
sensors

Article

Self-Tuning Distributed Fusion Filter for
Multi-Sensor Networked Systems with Unknown
Packet Receiving Rates, Noise Variances, and
Model Parameters

Minhui Wang and Shuli Sun *

School of Electronics Engineering, Heilongjiang University, Harbin 150080, China; 13045172907@163.com
* Correspondence: sunsl@hlju.edu.cn; Tel.: +86-136-7468-6865

Received: 31 August 2019; Accepted: 11 October 2019; Published: 13 October 2019
����������
�������

Abstract: In this study, we researched the problem of self-tuning (ST) distributed fusion state
estimation for multi-sensor networked stochastic linear discrete-time systems with unknown packet
receiving rates, noise variances (NVs), and model parameters (MPs). Packet dropouts may occur
when sensor data are sent to a local processor. A Bernoulli distributed stochastic variable is adopted to
depict phenomena of packet dropouts. By model transformation, the identification problem of packet
receiving rates is transformed into that of unknown MPs for a new augmented system. The recursive
extended least squares (RELS) algorithm is used to simultaneously identify packet receiving rates
and MPs in the original system. Then, a correlation function method is used to identify unknown
NVs. Further, a ST distributed fusion state filter is achieved by applying identified packet receiving
rates, NVs, and MPs to the corresponding optimal estimation algorithms. It is strictly proven that ST
algorithms converge to optimal algorithms under the condition that the identifiers for parameters are
consistent. Two examples verify the effectiveness of the proposed algorithms.

Keywords: RELS algorithm; correlation function method; unknown packet receiving rate; unknown
noise variance; unknown model parameter; self-tuning fusion filter

1. Introduction

With the fast development of sensor, computer, and communication technologies, multi-sensor
information fusion technology has received much attention. This is because abundant information
from multiple sensors can be obtained. In the multi-sensor data fusion, decision and estimation are
two fundamental tasks. Dempster-Shafer evidence theory has been widely applied to fusion decisions
regarding uncertain information. However, counter-intuitive results may come out when fusing the
conflicting evidence. A weighted combination method for conflicting evidence and a method for
multi-sensor data fusion has been proposed in recent literature and is based on the belief that entropy
can deal with contradictory evidence [1,2]. Distributed fusion estimation is an effective way to process
information from multiple sensors since it has a parallel processing structure that means good reliability
and flexibility. Therefore, it has widely been applied to networked control systems (NCSs) and sensor
networks (SNs) [3]. Due to the limitation of network capacity, stochastic delay, fading, and loss of
control and measurement data may occur during data transmission in NCSs and SNs. Up to now,
research regarding NCSs and SNs has been quite popular [3–5].

Optimal linear estimators from a sensor to a filter [6] and from a controller to an actuator have been
presented for NCSs with data losses [7]. For SNs with random parameters and packet losses, distributed
fusion filters have been devised at each sensor by using measurements of a sensor itself and those
of its neighbors [8]. Using a covariance information method, distributed fusion estimators including
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the filter, predictor, and smoother have been designed for sensor networks to randomize delays and
packet losses [9]. Based on prediction compensation strategies, linear optimal estimators have been
devised for systems that are subject to delays and losses [10,11]. For systems that are subject to data
losses and multi-step correlated noises, a least-mean-square optimal linear filter has been previously
obtained [12]. Further, a recursive Kalman-like filter has been devised for descriptor systems that are
subject to packet losses and correlated noises in [13]. For NCSs that are subject to random delays and
losses, optimal and suboptimal linear filters dependent on time stamps and probabilities have been
devised [14]. Further, a distributed fusion filter has been devised [15]. The above references mainly
deal with optimal or suboptimal estimation problems within known packet dropout rates; estimation
problems with unknown packet dropout rates are rarely reported. In addition, classical optimal
Kalman filtering algorithm requires accurately known NVs and MPs. However, this information is
often unknown in practical applications. Therefore, the unknown information must be identified
before a filter is designed.

For identification problems, a ST decoupled fusion predictor has been obtained for systems
with unknown NVs using a correlation function method [16]. Consistent estimates of unknown NVs
and MPs have been obtained for autoregressive moving average (ARMA) signals using a correlation
function method, a Gevers-Wouters algorithm, and a recursive instrumental variable algorithm [17].
For multi-sensor discrete-time stochastic system with unknown NVs, a distributed fusion identifier
for NV has been proposed that adopts a correlation function, a weighted average method, and a
ST distributed fusion multi-step predictor [18]. Some results have dealt with singular or descriptor
systems with unknown NVs [19,20]. The above references are all based on complete measurement
data from sensors for identification and estimation. However, in networked systems, measurement
data received by estimators are often incomplete due to packet dropouts or delays.

Recently, ST estimation problems with unknown missing measurement rates or packet dropout
rates have gained attention [21,22]. For systems with unknown missing measurement rates, individual
sensors are identified online using correlation functions. Further, a ST weighted measurement fusion
state filter has been used in the past [21], wherein unknown NVs and MPs are not involved. For systems
with unknown missing measurement rates and MPs, a least squares algorithm and a correlation function
method are used to identify unknown missing measurement rates and MPs online. The corresponding
ST state filter has been previously achieved [22], wherein unknown NVs and unknown missing
measurement rates cannot be solved simultaneously by correlation functions. Until now, when missing
measurement or packet dropout rates, NVs, and MPs were unknown, the corresponding ST estimation
results were rarely reported since it was difficult to solve identification and ST state filters of such a
complex system with so many unknown terms.

Motivated by the above discussions, we proposed a ST distributed fusion state filter for systems
with unknown packet receiving rates, NVs, and MPs. Unlike other studies [22], where variance of
the process noise cannot be identified and must be assumed to be known since the state second-order
moment requires computing in self-tuning filters, self-tuning filters in our paper avoid computing
the state second-order moment by directly identifying variances of the process noise and virtual
measurement noises. Our main contributions include: (1) studied systems comprehensively considered
unknown packet dropout rates, MPs, and NVs; (2) the recursive extended least squares (RELS)
algorithm was simultaneously applied for identifications of unknown MPs and packet receiving rates;
(3) the correlation function was utilized for identifications of unknown NVs; (4) a ST distributed fusion
state filter was proposed by applying a matrix-weighted fusion estimation algorithm in the linear
unbiased minimum variance (LUMV) sense; and (5) the convergence of the algorithms was proven.

The rest of this paper is organized as follows. The problem is formulated in Section 2. An optimal
filter is presented in Section 3. In Section 4, unknown MPs, packet receiving rates, and NVs are
identified, as is a ST distributed fusion state filter. Section 5 analyzes the convergence of the ST filtering
algorithm. Two examples are given in Section 6. Finally, Section 7 draws conclusion from the study.
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2. Problem Formulation

Consider a multi-sensor linear stochastic discrete-time system:

x(t + 1) = Φx(t) + Γw(t) (1)

zi(t) =i x(t) + vi(t) (2)

yi(t) = ξi(t)zi(t) + (1− ξi(t))yi(t− 1), i = 1, 2, · · · , L (3)

where x(t) ∈ Rn is the state, zi(t) ∈ R is the measurement of the ith sensor (which will be sent to a
local processor through networks), yi(t) ∈ R is the measurement received by the ith local processor,
w(t) ∈ Rr is the process noise, and vi(t) ∈ R is the measurement noise. Φ ∈ Rn×n is the state transition
matrix, Γ ∈ Rn×r is the process noise transition matrix, and i ∈ R1×n is the measurement matrix.{
ξi(t)

}
is a stochastic variable sequence satisfying Bernoulli distribution, i.e., Prob

{
ξi(t) = 1

}
= αi and

Prob
{
ξi(t) = 0

}
= 1− αi, where 0<αi ≤ 1. yi(t) = zi(t) if ξi(t) = 1, which means that the measurement

is received at t. yi(t) = yi(t− 1) if ξi(t) = 0. This means that the measurement at t is lost and the use
of the measurement at t− 1 to compensate the lost measurement at t. The subscript i means the ith
sensor. L is the number of sensors.

Assumption 1. w(t) and vi(t) are mutually uncorrelated white noises of zero mean and variances Qw and
Qvi , i = 1, · · · , L.

Assumption 2. The initial value x(0) is uncorrelated with w(t) and vi(t), which satisfies

E
{
x(0)

}
= µ0, E

{
[x(0) − µ0][x(0) − µ0]

T
}
= P0 (4)

where E denotes the expectation operator and the superscript T is the transpose of a matrix.

Assumption 3. Φ is a stable matrix.

Assumption 4. The part parameters of Φ, packet receiving rates αi, and NVs Qw and Qvi are unknown.

The objective of this paper is to design a ST distributed fusion state filter x̂(t|t) for the state of
x(t) based on measurements (yi(1), yi(2), · · · , yi(t)) under partly unknown MPs in Φ, in addition to
unknown packet receiving rates αi and NVs Qw and Qvi .

3. Optimal State Filter

Before presenting the ST filter, we will first provide an optimal state filter in case packet receiving
rates, NVs, and MPs are known in this section. Then, this information will be used in the latter ST
filtering algorithms when packet receiving rates, NVs, and MPs are unknown.

System Equations (1)–(3) can be turned into the following compressed system [6]:

Xi(t + 1) = Φ̃i(t)Xi(t) + Γ̃i(t)Wi(t) (5)

yi(t) = H̃i(t)Xi(t) + ξi(t)vi(t) (6)

where augmented vectors and matrices are defined as follows:

Xi(t) =
[

x(t)
yi(t− 1)

]
, Wi(t) =

[
w(t)
vi(t)

]
, Φ̃i(t) =

[
Φ 0

ξi(t)Hi 1− ξi(t)

]
,

Γ̃i(t) =
[

Γ 0
0 ξi(t)

]
, H̃i(t) =

[
ξi(t)Hi 1− ξi(t)

] (7)
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For system Equations (5) and (6), it follows that

Φi = E[Φ̃i(t)] =
[

Φ 0
αiHi 1− αi

]
, Γi = E[̃Γi(t)] =

[
Γ 0
0 αi

]
,

Hi = E[H̃i(t)] =
[
αiHi 1− αi

] (8)

Φ̃i(t) −Φi = (ξi(t) − αi)Φ1
i , H̃i(t) −Hi = (ξi(t) − αi)H1

i ,

Φ1
i =

[
0 0

Hi −1

]
, H1

i =
[

Hi −1
] (9)

System Equations (5) and (6) can be rewritten as:

Xi(t + 1) = ΦiXi(t) + Wi(t) (10)

yi(t) = HiXi(t) + Vi(t) (11)

where virtual noises Wi(t) and Vi(t) are defined as:

Wi(t) = (Φ̃i(t) −Φi)Xi(t) + Γ̃i(t)Wi(t)
Vi(t) = (H̃i(t) −Hi)Xi(t) + ξi(t)vi(t)

(12)

Their noise statistics are computed as:

QSi
(t) = E[Wi(t)Vi

T(t)] = αi(1− αi)Φ1
i Mi(t)1

i
T + αi

[
0

Qvi

]
(13)

QWi
(t) = E[Wi(t)Wi

T(t)] = αi(1− αi)Φ1
i Mi(t)Φ1

i
T + Qi (14)

QVi
(t) = E[Vi(t)Vi

T(t)] = αi(1− αi)
1
i Mi(t)1

i
T + αiQvi (15)

Qi =

[
ΓQwΓT 0

0 αiQvi

]
(16)

where the state second-order moment matrix Mi(t) = E
[
Xi(t)Xi

T(t)
]

satisfies the equation:

Mi(t + 1) = ΦiMi(t)Φ
T
i + αi(1− αi)Φ1

i Mi(t)Φ1
i

T + Qi (17)

with the initial value Mi(0) =
[

P0 + µ0µT
0 0

0 0

]
.

Thus far, the original system Equations (1)–(3) with packet dropouts are transformed into the
augmented system Equations (10) and (11) with deterministic coefficient matrices and correlated
noises. Then, Kalman filtering algorithm with correlated noises [23] are applied to obtain the following
Lemmas 1 and 2.

Lemma 1. For system Equations (10) and (11) satisfying Assumptions 1–3, local optimal linear filter at local
processor is given as:

X̂i(t|t) = X̂i(t|t− 1) + Ki(t)εi(t) (18)

X̂i(t + 1|t) = ΦiX̂i(t|t− 1) + Li(t)εi(t) (19)

εi(t) = yi(t) − iX̂i(t|t− 1) (20)

Ki(t) = Pi(t|t− 1)T
i Q−1

εi
(t) (21)

Li(t) =
{
ΦiPi(t|t− 1)T

i + QSi
(t)

}
Q−1
εi
(t) (22)
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Pi(t|t) = [I −Ki(t)Hi]Pi(t|t− 1) (23)

Pi(t + 1|t) = (Φi − Li(t)i)Pi(t|t− 1)(Φi − Li(t)i)
T
−QSi

(t)LT
i (t)

−Li(t)QT
Si
(t) + Li(t)QVi

(t)LT
i (t) + QWi

(t) (24)

Qεi(t) = iPi(t|t− 1)T
i + QVi

(t) (25)

where εi(t) is the innovation sequence of variance Qεi(t); Ki(t) and Li(t) are gain matrices for filter and one-step
predictor; Pi(t|t) and Pi(t + 1|t) are variance matrices of filtering and one-step prediction errors. Initial values

are X̂i(0| − 1) =
[
µ0

0

]
and Pi(0| − 1) =

[
P0 0
0 0

]
.

Lemma 2. The cross-covariance matrix (CCM) of prediction errors between two arbitrary local predictors
Pi j(t + 1|t) = E[X̃i(t + 1|t)X̃T

j (t + 1|t)] is calculated as:

Pi j(t + 1|t) = [Φi − Li(t)i]Pi j(t|t− 1)[Φ j − L j(t) j]
T
+

[
ΓQwΓT 0

0 0

]
(26)

CCM of f iltering errors between two local filters Pi j(t|t) = E[X̃i(t|t)X̃T
j (t|t)] is calculated as:

Pi j(t|t) = [In+1 −Ki(t)i]Pi j(t|t− 1)[In+1 −K j(t) j]
T (27)

The initial value is Pi j(0|0) =
[

P0 0
0 0

]
.

Applying the matrix-weighted fusion estimation algorithm in the LUMV sense [24], the following
theorem for multi-sensor fusion filter is straightforward.

Theorem 1. For multi-sensor system Equations (10) and (11) satisfying Assumptions 1–3, the optimal
matrix-weighted fusion state filter is calculated as:

x̂o(t|t) =
L∑

i=1

Ωi(t)x̂i(t|t) (28)

where the local state filter of the original system is x̂i(t|t) = [ In 0 ]X̂i(t|t). The optimal matrix weights are
calculated by

[Ω1(t), · · · , ΩL(t)] = [eTPx
−1(t|t)e]

−1
eTPx

−1(t|t) (29)

where e = [In, · · · , In]
T and nL× nL-dimensional matrix Px(t|t) are defined as:

Px(t|t) = [Px
ij(t|t)], i, j = 1, · · · , L (30)

where the CCM of filtering errors between two arbitrary local filters for the original system state are Px
ij(t|t) =

[In, 0]Pi j(t|t)[In, 0]T. The variance matrix of the optimal fusion filter is given by

Po(t|t) = [eTPx
−1(t|t)e]

−1
(31)

Moreover, it holds that Po(t|t) ≤ Px
i (t|t), i = 1, · · · , L.

Remark 1. From Lemma 1, Lemma 2, and Theorem 1, it was found that the optimal local filter, CCM, and
distributed optimal weighted fusion filter required the computation of the state second-order moment since
NVs QWi

(t), QSi
(t), and QVi

(t) of system Equations (10) and (11) were computed based on state second-order
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moments Mi(t) from Equations (13)–(15). To ensure the existence of proposed filters, state second-order moments
Mi(t) should be bounded, which can be guaranteed under Assumption 3.

4. ST Fusion Filter

In Section 3, under known MPs, packet receiving rates, and NVs, we obtained optimal local filters
of individual sensors, CCMs between two arbitrary local filters, and a distributed fusion filter. However,
when system MPs, packet receiving rates, and NVs are unknown, the optimal filtering algorithms in
Section 3 cannot be used directly. First, we must identify these unknowns before implementing the
optimal filtering algorithms. In this section, we solve their identification problems.

4.1. Identification of Unknown MPs and Packet Receiving Rates

In this subsection, the RELS algorithm was used to identify unknown MPs and packet receiving
rates. In Section 3 we observed unknown MPs and unknown packet receiving rates in their original
system Equations (1)–(3), which were transformed into unknown MPs in new system Equations (10)
and (11).

From Equation (10), it follows that

Xi(t) = (In+1 −Φiq−1)
−1

q−1Wi(t) (32)

where q−1 is the backward shift operator, i.e., q−1Xi(t) = Xi(t − 1). Substituting Equation (32) into
Equation (11) gives

yi(t) = Hi(In+1 −Φiq−1)
−1

q−1Wi(t) + Vi(t) (33)

Simplifying Equation (33), it follows that

Ai(q−1)yi(t) = Bi(q−1)Wi(t) + Ai(q−1)Vi(t) (34)

with Ai(q−1) = det(In+1 −Φiq−1) and Bi(q−1) = Hiadj(In+1 −Φiq−1)q−1, where the symbol ‘det’ is
the matrix determinant and the ‘adj’ is the adjoint matrix. Moreover, the polynomials Ai(q−1) and
Bi(q−1) have forms Ai(q−1) = 1 + ai

1q−1 + · · ·+ ai
nAi

q−nAi and Bi(q−1) = Bi
1q−1 + · · ·+ Bi

nBi
q−nBi , ai

k,

k = 1, 2, · · · , nAi , and Bi
k, k = 1, 2, · · · , nBi are the coefficients with ai

1 = 1, Bi
1 = 01×(n+1), nAi , and nBi as

orders.
According to the nature of the moving average (MA) processes, two MA processes in the right

hand side of Equation (34) are equivalent to a stable MA process Di(t)ςi(t) [23], i.e.,

Di(t)ςi(t) = Bi(q−1)Wi(t) + Ai(q−1)Vi(t) (35)

where Di(q−1) = 1+ di
1q−1 + di

2q−2 + · · ·+ di
nDi

q−nDi is stable and ςi(t) is the white noise with unknown

variance σ2
ςi

. Then, Equation (34) can be simplified as:

Ai(q−1)yi(t) = Di(t)ςi(t) (36)

The order nAi and nDi are known, but ai
k, di

k and σ2
ςi

are unknown. In order to identify these
parameters, we need to use the RELS algorithm. As such, Equation (36) can be rewritten as:

yi(t) = ϕT
i (t)θi + ςi(t) (37)

Defined as
ϕT

i (t) = [−yi(t− 1), · · · ,−yi(t− na), ς̂i(t− 1), · · · , ς̂i(t− nd)] (38)

θi = [ai
1, · · · ai

nAi
, di

1, · · · , di
nDi

] (39)
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Then, parameters can be identified based on the RELS algorithm as:

θ̂i(t + 1) = θ̂i(t) +
Σi(t)ϕi(t + 1)[yi(t + 1) −ϕT

i (t + 1)θ̂i(t)]

1 + ϕT
i (t + 1)Σi(t)ϕi(t + 1)

(40)

Σi(t + 1) = Σi(t) −
[Σi(t)ϕi(t + 1)][Σi(t)ϕi(t + 1)]T

1 + ϕT
i (t + 1)Σi(t)ϕi(t + 1)

(41)

ς̂i(t) = yi(t) −ϕT
i (t)θ̂i(t− 1) (42)

with initial values θ̂i(0) = 0, Σi(0) = βInAi+nDi
, where β is a large positive number and ς̂i(t) = 0, yi(t) =

0, t ≤ 0.
From Equations (8) and (34), we observed that unknown parameters in the system matrix Φ and

packet receiving rates were implicit in parameters ai
k of Ai(q−1). From the estimate θ̂i(t), we obtained

the estimate Φ̂(t) of the system matrix with unknown parameters and the estimate α̂i(t) of unknown
receiving rates.

In a prior study [23], the parameter estimates used the RELS algorithm and were consistent
when Di(q−1) satisfied a positive real condition, i.e., θ̂i(t)→ θi , t→∞, w.p.1 , where the symbol w.p.1
represented the convergence with probability 1. Therefore, identifiers of unknown MPs and unknown
packet receiving rates are also consistent:

Φ̂i(t)→ Φ, α̂i(t)→ αi, t→∞, w.p.1 (43)

Remark 2. Different from another study [22], in which correlation functions were applied for identifications of
missing measurement rates and the RELS algorithm were applied for MPs, in this paper, the RELS algorithm
was only used for simultaneous identifications of packet receiving rates and MPs.

4.2. Identification of Unknown NVs

After unknown MPs and packet receiving rates are identified, unknown NVs can be identified.
Next, a correlation function method is used for identification of unknown NVs.

From Assumption 3, we have lim
t→∞

Mi(t)→Mi . Further, it follows from Equations (13)–(15)

that lim
t→∞

QWi
(t) = QWi

, lim
t→∞

QSi
(t) = QSi

, and lim
t→∞

QVi
(t) = QVi

. Setting Zi(t) = Ai(q−1)yi(t), from

Equations (35) and (36), follows that:

Zi(t) = Bi(q−1)Wi(t) + Ai(q−1)Vi(t) (44)

Then, the correlation function RZi(k) = E[Zi(t)Zi
T(t− k)] is computed as:

RZi(k) =
n0∑

s=k

Bi
sQWi

BiT
s−k +

n0∑
s=k

Bi
sQSi

aiT
s−k +

n0∑
s=k

ai
sQ

T
Si

BiT
s−k +

n0∑
s=k

ai
sQVi

aiT
s−k (45)

where k = 0, 1, · · · , n0, n0 = max
{
nAi , nBi

}
, ai

s = 0(s > nAi), and Bi
s = 0(s > nBi , s = 0). RZi(k), i =

1, 2, · · · , l are correlation functions of sensor i. They can be approximately computed by the following
sampling correlation function:

RZi(k) ≈ R̂Zi(k, N) =
1

N − k + 1

N∑
t=k

Zi(t)Zi
T(t− k) (46)
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From Equations (9), (13)–(15), we have:

QWi
=

[
ΓQwΓT 0

0 QVi

]
, QSi

=

[
0

QVi

]
(47)

When NVs Qw and Qvi of the original system from Equations (1)–(3) are unknown, noise covariance
matrices QWi

, QVi
, and QSi

of augmented system Equations (10) and (11) are also unknown. From

Equations (13)–(15), it is found that the state second-order moment Mi(t) is also unknown. In order to
apply Lemma1, we need to identify the noise covariance matrices QWi

, QVi
, and QSi

. From Equation (47)
it can be seen that estimates of QWi

, QVi
, and QSi

can be obtained as long as Qw and QVi
are identified.

Equation (45) can be expanded by using matrix elements. Let βi be nβi × 1-dimensional column
vector consist of unknown elements of Qw and QVi

. Then, the matrix Equation (45) can be expressed as
the linear equation with respect to βi:

Λiβi = δi (48)

where the coefficient matrix Λi is known and its elements are determined by ai
s(s = 0, 1, · · · , nAi) and

Bi
s(s = 1, · · · , nBi). Elements of column vector δi are determined by elements in RZi(k), k = 0, 1, · · · , n0.

If Λi has a full-column rank, Equation (48) has a unique least-square solution

βi = (Λi
TΛi)

−1
Λi

Tδi (49)

Hence, estimates of unknown NVs Qw and QVi
can be obtained. Due to the ergodicity of the

correlation function of the stationary stochastic process, it is true that R̂Zi(k, t) converges to RZi(k) with
probability 1, i.e., [23]:

R̂Zi(k, t)→ RZi(k), t→∞, w.p.1 (50)

Therefore, estimates of unknown NVs Q̂w and Q̂Vi
are also consistent, i.e.,:

Q̂w(t)→ Qw, Q̂Vi
(t)→ QVi

, t→∞, w.p.1 (51)

Further, it follows from Equation (47) that:

Q̂Wi
(t)→ QWi

, Q̂Si
(t)→ QSi

, t→∞, w.p.1 (52)

Remark 3. Different from another study [22] where variance of process noise was assumed to be known since it
was coupled with missing measurement rates and was not separated and simultaneously identified, in this paper,
a two-stage identification method was presented where MPs and packet receiving rates were simultaneously
identified using the RELS algorithm in the first stage. NVs were identified using correlation functions in the
second stage.

4.3. ST Filtering Algorithms

When system MPs, packet receiving rates, and NVs are unknown, the ST distributed fusion
state filter can be obtained by substituting identified estimates into optimal filtering algorithms (see
Section 3).

The ST distributed fusion state filter can be implemented as follows:

Step (1) Packet receiving rates and unknown MPs are identified using the RELS algorithm in
Equations (40)–(42).

Step (2) NVs Q̂w(t) and Q̂Vi
(t) are identified in Equation (48). Further, using the relationship of

Equation (47), estimates of noise covariance matrices Q̂Wi
(t) and Q̂Si

(t) are obtained.

Step (3) Substituting the identified estimates Q̂Wi
(t), Q̂Si

(t), Q̂Vi
(t), Φ̂i(t), and α̂i(t) at each time into

Equations (18)–(31), the corresponding ST filtering algorithms can be obtained.
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Each step above is done at each instant.
First, denote the corresponding ST local predictors, local filters, local prediction error variance

matrices, local filtering error variance matrices, prediction gains, and filtering gains by X̂s
i (t|t − 1),

X̂s
i (t|t), P̂i(t|t− 1), P̂i(t|t), L̂i(t) and K̂i(t). Then, denote the ST fusion state filter and its variance matrix

by x̂s
o(t|t) and P̂s

o(t|t).

Remark 4. From Section 4.2, it was observed that estimates of noise covariance matrices QWi
, QVi

, and QSi

were obtained by only identifying Qw and QVi
. This avoided the identification of unnecessary zeros in QWi

, QVi
,

and QSi
from Equation (47). On the other hand, it is worth mentioning that the proposed ST filtering algorithms

avoided the computation of state second-order moments Mi(t) by identifying directly QWi
, QVi

, and QSi
, which

was different from a previous study [22] where the state second-order moment required computing. Therefore,
our proposed algorithms reduce the computational burden.

5. Convergence Analysis of ST Filtering Algorithms

In this section, the following lemmas are used for the convergence analysis of the proposed ST
filtering algorithms. Because packet receiving rates, NVs, and MPs are all unknown, the proof of
convergence is more complex and difficult.

Lemma 3 ([23]). Consider a dynamic system

δ(t) = T(t)δ(t− 1) + u(t) (53)

where t ≥ 0, δ(t) ∈ Rn, u(t) ∈ Rn, and T(t) ∈ Rn×n is a uniformly asymptotically stable matrix. Then, δ(t) is
bounded if u(t) is bounded, further δ(t)→ 0 if u(t)→ 0 as t→∞ .

Lemma 4 ([23]). Consider a Lyapunov equation

J(t) = T1(t)J(t− 1)TT
2 (t) + U(t) (54)

where t ≥ 0, J(t) ∈ Rn×n, U(t) ∈ Rn×n, and T1(t) ∈ Rn×n and T2(t) ∈ Rn×n are uniformly asymptotically
stable matrices. Then, J(t) is bounded if U(t) is bounded; further, J(t)→ 0 if U(t)→ 0 as t→∞ .

Lemma 5 ([23]). For system (Φi, Hi, QWi
(t), QVi

(t), QSi
(t)) and identified system

(Φ̂i(t), Ĥi(t), Q̂Wi
(t), Q̂Vi

(t), Q̂Si
(t)) under Assumptions 1–4, state transition matrices of the optimal

local predictor and ST local predictor Ψpi(t) =Φi − Li(t)Hi and Ψ̂pi(t) = Φ̂i(t
)
− L̂i(t)Ĥi(t) are uniformly

asymptotically stable. Gain matrices of optimal and ST predictors Li(t) and L̂i(t) are bounded. Solutions
Pi(t|t− 1) and P̂i(t|t− 1) to Riccati equations that optimal and ST variance matrices satisfy are bounded.

Theorem 2. For multi-sensor system (1)–(3) with unknown packet receiving rates, NVs, and MPs under
Assumptions 1–4, assuming that identifiers of unknown packet receiving rates, NVs, and MPs are all consistent,
then variance matrices of ST prediction and filtering errors converge to those of optimal prediction and filtering
errors with probability 1, i.e., [

P̂i(t|t− 1) − Pi(t|t− 1)
]
→ 0, t→∞ (55)[

P̂i(t|t) − Pi(t|t)
]
→ 0, t→∞ (56)

Further, we have K̂i(t) −Ki(t)→ 0 and L̂i(t) − Li(t)→ 0, t→∞ .
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Proof. From Lemma 1, variance matrices of ST and optimal prediction errors P̂(t + 1|t) and P(t + 1|t)
satisfy equations

P̂i(t + 1|t) = Ψ̂pi(t)P̂i(t|t− 1)Ψ̂pi(t)
T
− Q̂Si

(t)L̂T
i (t) − L̂i(t)Q̂T

Si
(t)

+L̂i(t)Q̂Vi
(t)L̂T

i (t) + Q̂Wi
(t)

(57)

Pi(t + 1|t) = Ψpi(t)Pi(t|t− 1)Ψpi(t)
T
−QSi

(t)LT
i (t) − Li(t)QT

Si
(t)

+Li(t)QVi
(t)LT

i (t) + QWi
(t)

(58)

Let ∆Φ̂i(t) = Φ̂i(t) −Φi and ∆Ψ̂pi(t) = Ψ̂pi(t) −Ψpi(t). Subtracting Equation (58) from Equation
(57) yields

P̂i(t + 1|t) −Pi(t + 1|t) = Ψ̂pi(t)(P̂i(t|t− 1) − Pi(t|t− 1))ΨT
pi(t) + Ψ̂pi(t)P̂i(t|t− 1)∆Ψ̂T

pi(t)

+∆Ψ̂pi(t)Pi(t|t− 1)ΨT
pi(t) − Q̂Si

(t)L̂T
i (t) − L̂i(t)Q̂T

Si
(t) + L̂i(t)Q̂Vi

(t)L̂T
i (t)

+Q̂Wi
(t) + QSi

(t)LT
i (t) + Li(t)QT

Si
(t) − Li(t)QVi

(t)LT
i (t) −QWi

(t)
(59)

From definitions of Ψ̂pi(t) and Ψpi(t), it is clear that ∆Ψ̂pi(t) = ∆Φ̂i(t)− L̂i(t)Ĥi(t) + Li(t)Hi. Then,
we derive

Ψ̂pi (t)P̂i(t|t− 1)∆Ψ̂T
pi(t) = Ψ̂pi(t)P̂i(t|t− 1)∆Φ̂i

T(t) − Ψ̂pi(t)P̂i(t|t− 1)̂T
i (t)L̂

T
i (t)+

Ψ̂pi(t)P̂i(t|t− 1)T
i LT

i (t)
(60)

From Equations (22) and (25), we obtain Ψpi(t)Pi(t|t − 1)T
i = Li(t)QVi

(t) −QSi
(t). Let ∆̂i(t) =

î(t) − i. It follows that

Ψ̂pi(t)P̂i(t|t− 1)̂i
T(t)L̂i

T(t) = L̂i(t)Q̂Vi
(t)L̂i

T(t) − Q̂Si
(t)L̂i

T(t),
Ψ̂pi(t)P̂i(t|t− 1)i

TLi
T(t) = L̂i(t)Q̂Vi

(t)Li
T(t) − Q̂Si

(t)Li
T(t) − Ψ̂pi(t)P̂i(t|t− 1)∆̂T

i (t)Li
T(t)

(61)

Substituting Equation (61) into Equation (60) yields

Ψ̂pi(t)P̂i(t|t− 1)∆Ψ̂T
pi(t) = Ψ̂pi(t)P̂i(t|t− 1)∆Φ̂i

T(t) − Ψ̂pi(t)P̂i(t|t− 1)∆̂T
i (t)L

T
i (t)+

L̂i(t)Q̂Vi
(t)LT

i (t) − Q̂Si
(t)LT

i (t) − L̂i(t)Q̂Vi
(t)L̂T

i (t) + Q̂Si
(t)L̂T

i (t)
(62)

Similarly, we have

∆Ψ̂pi(t)Pi(t|t− 1)ΨT
pi(t) = ∆Φ̂i(t)Pi(t|t− 1)ΨT

pi(t) − L̂i(t)∆Ĥi(t)Pi(t|t− 1)ΨT
pi(t)+

Li(t)QVi
(t)LT

i (t) − Li(t)QT
Si
(t) − L̂i(t)QVi

(t)LT
i (t) + L̂i(t)QT

Si
(t)

(63)

Substituting Equations (62) and (63) into Equation (59) yields

P̂i(t + 1|t) −Pi(t + 1|t) = Ψ̂pi(t)(P̂i(t|t− 1) − Pi(t|t− 1))ΨT
pi(t) + Ψ̂pi(t)P̂i(t|t− 1)∆Φ̂i

T(t)

−Ψ̂pi(t)P̂i(t|t− 1)∆̂T
i (t)Li

T(t) + ∆Φ̂i(t)Pi(t|t− 1)ΨT
pi(t) − L̂i(t)∆̂i(t)Pi(t|t− 1)ΨT

pi(t)

+L̂i(t)(Q̂Vi
(t) −QVi

(t))LT
i (t) − (Q̂Si

(t) −QSi
(t))LT

i (t) − L̂i(t)(Q̂T
Si
(t) −QT

Si
(t))

+Q̂Wi
(t) −QWi

(t)

(64)

Let the variance error i(t) = P̂i(t|t− 1) − Pi(t|t− 1). From Equation (64), we obtain the dynamic
variance error system as

i(t + 1) = Ψ̂pi(t)i(t)ΨT
pi(t) + Re

i (t) (65)
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Re
i (t) = Ψ̂pi (t)P̂i(t|t− 1)∆Φ̂i

T(t) − Ψ̂pi(t)P̂i(t|t− 1)∆̂i
T(t)Li

T(t) + ∆Φ̂i(t)Pi(t|t− 1)ΨT
pi(t)

−L̂i(t)∆̂i(t)Pi(t|t− 1)ΨT
pi(t) + L̂i(t)(Q̂Vi

(t) −QVi
(t))LT

i (t) + Q̂Wi
(t) −QWi

(t)

−(Q̂Si
(t) −QSi

(t))LT
i (t) − L̂i(t)(Q̂T

Si
(t) −QT

Si
(t))

(66)

According to Lemma 5, it is known that P̂i(t|t − 1), L̂i(t), Ψ̂pi(t), Pi(t|t − 1), Li(t), and Ψpi(t) are
bounded. From Equations (51) and (52), it follows that Q̂Wi

(t)→ QWi
, Q̂Vi

(t)→ QVi
, Q̂Si

(t)→ QSi
as

t→∞ , then from ∆Φ̂i(t)→ 0 , ∆̂i(t)→ 0 as t→∞ , we have Re
i (t)→ 0, t→∞

From the uniformly asymptotic stability of Ψ̂pi(t) and Ψpi(t), and using Lemma 4, it follows that

i(t)→ 0, t→∞ . Then, we obtain Equation (55). Further, it follows from Equations (21) and (22), (25),
and (55) that K̂i(t) −Ki(t)→ 0 , L̂i(t) − Li(t)→ 0 as t→∞ .

Next, we prove Equation (56).
From Equations (23) and (25), variance matrices of local ST and optimal filtering errors are

calculated as follows:
P̂i(t|t) = (In − K̂i(t)̂i(t))P̂i(t|t− 1) (67)

Pi(t|t) = (In −Ki(t)i)Pi(t|t− 1) (68)

Subtracting Equation (68) from Equation (67) yields

P̂i(t|t) − Pi(t|t) = P̂i(t|t− 1) − Pi(t|t− 1) − K̂i(t)̂i(t)P̂i(t|t− 1) + Ki(t)iPi(t|t− 1) (69)

Let K̂i(t) = Ki(t) + ∆K̂i(t) and î(t) = i + ∆̂i(t). Then, we derive

K̂i(t)̂i(t)P̂i(t|t− 1) = Ki(t)iP̂i(t|t− 1) + Ki(t)∆̂i(t)P̂i(t|t− 1) + ∆K̂i(t)iP̂i(t|t− 1)
+∆K̂i(t)∆̂i(t)P̂i(t|t− 1)

(70)

It follows that

P̂i(t|t)− Pi(t|t) = (In −Ki(t)i)(P̂i(t|t− 1) − Pi(t|t− 1)) −Ki(t)∆̂i(t)P̂i(t|t− 1)
−∆K̂i(t)iP̂i(t|t− 1) − ∆K̂i(t)∆̂i(t)P̂i(t|t− 1)

(71)

From the boundedness of Pi(t|t − 1), it is clear that Ki(t) is bounded. Further, from ∆̂i(t)→ 0 ,
∆K̂i(t)→ 0 , and P̂i(t|t− 1) − Pi(t|t− 1)→ 0 as t→∞ , we obtain Equation (56). The proof is completed.
�

In Theorem 2, the convergence of the ST prediction and filtering error variance matrices was
proven. Next, we prove the convergence of CCMs of ST prediction and filtering errors.

Theorem 3. Under Assumptions 1–4, solutions from the ST Lyapunov equations that include CCMs of
prediction and filtering errors satisfy converge to solutions of optimal Lyapunov equations, i.e.,

[P̂i j(t|t− 1) − Pi j(t|t− 1)]→ 0, t→∞ (72)

[P̂i j(t|t) − Pi j(t|t)]→ 0, t→∞ (73)

Proof. Let ∆i j(t) = P̂i j(t|t − 1) − Pi j(t|t − 1), Ψ̂pi(t) = Ψpi(t) + ∆Ψ̂pi(t). Then, from Theorem 2 we
have ∆Ψ̂pi(t)→ 0 as t→∞ . ST prediction error CCM P̂i j(t + 1|t) and optimal prediction error CCM
Pi j(t + 1|t) satisfies the following equations:

P̂i j(t + 1|t) = Ψ̂pi(t)P̂i j(t|t− 1)Ψ̂pj(t)
T +

[
ΓQ̂w(t)ΓT 0

0 0

]
(74)
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Pi j(t + 1|t) = Ψpi(t)Pi j(t|t− 1)Ψpj(t)
T +

[
ΓQwΓT 0

0 0

]
(75)

Subtracting Equation (75) from Equation (74) gives the dynamic variance error in Lyapunov equation:

∆i j(t + 1) = Ψpi(t)∆i j(t)ΨT
pj(t) + Ui j(t) (76)

Ui j(t) = Ψpi(t)P̂i j(t|t− 1)∆Ψ̂T
pj(t) + ∆Ψ̂pi(t)P̂i j(t|t− 1)ΨT

pj(t)

+∆Ψ̂pi(t)P̂i j(t|t− 1)∆Ψ̂T
pj(t) +

[
Γ(Q̂w(t) −Qw)ΓT 0

0 0

]
(77)

Using Lemma 5 and the uniformly asymptotic stability of Ψ̂pi(t) and Ψpi(t), we obtain P̂i j(t|t− 1)
and discover that is bounded. Then, from Q̂w(t)→ Qw , ∆Ψ̂pi(t)→ 0 as t→∞ , it is clear that
Ui j(t)→ 0 . From Equation (76) and Lemma 4, we discern that Equation (72) is true.

Next, we prove Equation (73).
ST filtering error CCM P̂i j(t|t) and optimal filtering error CCM Pi j(t|t) satisfy

P̂i j(t|t) = (In − K̂i(t)̂i(t))P̂i j(t|t− 1)(In − K̂ j(t)̂ j(t))
T (78)

Pi j(t|t) = (In −Ki(t)i)Pi j(t|t− 1)(In −K j(t) j)
T (79)

Subtracting Equation (79) from Equation (78) yields

P̂i j(t|t) −Pi j(t|t) = [P̂i j(t|t− 1) − Pi j(t|t− 1)] − [K̂i(t)̂i(t)P̂i j(t|t− 1) −Ki(t)iPi j(t|t− 1)]
−[P̂i j(t|t− 1)̂T

j (t)K̂
T
j (t) − Pi j(t|t− 1)T

j KT
j (t)] + [K̂i(t)̂i(t)P̂i j(t|t− 1)̂T

j (t)K̂
T
j (t)

−Ki(t)iPi j(t|t− 1)T
j KT

j (t)]
(80)

Let K̂i(t) = Ki(t) + ∆K̂i(t) and î(t) = i + ∆̂i(t). Then, we have

[K̂i(t)̂i(t) P̂i j(t|t− 1) −Ki(t)iPi j(t|t− 1)] = Ki(t)i(P̂i j(t|t− 1) − Pi j(t|t− 1))+
Ki(t)∆̂i(t)P̂i j(t|t− 1) + ∆K̂i(t)i(t)P̂i j(t|t− 1) + ∆K̂i(t)∆̂i(t)P̂i j(t|t− 1)

(81)

[P̂i j(t |t− 1)̂T
j (t)K̂

T
j (t) − Pi j(t|t− 1)T

j KT
j (t)] = (P̂i j(t|t− 1) − Pi j(t|t− 1))T

j KT
j (t)

+P̂i j(t|t− 1)T
j ∆K̂T

j (t) + P̂i j(t|t− 1)∆̂T
j (t)K

T
j (t) + P̂i j(t|t− 1)∆̂T

j (t)∆K̂T
j (t)

(82)

[K̂i(t) î(t)P̂i j(t|t− 1)̂T
j (t)K̂

T
j (t) −Ki(t)iPi j(t|t− 1)T

j KT
j (t)] =

K̂i(t)̂i(t)[P̂i j(t|t− 1) − Pi j(t|t− 1)]Tj KT
j (t) + K̂i(t)̂i(t)P̂i j(t|t− 1)T

j ∆K̂T
j (t)

+K̂i(t)̂i(t)P̂i j(t|t− 1)∆̂T
j (t)K

T
j (t) + K̂i(t)̂i(t)P̂i j(t|t− 1)∆̂T

j (t)∆K̂T
j (t)

−K̂i(t)∆̂i(t)Pi j(t|t− 1)T
j KT

j (t) − ∆K̂i(t)̂i(t)Pi j(t|t− 1)T
j KT

j (t)

+∆K̂i(t)∆̂i(t)Pi j(t|t− 1)T
j KT

j (t)

(83)

Substituting Equations (81)–(83) into Equation (80) and using ∆K̂i(t)→ 0 , ∆̂i(t)→ 0 , and
P̂i j(t|t− 1) − Pi j(t|t− 1)→ 0 as t→∞ , it can be seen that Equation (73) is true. The proof is completed.
�

Next, we prove the convergence of the local ST predictor and filter, as well as the ST fusion filter.

Theorem 4. Under Assumptions 1–4, a local ST predictor and filter converge into a local optimal predictor and
filter, respectively.

[X̂s
i (t + 1|t) − X̂i(t + 1|t)]→ 0, t→∞, w.p.1 (84)

[X̂s
i (t|t) − X̂i(t|t)]→ 0, t→∞, w.p.1 (85)
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Proof. From Equations (19) and (20), and definition of Ψp(t), we have

X̂s
i (t + 1|t) = Ψ̂pi

(t)X̂s
i (t|t− 1) + L̂i(t)yi(t) (86)

X̂i(t + 1|t) = Ψpi(t)X̂i(t|t− 1) + Li(t)yi(t) (87)

Let δi(t + 1) = X̂s
i (t + 1|t) − X̂i(t + 1|t) and L̂i(t) = Li(t) + ∆L̂i(t). From Lemma 3, we obtain

∆L̂i(t)→ 0 as t→∞ . Subtracting Equation (87) from Equation (86) leads to the error system as:

δi(t + 1) = Ψpi(t)δi(t) + ui(t) (88)

where ui(t) = ∆Ψ̂pi(t)X̂
s
i (t|t − 1) + ∆L̂i(t)yi(t). From the boundedness of X̂s

i (t + 1|t) and yi(t),
∆L̂i(t)→ 0 and ∆Ψ̂pi(t)→ 0 , it holds that ui(t)→ 0 . Applying Lemma 3 to Equation (88) gives
δi(t)→ 0 as t→∞ , i.e., Equation (84) is true.

The following is the proof of Equation (85). From Equations (18) and (20), we have

X̂s
i (t|t) = (In − K̂i(t)Ĥi(t))X̂s

i (t|t− 1) + K̂i(t)yi(t) (89)

X̂i(t|t) = (In −Ki(t)Hi)X̂i(t|t− 1) + Ki(t)yi(t) (90)

Substituting K̂i = Ki + ∆K̂i ,̂(t) = + ∆̂(t) into Equation (89) and subtracting Equation (90), we
obtain

X̂s
i (t| t) − X̂i(t|t) = (In −Ki(t)Hi)[X̂s

i (t|t− 1) − X̂i(t|t− 1)]

−[Ki(t)∆Ĥi(t) + ∆K̂i(t)Hi + ∆K̂i(t)∆Ĥi(t)]X̂s
i (t|t− 1) + ∆K̂i(t)yi(t)

(91)

Herein, it is proven that X̂s
i (t + 1|t)→ X̂i(t + 1|t) . Moreover, it is known that ∆̂i(t)→ 0 ,

∆K̂i(t)→ 0 as t→∞ . Thus, Equation (85) holds. The proof is completed. �

Theorem 5. Under Assumptions 1–4, the ST fusion state filter converges into an optimal fusion state filter.

[x̂s
o(t|t) − x̂o(t|t)]→ 0, t→∞, w.p.1 (92)

Proof. From Equation (72) and Theorem 1, we have Ω̂i(t)→ Ωi(t) . Let Ω̂i(t) = Ωi(t) + ∆Ω̂i(t). Then,
∆Ω̂i(t)→ 0 . From Theorem 1, we obtain that Ωi(t) and x̂s

i (t|t) = [ In 0 ]X̂s
i (t|t) are bounded. From

Equation (85), it holds that [x̂s
i (t|t) − x̂i(t|t)] = [ In 0 ][X̂s

i (t|t) − X̂i(t|t)]→ 0, t→∞ . Then, we obtain

x̂s
o(t|t) − x̂o(t|t) =

L∑
i=1

Ωi(t)[x̂s
i (t|t) − x̂i(t|t)] +

L∑
i=1

∆Ω̂i(t)x̂s
i (t|t)→ 0 (93)

i.e., Equation (92) holds. The proof is completed. �

Remark 5. From Theorem 2–5, we saw that the proposed ST estimation algorithms were asymptotic optimality.
That means that ST local filters, CCMs between arbitrary two local ST filters, and ST fusion filter asymptotically
converged to the corresponding optimal local filters, CCMs between arbitrary two local optimal filters, and
optimal fusion filter, at least when they had identified MPs, packet receiving rates, and NVs.

6. Simulation Example

A numerical example and a practical UPS example are herein simulated to demonstrate the
effectiveness and applicability of algorithms.
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Example 1. Consider Equations (1)–(3) with three sensors. Parameters are taken as Φ =

[
0.6 0.2
a21 −0.8

]
,

Γ =

[
0.4
0.6

]
, H1 =

[
0.8 1.5

]
, H2 =

[
2 3

]
, H3 =

[
1.7 4.7

]
. Assume that NVs Qw = 4.8,

Qv1 = 1.2, Qv2 = 2.5, and Qv3 = 3.2, wherein data receiving rates of the three sensors are α1 = 0.7, α2 = 0.9,
α3 = 0.6, and the parameter a21 = 0.4 in Φ are unknown. In this example, the aim is to obtain estimates of the
unknown parameter â21, estimates of packet receiving rates α̂i, and estimates of NVs Q̂w and Q̂Vi

of augmented
systems, in addition to the ST state fusion filter.

Figures 1 and 2 show estimates of packet receiving rates αi and estimates of unknown parameter
a21. It can be seen from these figures that estimates of the packet receiving rates converge to their true
values as time increases. Estimates of NVs Qw and QVi

are given in Figures 3 and 4, respectively. It is
observed that estimates of NVs converge to their true values. From Figure 1, Figure 2, and Figure 4, it
can be seen that performance is better when packet receiving rates increase. Figure 5 indicates the
tracking effectiveness of the proposed ST fusion filter. Figure 6 gives the comparison of mean square
errors (MSEs) of ST local filters (STLFs) based on individual sensors and ST fusion filter (STFF). From
Figure 6, it is clear that STFF has a better estimation accuracy than STLFs.Sensors 2019, 19, x FOR PEER REVIEW 15 of 19 
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Example 2. The following uses a practical application example to further verify the effectiveness of the
algorithms. Consider an UPS with 1 kVA, wherein the corresponding discrete-time model is achieved with
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sampling time 10 ms at half-load operating point as follows: Φ =


0.9226 −0.6330 0

a21 0 0
0 1 0

, Γ =


0.5
0

0.2

,
H1 =

[
20.736 20.2 0

]
, H2 =

[
20.7 20.3 0

]
, H3 =

[
20 19.8 0

]
. In the simulation, set Qw = 1,

Qv1 = 1.8, Qv2 = 2.5, Qv3 = 1.6, packet receiving rates of three sensors α1 = 0.64, α2 = 0.9, α3 = 0.86 and
the parameter a21 = 1 in Φ are unknown. Aim is the same as in Example 1.

Figures 7 and 8 show estimates of packet receiving ratesαi and estimates of the unknown parameter
a21. It can be observed that the identification performance is better as long as the packet receiving rate
is larger. Estimates of NVs Qw and QVi

are given in Figures 9 and 10, respectively. It can be observed
in these figures that identifiers for NVs are consistent. Figure 11 shows the tracking performance
of the optimal fusion filter (OFF) and STFF. It is observed that ST fusion state filter approximates
to optimal fusion filter. As can be seen from Figures 7–11, the ST fusion filter is asymptotically
optimal when the identified results are consistent. All simulation results verify the effectiveness of the
proposed algorithms.
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7. Conclusions

In this study, a ST distributed fusion filter was proposed for complex systems with unknown
packet receiving rates, NVs, and MPs. Initially, a two-stage identification method was proposed.
In the first stage, the RELS algorithm was used for simultaneous identification of unknown MPs
and packet receiving rates online by transforming the identification problem of packet dropout
rates into unknown MPs for an augmented system. In the second stage, the correlation function
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method was applied for identification of NVs. Then, substituting the identified packet dropout
rates, NVs, and MPs into the optimal local state filters, CCMs, and distributed optimal weighted
fusion filter, the corresponding ST fusion algorithms were achieved. At last, the convergence of ST
filtering algorithms was proven. In future work, we will extend our results to multi-rare multi-sensor
systems with more complicated uncertainty that can be induced by networks, such as random delays,
quantization, and stochastic nonlinearity.
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