 1465 4.89 7.78 × 10−5 0.001
AWMSI −7.424 4.932 −1.505 1.47 × 10−1 1

AWMPFD 5803 3092 1.877 7.45 × 10−2 0.1
PRD 48,490 20,160 2.405 2.55 × 10−2 0.05

Residual standard error 95.28 on 21 degrees of freedom
Multiple R2 squared 0.8384
Adjusted R2 squared 0.7768

F-statistic 13.62 on 8 and 21 DF
p-value <9.80 × 10−7

The column for Pr(>t) shows the significance of the regression coefficients of the independent
variables, and the column of ‘Significance codes’ represents the degree of significance. The regression
coefficients of AWMSI, AWMPFD, and PRD are not significant enough to pass the t test, and the
multiple R2 of the model is different from the adjusted R2. This reflects a problem of instability.
Therefore, the model needs to be improved. From additional experiments, we found that the regression
coefficients of the independent variables are more significant when AWMSI, AWMPFD, and PRD are
removed. Although the R2 value decreases, the stability performance improves (Table 5). As a result,
only 3 indicators were involved in the final estimation of sample size.
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Table 5. Modified multi-level regression coefficient of sample size NS.

Estimate Standard Error t Value Pr(>|t|) Significance Codes

(Intercept) −7159 1632 −4.386 1.98 × 10−4 0.001
n −0.255 0.070 −3.627 1.34 × 10−3 0.01
C −9.261 1.366 −6.781 5.16 × 10−7 0.001

LSI 4.210 0.762 5.523 1.11 × 10−5 0.001
CONTAG 77.900 16.960 4.592 1.17 × 10−4 0.001

SHEI 5085 960.500 5.294 1.98 × 10−5 0.001
Residual standard error 100.7 on 24 degrees of freedom

Multiple R2 squared 0.7935
Adjusted R2 squared 0.7505

F-statistic 18.45 on 5 and 24 DF
p-value 1.58 × 10−7

Therefore, the multi-level linear regression equation can be expressed as follows:

NS = −7159− 0.255n− 9.261C + 4.21LSI + 77.9CONTAG + 5085SHEI (6)

By substituting Equation (1) into Equation (6), we finally obtain the estimation of the sample size
by considering the scale effect and spatial heterogeneity characteristics, and it is expressed as follows:

NS = −7159− 0.255
(
∑

WhSh)
2

V(yst) + (1/N)
∑

WhSh
2 − 9.261C + 4.21LSI + 77.9CONTAG + 5085SHEI (7)

This relationship shows that LSI, CONTAG, and SHEI contribute positively to the sample size
NS, whereas the sample size n of probability sampling theory and the sample constraint C contribute
negatively to the sample size NS. CONTAG and SHEI contribute the most and play a vital role in the
change of sample size. All of the predictive variables explain the variance of 79% of the sample size NS.

4.2. Model Verification

This study used a cross-validation method to test the generalization ability of the established
OLS regression model. Cross-validation, as a commonly used model validation technology, has the
advantage of high prediction accuracy [53]. Considering the small amount of data used to fit the model,
three-fold cross-validation was used. Three-fold cross-validation was used to divide the original
sample into three equal-sized sub-samples, one of which was retained as test data for model validation,
while the other two sub-samples were used as training data. This process was repeated three times,
and each of the three sub-samples was used as the validation data. The average R2 of the three
cross-validation results was taken as the final estimation solution, as shown in Table 6. The results
show that there are some differences between the original R2 and the three-fold cross-validation R2.
The R2 value changes greatly after cross-validation, indicating that the stability between the variables
and the generalization ability of the models is less than satisfactory.

Table 6. Cross-validation output results.

Original R-square 0.7935414
Three-fold cross-validated R-square 0.634445

Change 0.1590964

In addition to the cross-validation, we applied the method of sample size estimation to the Anhui
Province to test the developed model. Using the same method as mentioned above, we divided the
Anhui province into 32 watersheds and selected 14 units to perform the model validation (Figure 9).
The same datasets as those used in the Jiangxi Province were used to test this model. First, we
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calculated the sample size using a statistical model, i.e., Equation (1), and the developed model in this
study, i.e., Equation (7), respectively. Then, we assessed the accuracy of Globeland30 by using the two
above-calculated sample sizes. Finally, we compared the accuracies and the results are presented in
Table 7. We can see that the difference of OA obtained from two different approaches is very small in
most watersheds, the maximum and minimum difference is 4% and 0.1% respectively, with an average
of 1.21%. In contrast to the similar accuracy, the sample sizes calculated by the developed model are
smaller than that from the statistical model. For the employed 14 watersheds in the Anhui Province,
there are 24,425 sample points calculated by the statistical model, while it is 12,399 computed by the
developed model in this work. Compared with the statistical model, our developed model decreases
the sample size by 49%. This indicates that a smaller sample size can achieve the same performance as
the statistical model by considering the scale effect and surface heterogeneity.Sensors 2019, 19, x FOR PEER REVIEW 5 of 21 
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Table 7. Comparison of sample size and accuracy calculated from statistical model and this study (No.
= Number).

Units Code
Method Multi-LEVEL Model Statistical Model Absolute Value of

OA Difference (%)
Sample Size

Difference (NS-n)NS OA (%) n OA (%)
No.1_Ah 475 79.62 1511 79.56 0.06 1035
No.2_Ah 675 79.56 1388 79.54 0.02 714
No.3_Ah 1288 56.06 1561 56.63 0.57 274
No.4_Ah 1110 68.38 1620 68.40 0.02 510
No.5_Ah 485 77.11 1759 77.37 0.26 1274
No.6_Ah 956 75.10 1556 76.56 1.45 601
No.7_Ah 922 73.64 1591 69.94 3.71 669
No.8_Ah 879 66.78 2045 67.63 0.85 1166
No.9_Ah 978 69.19 1979 67.66 1.53 1002

No.10_Ah 1106 59.19 1902 59.94 0.75 796
No.11_Ah 696 52.65 2186 48.86 3.80 1490
No.12_Ah 1128 64.69 1384 66.16 1.47 256
No.13_Ah 912 61.95 2006 63.24 1.29 1093
No.14_Ah 790 63.29 1935 64.50 1.20 1145

Sum = 12,399 Sum= 24,425 Average = 1.21 Sum = 12,026
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4.3. Relative Importance of Predictor Variables

The OLS regression method is used to analyse the influence of the sample size n of the probability
sampling theory, the sample constraints C, and spatial heterogeneity factors on the estimated sample
size NS, and the relationship between them is obtained in Equation (7). The standardised regression
coefficient method and the relative weight method are employed to evaluate the relative importance of
the predictor variables in the multi-level regression analysis. The results are shown in Table 8 and
Figure 10.

Table 8. Standardised regression coefficients result.

Independent Variable n C LSI CONTAG SHEI

Standardised regression coefficients −3.60 × 10−1
−8.13 × 10−1 9.90 × 10−1 1.97 2.31

Relative importance level 5 4 3 2 1

The standardised regression coefficient is the simplest method for predicting the relative importance
of variables. It represents the expected change of response variables caused by the change of one
standard deviation of a predictor variable when other predictor variables remain unchanged. Table 8
shows that when the other variables remain unchanged, SHEI changes by a standard deviation,
and that the sample size will increase by 2.13 standard deviations, i.e., the most important relative
to the sample size NS. In contrast, the sample size n of the probability sampling theory has the least
relative importance to the sample size.

As compared with the standardized regression coefficient, the relative weight is a more promising
method for predicting the relative importance of factors [54]. It ranks variables according to their
contribution to R2. Figure 10 shows the relative importance of each factor. The results show that the
sample constraint C accounts for 44% of R2, which is of the greatest relative importance to the sample
size NS. It shows that the regional scale cannot be neglected in the sample size determination. SHEI
and CONTAG, as spatial heterogeneity factors describing the aggregation and diversity of watershed
units, explain 25% and 15% of R2, respectively. The remaining factors are LSI and n. Therefore, in terms
of relative importance, the regional scale effect and spatial heterogeneity have an influence on the
determination of the sample size in accuracy assessment of remotely sensed land cover products.
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4.4. Analysis

Figure 11 is a histogram of the sample size NS obtained from the multi-level linear model and
sample size n and based on probability and statistics theory. Figures 12 and 13 are polygonal maps
of the landscape index and sample constraint factor C, respectively. LSI reflects the complexity of
the overall landscape shape of the watershed units. The larger the value, the simpler the overall
landscape shape. CONTAG describes the degree of agglomeration of patch types in the watershed
units. The higher the value, the better the degree of agglomeration. SHEI describes the diversity of the
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patch distribution in the watershed units. The smaller the value, the simpler the patch type, and the
smaller the diversity.Sensors 2019, 19, x FOR PEER REVIEW 7 of 21 
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NS and n are obtained under the premise that the OA standard deviation V(yst) equals 0.01.
According to Figure 11, the value of n is often more than 1000, and most of them are distributed near
1750, whereas the values of NS are much smaller. This shows that the sample size NS, as obtained by
the multi-level linear model considering spatial heterogeneity, can save more manpower and material
resources in the accuracy assessment of a land cover dataset.

The green squares in Figure 11 indicate the relative size of the basin unit area, i.e., the scale
difference. According to Figure 3b, there are evident scale differences among the basin units. In theory,
the larger the scale of the watershed unit, the more samples are extracted, and the n values obtained
based on the probability and statistics theory should show similar laws. However, the larger the scale
of the unit, the smaller the NS values needed, such as the basin unit number (No.) 11, No. 20, and No.
35, and the smaller the unit, the larger the NS values, e.g., basin unit No. 14 and No. 17. According to
Figures 12 and 13, we can explain why NS changes with areas of the spatial unit. The values of the LSI,
CONTAG, and SHEI in units No. 11, No. 20, and No. 35 are higher, indicating that these few units
have a high patch aggregation, uniform patch distribution, and simple landscape shape, and thus
weak spatial heterogeneity. Although the scale is large, the required sample size NS is small. However,
the values of LSI and CONTAG in units No. 14 and No. 17 are low, and the SHEI values are high.
They need a large sample size of NS. Therefore, by analysing the relationship between the sample
size NS of the watershed units No. 11, No. 14, No. 17, No. 20, No. 35 and the landscape index, it is
further demonstrated that the values calculated from the multi-level sample size estimation model
(considering the spatial heterogeneity of land cover) are more reasonable than those calculated from
the probability statistical model.
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As noted above, C indicates how large of a sample is taken. If the land cover in different areas is
homogeneous and the patch types and distribution are the same, the C values are similar. However,
in Figure 12, the trend of C variation is similar to that of LSI, because the spatial distribution of the
patches in different basin units is different. In an area with simple spatial distribution and weak spatial
heterogeneity, NS is small, and the C value is high, i.e., C has a negative correlation to NS, whereas
when NS is large and the C value is low, C has a positive correlation to NS.

Where the C values are the same, e.g., in basin units No. 16 and No. 17, because the LSI value of
NO. 16 is high, the SHEI value is low, and the spatial heterogeneity of the land cover is weaker than that
of No. 17. Because the two scales are similar, the sample size of No. 17 is larger. Although the C values
in basin units No. 38 and No. 39 are the same, the LSI values of No. 38 are large, but the CONTAG and
SHEI values are less than those of No. 39. Therefore, the difference in spatial heterogeneity between
No. 38 and No. 39 is smaller than that between No. 16 and No. 17, resulting in a small sample size gap
between No. 38 and No. 39. As a result, C, as a factor affecting the sample size of NS, is also influenced
by the surface spatial heterogeneity.
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5. Conclusions

The accuracy of a dataset is often the first problem to be considered in scientific research and field
applications. Sample size calculation is the first step in performing an accuracy assessment of land
cover products from satellite imagery. On the basis of a statistical model for the estimation of sample
size, this study establishes a multi-level linear model for estimation of sample size by considering the
scale effect and spatial heterogeneity. A watershed unit was introduced to obtain a spatial analysis
unit, to avoid subjectivity in the selection of assessment units. Landscape indices were selected to
indicate the spatial heterogeneity of the region.

The multi-level linear sample size estimation model shows that:
(1): All predictive variables can explain 79% of the variance of the sample size NS. The coefficients

of the predictive variables of the model are significant, indicating that there is a strong relationship
between the sample size NS and the independent variables. By comparing the sample size NS from the
multi-level linear model with a sample size n based on probability and statistics theory, we see that
the sample size of NS is much smaller than that of n. The smaller sample size can achieve the same
performance as the statistical model and it contributes to the consideration of surface heterogeneity.
The relative importance of the predicted variables in the model is calculated by using standardised
regression coefficients and relative weights. The results show that the CONTAG and SHEI indicators
(describing the diversity and dispersion of basin units, respectively) are relatively important, followed
by LSI, sample constraint C, and sample size n, as calculated from probability sampling theory.
According to the validation of the developed model, we can conclude that the smaller sample size
from the developed estimation model can achieve the same performance as the statistical model while
saving more time, cost, and energy in the accuracy assessment of land cover products.
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(2): After performing three-fold cross-validation, the R2 value changes from 0.79 to 0.63. This means
that the generalization of the sample size estimation model is still a problem, although the test of the
model in the Anhui Province proved the validity of this estimation of sample size. Therefore, we need
more work on the improvement and testing of the developed model for sample size estimation.

For a specific work on accuracy assessment, although the model established in this study cannot
be directly applied, it is expected to provide an approach for the determination of sample size,
by considering the study areas and the characteristics of the surface heterogeneity. In the future,
we need to improve the developed model by applying this surface heterogeneity-concerned sample
size estimation model to other study sites, aiming to assess the accuracy of a land cover dataset with as
few samples as possible.
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