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Abstract: Electrical energy management, or demand-side management (DSM), in a smart grid
is very important for electrical energy savings. With the high penetration rate of the Internet
of Things (IoT) paradigm in modern society, IoT-oriented electrical energy management systems
(EMSs) in DSM are capable of skillfully monitoring the energy consumption of electrical appliances.
While many of today’s IoT devices used in EMSs take advantage of cloud analytics, IoT manufacturers
and application developers are devoting themselves to novel IoT devices developed at the edge
of the Internet. In this study, a smart autonomous time and frequency analysis current sensor-based
power meter prototype, a novel IoT end device, in an edge analytics-based artificial intelligence
(AI) across IoT (AIoT) architecture launched with cloud analytics is developed. The prototype has
assembled hardware and software to be developed over fog-cloud analytics for DSM in a smart grid.
Advanced AI well trained offline in cloud analytics is autonomously and automatically deployed
onsite on the prototype as edge analytics at the edge of the Internet for online load identification
in DSM. In this study, auto-labeling, or online load identification, of electrical appliances monitored
by the developed prototype in the launched edge analytics-based AIoT architecture is experimentally
demonstrated. As the proof-of-concept demonstration of the prototype shows, the methodology
in this study is feasible and workable.

Keywords: artificial intelligence; demand-side management; fog-cloud analytics; Industry 4.0;
internet of things; machine learning; smart grid; smart homes

1. Introduction

Electricity is one of the most commonly used forms of energy in modern society. Consumer electrical
energy demands are continuously increasing. During the last few decades rapid growth of Internet
of Things (IoT) technologies has occurred. Modern IoT technologies have been developed and implemented
for smart grids. A smart grid exploiting modern IoT technologies for a more efficient, reliable, and flexible
traditional power grid upgraded in this revolution can be regarded as the key enabler that makes existing
cities ready for tomorrow’s needs, including continuously increasing demands for electrical energy.
A smart grid improves two-way communication between power utilities and consumers and opens new
technical challenges, such as intelligent sensing and decision making. In a smart grid exploiting modern
IoT technologies, to redefine the role of end users as power producers and the role of power utilities as
service providers, consumers are “prosumers,” which allows them to generate, store, and sell their own
electrical energy. Demand-side management (DSM) is very attractive and the most promising enabling
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technology of smart grids developed by power utilities and adopted to entice consumers to actively
participate in demand response (DR) schemes [1–4]. DSM refers to initiatives [5] and technologies that
encourage consumers to optimize their electrical energy consumption such that: (1) electrical energy
requests from downstream sectors of a smart grid can be met; (2) the efficiency, reliability, and flexibility
of the traditional power grid can be upgraded and enhanced; and (3) greenhouse gas emissions can be
abated. Effective DSM alleviates such continuously increasing electrical energy demands. The benefits
of participating in DSM are potentially twofold. First, consumers can reduce their electricity bills by
adjusting their electrical energy consumption. Second, the power grid will adopt distributed energy
resources, such as renewables and electric vehicles, which forces power utilities to rethink how the power
grid can work intelligently and beneficially by shifting electrical energy consumption from peak hours
to non-peak hours, in order to meet consumers’ electrical energy demands with flexible load shapes [6].

Smart energy management systems (EMSs) such as a home EMS, which have been considered as
an integral part of successful DSM in a smart grid [7], can contribute to cutting electricity production
costs by power utilities while still meeting electrical energy demands from downstream sectors
of the smart grid. Many recent central EMSs [8–12] for DSM in a smart grid produce huge amounts
of IoT data and transmit the data to resource-rich centralized data centers for data science analytics.
However, networks may be congested, and centralized data centers and cloud analytics may be
overloaded [13]. In addition, in cases where fast response with low communication overhead is
required, user-centric IoT service-oriented EMS applications are network latency-sensitive and require
real-time responsiveness and local interpretable and actionable data science analytics for rapid decision
making (in case of immediate and adverse events) [14,15].

Centralized cloud analytics usually cannot remedy such drawbacks and fill such requirements [15].
Also, IoT and artificial intelligence (AI) (aka machine learning) have joined together to be envisioned
as the next wave in the era of the IoT; IoT devices need informative AI models learned from IoT data
in cloud analytics and used as edge analytics to provide real-time and onsite actionable data insights
to customers [16,17]. Edge analytics and fog analytics, instead of cloud analytics, move cloud analytics
close to IoT end devices to minimize network latency and enhance location awareness [18,19]. Not much
attention has been paid to developing an EMS architecture over fog-cloud analytics for DSM in a smart
grid. Thus, in this study, a smart autonomous time and frequency analysis current sensor-based
power meter prototype, a novel IoT end device compared in [20–23], in an edge analytics-based
AI across IoT (AIoT) architecture launched with an open and powerful cloud analytics platform
is designed and implemented, which has assembled hardware and software to be developed over
fog-cloud analytics for DSM in a smart grid. Fog-cloud analytics, which is considered for DSM
in this study, concerned in a smart grid, and introduced conceptually in [24], concurrently leverages
resources from cloud-centered data science analytics (advanced AI) to edge connectivity (advanced
AI autonomously and automatically deployed onsite on the developed prototype via the Internet).
AI well trained offline in cloud analytics and autonomously and automatically deployed as edge
analytics on IoT end devices via the Internet was taken into account and developed for IoT applications
in [15,21,22]. For a practical application of DSM in this study, auto-labeling, or load identification
as nonintrusive load monitoring [8,10,25–28], of electrical appliances monitored by the developed
prototype is experimentally investigated.

A summary of this study is as follows:

• A smart autonomous time- and frequency-domain analysis current sensor-based power meter
prototype, which co-operates with cloud analytics (AI trained offline in cloud analytics)
for collaborative learning and serves as edge analytics to identify electrical appliances onsite
and online over fog-cloud analytics for DSM in a smart grid (well-trained AI autonomously and
automatically deployed onsite on the prototype via the Internet (representational state transfer
(REST) application programming interface (API))), is presented in this study. The prototype
presented in our previous work [23] is upgraded in this study, which was based on time-domain
feature extraction and was not autonomously and automatically collaborated with cloud analytics.
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The upgraded prototype in this study is a novel IoT end (edge) device, as compared with the work
done in [20–23]. The prototype developed over fog-cloud analytics and presented in this study is
experimentally examined. The prototype has assembled hardware and software to be developed.

• An open and powerful cloud analytics platform is configured and used as a data science analytics
engine without developing custom web software for DSM to implement lightweight AI trained
offline in cloud analytics and deployed, via the Internet (REST API), onsite on the prototype as edge
analytics for online load identification in the presented fog-cloud analytics-based AIoT architecture.

• In AI, a model such as an artificial neural network (ANN) trying too hard to respond to noisy
data in a training dataset should avoid overfitting. Regularization is one of the most important
techniques used in AI to overcome overfitting. A radial basis function ANN (RBF-ANN) that
takes a regularization risk function into account is employed in this study as lightweight AI.
It has the low computational complexity of AI (lightweight AI) implemented in cloud analytics
and deployed via the Internet (REST API) onsite on the presented prototype as edge analytics
autonomously and automatically for online load identification in DSM. The RBF-ANN is a typical
feed-forward ANN, which has the merits of (1) a simple network structure and (2) conspicuous
fast and high learning and generalization performance.

This study is organized as follows: The developed prototype is presented in Section 2. Section 3 shows
a proof-of-concept demonstration of the prototype developed over fog-cloud analytics for DSM, where the
prototype is experimentally validated in a realistic household environment. Finally, this study is concluded
in Section 4.

2. Methodology: Smart Autonomous Time and Frequency Analysis Current Sensor-Based Power
Meter Prototype in an Edge Analytics-Based AIoT Architecture Launched with an Open Cloud
Analytics Platform

This section presents the developed smart autonomous time and frequency analysis current
sensor-based power meter prototype in an edge analytics-based AIoT architecture launched with an
open and powerful cloud analytics platform, which is designed and implemented over fog-cloud
analytics for DSM. Fog-cloud analytics is crucial for user-centric IoT applications in DSM in a smart grid,
which is network latency-sensitive and requires real-time and onsite data science analytics for immediate
decision making. Figure 1 depicts a generic three-tier architecture of fog-cloud analytics consisting of an
IoT device layer, a fog layer, and a cloud layer [29,30]. In such a generic architecture, IoT data sensed
and gathered in an IoT device layer are exchanged with a fog layer that allows for communication
of IoT end edge devices, including edge gateways (fog devices can be gateways [31]), with a powerful
cloud analytics platform. An IoT device layer is the basis of a generic architecture of fog-cloud analytics.
IoT end edge devices are the main entities of an IoT device layer, and they can be deployed over
a wide area of interest for user-centric IoT applications. A configured fog layer is used as a technical
bridge between an IoT device layer and a cloud layer to process gathered IoT data through data science
analytics at IoT data sources and exchange processed IoT data via IoT communication technology [32].
A fog layer is made of edge gateways that respond rapidly to IoT end edge devices in an IoT device
layer, and IoT end edge devices, including edge gateways, avoid network latency over the Internet
because of their proximity to them. A cloud layer, which can be distributed in cloud storage and
user-centric IoT applications, is responsible for storing gathered and processed IoT data and providing
collaborative user-centric IoT services to customers. In a generic architecture of fog-cloud analytics,
IoT end edge devices, including edge gateways, in a fog layer gather processed IoT data from IoT
end edge devices in an IoT device layer and pass them to a cloud layer. Mukherjee et al. in [33]
conducted a comprehensive survey relating to fog-cloud analytics-based IoT architectures; interested
researchers can refer to the survey article. This study develops an AIoT architecture based on fog-cloud
analytics for DSM in a smart grid, which is similar to the generic architecture depicted in Figure 1.
Figure 2 shows a conceptual vision of the developed smart autonomous power meter prototype as
a new edge computing device [20–23] considering time and frequency analysis and advanced AI
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in a future smart sensing infrastructure based on fog-cloud analytics for DSM in a smart grid [23].
Future advances, (1) user-centric IoT service-oriented single and/or multiple sensing modalities and
applications and (2) fault detection and classification in industry 4.0 (smart factories), for DSM in a smart
grid can be built upon. As cloud analytics applied to gathered IoT data that need to be processed
for real-time and onsite actionable data insights at IoT data sources is based on network connectivity
that is not always available or is limited, edge (fog) analytics is a promising technique dedicated to data
science analytics enabled directly at the edge of the network. In this sense, edge analytics extends
cloud analytics and covers its shortage.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 30 

 

analytics for DSM in a smart grid [23]. Future advances, (1) user-centric IoT service-oriented single 
and/or multiple sensing modalities and applications and (2) fault detection and classification in 
industry 4.0 (smart factories), for DSM in a smart grid can be built upon. As cloud analytics applied 
to gathered IoT data that need to be processed for real-time and onsite actionable data insights at IoT 
data sources is based on network connectivity that is not always available or is limited, edge (fog) 
analytics is a promising technique dedicated to data science analytics enabled directly at the edge of 
the network. In this sense, edge analytics extends cloud analytics and covers its shortage. 

 
Figure 1. Generic three-tier architecture of fog-cloud analytics. IoT = Internet of Things. 

 
Figure 2. Conceptual vision of the smart autonomous power meter prototype considering time- and 
frequency-domain analysis (spectral analysis) and advanced artificial intelligence (AI) in a future 
smart sensing infrastructure based on fog-cloud analytics for demand-side management (DSM) in a 
smart grid. 

Fog-cloud analytics serves as converged analytics that consolidates IoT data from distributed 
IoT data aggregation. Based on fog-cloud analytics developed for user-centric IoT applications in 
smart homes, manufacturers, and cities considering DSM in a smart grid, as shown in Figure 2, the 
developed prototype, which is installed in multiple fields of interest in a smart grid, time-
synchronized, and autonomously and automatically deployed onsite as edge analytics with 

Figure 1. Generic three-tier architecture of fog-cloud analytics. IoT = Internet of Things.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 30 

 

analytics for DSM in a smart grid [23]. Future advances, (1) user-centric IoT service-oriented single 
and/or multiple sensing modalities and applications and (2) fault detection and classification in 
industry 4.0 (smart factories), for DSM in a smart grid can be built upon. As cloud analytics applied 
to gathered IoT data that need to be processed for real-time and onsite actionable data insights at IoT 
data sources is based on network connectivity that is not always available or is limited, edge (fog) 
analytics is a promising technique dedicated to data science analytics enabled directly at the edge of 
the network. In this sense, edge analytics extends cloud analytics and covers its shortage. 

 
Figure 1. Generic three-tier architecture of fog-cloud analytics. IoT = Internet of Things. 

 
Figure 2. Conceptual vision of the smart autonomous power meter prototype considering time- and 
frequency-domain analysis (spectral analysis) and advanced artificial intelligence (AI) in a future 
smart sensing infrastructure based on fog-cloud analytics for demand-side management (DSM) in a 
smart grid. 

Fog-cloud analytics serves as converged analytics that consolidates IoT data from distributed 
IoT data aggregation. Based on fog-cloud analytics developed for user-centric IoT applications in 
smart homes, manufacturers, and cities considering DSM in a smart grid, as shown in Figure 2, the 
developed prototype, which is installed in multiple fields of interest in a smart grid, time-
synchronized, and autonomously and automatically deployed onsite as edge analytics with 

Figure 2. Conceptual vision of the smart autonomous power meter prototype considering time- and
frequency-domain analysis (spectral analysis) and advanced artificial intelligence (AI) in a future smart
sensing infrastructure based on fog-cloud analytics for demand-side management (DSM) in a smart grid.

Fog-cloud analytics serves as converged analytics that consolidates IoT data from distributed IoT
data aggregation. Based on fog-cloud analytics developed for user-centric IoT applications in smart
homes, manufacturers, and cities considering DSM in a smart grid, as shown in Figure 2, the developed
prototype, which is installed in multiple fields of interest in a smart grid, time-synchronized,
and autonomously and automatically deployed onsite as edge analytics with advanced AI
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(trained offline in cloud analytics and ported on the prototype via the Internet), is able to perform
converged analytics onsite and online. Converged analytics consolidates IoT data from distributed
IoT data aggregation. The smart autonomous power meter prototype presented in this section and
developed over fog-cloud analytics for DSM in this study is a preliminary design toward such a scenario
as a next-generation AMI (smart sensing) infrastructure expected for smart homes, manufacturers,
and cities.

2.1. Architectural Design of an Edge Analytics-Based AIoT Considering the Developed Smart Autonomous
Time and Frequency Analysis Current Sensor-Based Power Meter Prototype with Open Cloud Analytics
for DSM in a Smart Grid

Figure 3 illustrates the architecture of the prototype designed and implemented in this study,
which is a version of a single-home demonstration of the generic three-tier fog-cloud analytics
architecture depicted in Figure 1. In Figure 3, the fog-cloud analytics architecture is implemented
in a home in Taiwan. The residential environment is equipped with an energy management controller
that manages home appliances in response to DR signals and is connected via an advanced metering
infrastructure to a smart grid that comes up with DR programs in which a power company-owned
smart meter instead of a traditional wattmeter is installed and used to transmit electrical energy
consumption data records to and receive DR signals from a power utility for DSM. One of the most
important functionalities of a smart grid is self-decision-making ability [34]. To enable this functionality,
DR, a viable approach to motivate consumers toward shifting their electrical energy demand during
peak load periods [35], emerges. As electrical appliances monitored in the residential environment
in Figure 3 are identified and reacted with DR signals, the developed prototype in this study is used
to identify them based on time- and frequency-domain analysis.
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Figure 3. Launched edge analytics-based artificial intelligence across Internet of Things (AIoT) with
open and powerful cloud analytics configured to collaborate with the developed smart autonomous
time and frequency analysis current sensor-based power meter prototype as edge analytics over
fog-cloud analytics for DSM in a smart grid in this study.

The developed smart autonomous power meter prototype in the residential environment in a smart
grid is time-synchronized and autonomously and automatically deployed onsite as edge analytics,
which is designed and implemented to interact with an open and powerful cloud analytics platform
configured for advanced AI trained offline in cloud analytics and ported on the prototype via the Internet.
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The cloud analytics platform configured to collaborate with the prototype over fog-cloud analytics is
based on ThingSpeak™ [36] with MATLAB® analytics, which can run MATLAB® codes on demand
in the cloud. In the architecture, push notifications service is also developed. The push notifications
service provided in the architecture in Figure 3, If-This-Then-That (IFTTT) [37], with Webhooks [38]
publishing a new trigger received or action alerted is conducted, configured, and used for LINE-Notify
mobile devices. The developed prototype is presented in Section 2.1.1. The open and powerful cloud
analytics platform based on ThingSpeak™ with MATLAB® analytics is presented in Section 2.1.2,
where advanced AI implemented in MATLAB® programming language, trained offline in cloud
analytics and ported as edge analytics on the developed prototype via the Internet for onsite and online
load identification in DSM, is mathematically described in Section 2.2.

2.1.1. Hardware: Smart Autonomous Time and Frequency Analysis Current Sensor-Based Power
Meter Prototype as Edge Analytics

The smart autonomous time and frequency analysis current sensor-based power meter prototype
designed and implemented as edge analytics with push notifications service in Figure 3 is depicted
in Figure 4. The core entity of the prototype in Figure 4 is based on an Arduino® micro-controller
unit (MCU) board. More specifically, Arduino MEGA 2560 [21,23,39] is chosen and designed with
hardware and software implementation in this study. Arduino®, an open-source and inexpensive
electronics prototyping MCU based on flexible and easy-to-use hardware and software, has become
very popular among artists, designers, hobbyists, and professionals. It is an excellent IoT tool to quickly
test and deploy IoT ideas and applications. Arduino® is programed in Arduino® language, which is
based on C/C++ programming language and comes with a user-friendly integrated development
environment (IDE) [40]. The Arduino MEGA 2560 MCU used in this study provides sufficient analog
pins for possible future uses in smart homes.
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The general specifications of the Arduino MEGA 2560 MCU are listed in Table 1. It is an MCU
board based on the Atmel® 8-bit ATmega2560. It has 54 digital input/output (I/O) pins (of which
15 can be used for pulse width modulation (PWM)), 16 analog inputs, four universal asynchronous
receivers/transmitters (UARTs; hardware serial ports), a larger memory space for a coded Arduino
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sketch, a 16 MHz crystal oscillator, a universal serial bus (USB) connection, a power jack, an in-circuit
serial programming (ICSP) header, and a reset button. In an Arduino® MCU board, the flash memory,
program space, is where an Arduino sketch coded is stored. The static random access memory
(SRAM) is where the coded Arduino sketch creates and manipulates variables when the board runs.
The electrically erasable programmable read-only memory (EEPROM) is the memory space that
programmers can use to store long-term data.

Table 1. Technical specifications of Arduino MEGA 2560 micro-controller unit (MCU) [21,23,39].
SRAM, static random access memory; EEPROM, electrically erasable programmable read-only memory;
PWM, pulse width modulation.

Arduino® MCU board ATmega 2560

Operating voltage 5 V
Input voltage (recommended) 7–12 V
Digital input/output (I/O) pins 54 (of which 15 provide PWM output)

Analog input pins 16
Direct current (DC) per I/O pin 20 mA

DC for 3.3 V pin 50 mA
Flash memory 256 KB (8 KB used by the bootloader)

SRAM 8 KB
EEPROM 4 KB

Clock speed 16 MHz
LED_BUILTIN, number of pins on-board LED is connected to 13

Size (length ×width) 101.52 mm × 53.3 mm

The Arduino MEGA 2560 MCU is compatible with most Arduino® shields, such as a WIZNet
W5100 hardwired Transmission Control Protocol/Internet Protocol (TCP/IP) embedded Ethernet
shield [41], produced for Arduino UNO, and former microcontroller boards such as Arduino
Duemilanove. A WIZNet W5100 hardwired TCP/IP embedded Ethernet shield is used in this study
for the developed prototype (Figure 4). The designed and implemented prototype has the following
modules:

(1) A current transducer (CT) coil, which is clipped on a live electrical wire and used to acquire
current signals. Acquired current signals reflect electrical appliances monitored by the prototype,
analyzed through time- and frequency-domain analysis, and identified by advanced AI. For a CT
connected to an Arduino® MCU, the output signal from the CT needs to be conditioned so
it meets the input requirements, positive voltage between 0 V and the ADC reference voltage
(AREF; 5 V on 5 V MCU boards or 3.3 V on 3.3 V boards), of the Arduino® MCU’s analog inputs.

(2) A WIZNet W5100 hardwired TCP/IP embedded Ethernet shield, which is used to support
Internet connectivity where data processed through time and frequency analysis are transmitted
to the open and powerful cloud analytics platform in Figures 2 and 3 for advanced AI, and where
advanced AI well trained offline in cloud analytics is retrieved from the cloud analytics platform
and autonomously and automatically deployed as edge analytics on the Arduino MEGA 2560
MCU in a regular periodic manner.

(3) A real-time clock (RTC) chip, which is used to keep track of current time, timestamps, via network
time protocol (NTP; the developed prototype designed and implemented to interact with the cloud
analytics platform in Figures 2 and 3 for advanced AI trained offline in cloud analytics and ported
as edge analytics on the prototype via the Internet is time-synchronized).

(4) A micro SD card, which is used to store data (the SD library built on ‘sdfatlib’ by Greiman allows
for reading data from and writing data to the SD card, and data gathered are reliably replicated
on the cloud analytics platform).
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(5) Advanced AI, which is ported from the cloud analytics platform to the developed prototype via
the Internet and used as edge analytics to identify electrical home appliances (represented as
electrical features) based on time- and frequency-domain analysis onsite and online.

Wireless communication technology such as Bluetooth [22], ZigBee [42], Wi-Fi [43,44], and 2G
General Packet Radio Services (GPRS) [45] can be conducted and developed in the architecture
in Figure 3. In this sense, the WIZNet W5100 hardwired TCP/IP embedded Ethernet shield mounted
on the Arduino MEGA 2560 MCU, the core entity of the designed and implemented smart prototype
shown in Figure 4 can be replaced with an ESP8266 ESP-01 system-on-a-chip (SoC) Wi-Fi microchip
or an ESP8266 ESP-12E Wi-Fi SoC NodeMCU [46] where advanced AI well trained offline in cloud
analytics can be autonomously and automatically deployed onsite on the NodeMCU as edge analytics
via the over-the-air programming.

The process of data science analytics comprising feature extraction and load identification
by the developed prototype considering advanced AI for DSM is shown in Figure 2. Below, feature extraction
is described. Advanced AI well trained offline in cloud analytics and autonomously and automatically
deployed onsite on the developed prototype as edge analytics is mathematically described in Section 2.2.

To enable feature extraction for load identification in DSM in this study, real power (P) [46,47],
turn-on transient power [46], and current harmonics extracted from current signals conditioned and
acquired by the CT are the electrical features identified by advanced AI. The turn-on transient power is
defined as the real power, which is consumed by an electrical appliance plugged into the developed
prototype and monitored, that transient power is captured and extracted when the appliance is turned
on (the appliance turned on will settle down). For current harmonics, the conditioned and acquired
current signals in the time domain are transformed by fast Fourier transform (FFT) [48–53] into
the frequency domain.

The FFT is an algorithm that performs a discrete Fourier transform; it is a mathematical tool
that allows signals conditioned and acquired in the time domain to be displayed in the frequency
domain, and it is widely used in signal processing. The FFT performed for feature extraction for load
identification in DSM in this study was implemented in Arduino® language [52] and run on the Arduino
MEGA 2560 MCU. In the Arduino® IDE, programmers only need to program two functions to make
an executable Arduino® sketch: setup() and loop(). The loop() function is not ideal for high-speed data
acquisition, as it runs continuously without using a timer [54]. Instead, interrupts are used to allow
predictable timing for high-speed data acquisition. In this study, interrupts triggered for high-speed
data acquisition were implemented by the FlexiTimer2 library [55]. FlexiTimer2, which is based on
MsTimer2 [56] by Javier Valencia, offers more time-spatial flexibility than MsTimer2, since it has
a configurable submillisecond timer resolution comprising the 1 millisecond timer resolution on timer2
for an Arduino® MCU’s interrupts. In an Arduino® MCU, events that trigger interrupts are internal
timer overflows. Each time there is a timer overflow, a callback routine is called and executed. In our
case, the callback routine is a function in which raw current data are read through analogRead() from
a specified analog pin of the MCU circuited with a CT (Figure 4). The MCU contains a multichannel and
10-bit analog-to-digital converter (ADC), which maps input voltages between 0 and 5 V into integer
values ranging from 0 to 1023. analogRead() reads mapped integer values from the specified analog
pin of the MCU, and they are shifted by their mean value, computed with a voltage step of ~4.88 mV,
and then transformed by FFT to feature extraction for load identification in DSM.

To enable load identification for DSM in this study, advanced AI trained offline in cloud analytics
(i.e., applied on electrical features extracted through feature extraction for onsite and online load
identification and transmitted to the cloud analytics platform for advanced AI in the architecture
shown in Figures 2 and 3) is autonomously/automatically deployed onsite on the developed smart
autonomous power meter prototype as edge analytics and used to identify electrical appliances.
Across the architecture over fog-cloud analytics, load identification for DSM in this study is performed
onsite and online.
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The cloud analytics platform that collects data transmitted from the developed smart autonomous
power meter prototype as edge analytics for advanced AI and runs advanced AI trained offline in cloud
analytics for DSM is described in Section 2.1.2.

2.1.2. Software: Open and Powerful Cloud Analytics Platform Based on ThingSpeak™
with MATLAB® Analytics

The open and powerful cloud analytics platform that collects data transmitted from the developed
smart autonomous power meter prototype as edge analytics for advanced AI and runs advanced AI
trained offline in cloud analytics for DSM is described here. As shown in Figure 3, the cloud analytics
platform as a data science analytics engine without developing custom web software for DSM is based
on ThingSpeak™ [36] with MATLAB® analytics. ThingSpeak™ is a free, open, and powerful IoT
platform that can run MATLAB® codes on demand in the cloud. Also, it offers an easy way to collect
IoT data from things for IoT application developers, analyze data, and visualize data processed
by MATLAB®, where application developers can act on their collected and processed IoT data [36].
With MATLAB® from MathWorks®, application developers have access to powerful toolboxes such
as the Signal Processing Toolbox™, Statistics and Machine Learning Toolbox™, and Neural Network
Toolbox™ for their analyzed and visualized IoT data. Figure 5 shows the workflow of the cloud
analytics platform, ThingSpeak™ with MATLAB® analytics, configured over fog-cloud analytics
for advanced AI implemented for DSM in this study, which is completed in the following three steps:

(1) Collect (historical) IoT data (electrical feature data). Electrical features are extracted from
appliances and learned by advanced AI in cloud analytics for DSM, such as load identification,
fault detection and classification, and prognostics and health management. Advanced AI well
trained in cloud analytics will be autonomously and automatically deployed on, or ported on,
onsite the developed smart autonomous power meter prototype via the Internet for on-demand
data science analytics and data visualization.

(2) Perform data science analytics in the ThingSpeak™ cloud.

(2.1) Analyze collected IoT data (electrical feature data), which are statistically inspected
and cleaned to remove noise, outliers, missing or erroneous values, and anomalies.

(2.2) Implement advanced AI applied on analyzed data for interpretable and actionable insights
(code advanced AI in a MATLAB®script), publish the coded script in the ThingSpeak™
cloud, and then schedule the published script to regularly/periodically execute
the implemented advanced AI for DSM such as load identification, fault detection
and classification, and prognostics and health management.

(3) Deploy on-demand data science analytics over fog-cloud analytics for the implemented advanced
AI onsite on the developed prototype at the edge of the Internet. Over fog-cloud analytics,
the prototype communicates with the ThingSpeak™ cloud for model updates and transmits
analyzed and classified data to the ThingSpeak™ cloud for model scheduling and updating.

Advanced AI involved in the fog-cloud analytics architecture in this study is described in Section 2.2.
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analytics, configured over fog-cloud analytics for DSM in this study.

2.2. Advanced AI: K-Means Clustering Combined with RBF-ANN Trained Offline in Cloud Analytics
and Autonomously and Automatically Deployed Onsite on the Developed Smart Autonomous Power Meter
Prototype as Edge Analytics via the Internet

A biologically inspired RBF-ANN [57] facilitated by k-means clustering [58–60] is developed and
used as advanced AI trained offline in cloud analytics and autonomously and automatically deployed
onsite on the developed smart autonomous power meter prototype as edge analytics over fog-cloud
analytics for DSM. The RBF-ANN [57], a rather simple three-layer ANN, used in this study consists
of one input layer, one hidden layer comprising artificial neurons with radial basis functions taking on
the role of nonlinear activation functions, and one output layer, as shown in Figure 6. The RBF-ANN has
conspicuous fast and high learning and generalization performance. In this study, k-means clustering,
also known as hard c-means clustering or Lloyd’s algorithm [58], is used to characterize the standard
RBF-ANN in Figure 6. K-means clustering is a data-partitioning-based clustering algorithm that
assigns data points into k clusters (centroids) across a number of variables through an iterative process.Sensors 2019, 19, x FOR PEER REVIEW 11 of 30 
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Figure 6. Standard radial basis function artificial neural network (RBF-ANN), lightweight AI.

Let = = {Xk, dk}
Q
k=1 be a training dataset containing Q input–output pairs, where Xk ∈ Rn and

dk ∈ R. The goal of training the RBF-ANN is to search for map f that takes each input Xk (k = 1, . . . , Q)
and then maps exactly it onto its desired output dk: f (Xk) = dk.
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With the purpose of mapping f (Xk) = dk to be learned through the training process
of the RBF-ANN, the RBF-ANN assumes a set of exactly q nonlinear basis functions φ(‖Xk − µi‖) whose
argument involves a Euclidean distance metric ‖Xk − µi‖. The Euclidean distance metric measures
the distance between the kth input Xk and the ith center (cluster mean) µi, where i = 1, 2, . . . , q
(= c cluster means found by k-means, or hard c-means, clustering) and µi ∈ Rn. In this study,
the radially symmetric Gaussian-style basis function is used.

Map f is then generated by taking a weighted linear superposition of q nonlinear basis functions,
as given in Equation (1):

f (X) =

q∑
i=1

wiφ(‖Xk − µi‖) (1)

where wi is the ith weight coefficient.
Map f is solved in a least squares sense, where the familiar squared error function that computes

the squared error summed over all Q data points in the training dataset is introduced in Equation (2):

ε =
1
2

Q∑
k=1

[dk −

q∑
i=1

wiφ(‖Xk − µi‖)]
2 (2)

To obtain the optimal weight coefficients in a least squares sense, we differentiate Equation (2)
with respect to wi and set it equal to zero, as shown in Equation (3):

Q∑
k=1

φki(

q∑
l=1

wlφkl) =

Q∑
k=1

dkφki (3)

By the following matrix definitions:

Φ =


φ11 . . . φ1q
φ21 . . . φ2q

...
. . .

...
φQ1 . . . φQq

, D =
[
d1, . . . , dQ

]T
, and W =

[
w1, . . . , wq

]T
, Equation (3) is recast into

a matrix form, as shown in Equation (4):

(ΦTΦ)W = ΦTD (4)

Finally, the weight vector W in Equation. (4) is solved by a singular value decomposition (SVD)
technique [57], which is used to train the RBF-ANN once the specification of the center and spread
parameters of each Gaussian basis function has been completed through the k-means clustering,
as given in Equation (5):

W = (ΦTΦ)
−1

ΦTD = Φ∗D (5)

where Φ∗, a q-by-Q matrix, is the pseudo-inverse [57,61].
From the regularization theory, where the standard error minimization problem is replaced

with minimization of a regularization risk functional [57] applied to Equation (2) with a smoothness
functional, Equation (5) becomes Equation (6):

W = (GTG + λ
∼

G)
−1

GTD = G∗D (6)
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where G denotes a Green’s function (multivariate Gaussian is a Green’s function) [57]:

G =


G(‖X1 − µ1‖) . . . G(‖X1 − µq‖)

G(‖X2 − µ1‖) . . . G(‖X2 − µq‖)
...

. . .
...

G(‖XQ − µ1‖) . . . G(‖XQ − µq‖)

;
∼

G =


G(‖µ1 − µ1‖) . . . G(‖µ1 − µq‖)

G(‖µ2 − µ1‖) . . . G(‖µ2 − µq‖)
...

. . .
...

G(‖µq − µ1‖) . . . G(‖µq − µq‖)

; and λ is

a regularization parameter that controls the trade-off between the closeness to the fitted data and
the smoothness of the regularized Tikhonov functional [57] (the Tikhonov functional, also called
a stabilizer, forces the approximation to become as smooth as possible). The pseudo-inverse G∗

in Equation (6) trends to Φ∗ in Equation (5) as λ→0 (there is no smoothness constraint; W is completely
determined by the training dataset =).

In this study, the radially symmetric Gaussian basis functions, φ(‖Xk − µi‖) = exp(− ‖Xk−µi‖
2

2σ2 ),
involving the distributed center and spread parameters partially overlapped and heuristically
determined by k-means clustering are adopted for the RBF-ANN in Equation (1) (Figure 6).
Assuming that the Gaussian basis functions are centered at

{
µi

}q
i=1 as cluster means by k-means

clustering, we define the maximum distance α between any of the chosen center parameters as
α = max

1≤i, j≤q
(‖µi − µ j‖). Then, the spread parameters σ of the centered Gaussian basis functions are

computed by Equation (7) [57]:
σ =

α√
2q

(7)

Overall, Equation (6) admits the RBF-ANN shown in Figure 6. In summary, the standard RBF-ANN
of Equation (1) characterized through k-means clustering, trained by Equation (6), and developed
in this study is involved in the following two stages and is outlined in Algorithm 1:

(1) Stage 1. Apply k-means clustering to the onsite collected training data points, to heuristically
determine the center and spread parameters of each Gaussian basis function of Equation (1).
The Gaussian-type basis function’s centers are spanned, as computed by Equation (7).
K-means clustering, which is used in this stage to characterize the RBF-ANN of Equation (1)
trained in the following stage, is summarized below:

Step 1. Suppose an onsite collected training dataset = = {Xk, dk}
Q
k=1 with Xk ∈ Rn is given. Fix c

(k-means or hard c-means clustering), where 2 ≤ c < Q. Initialize U(0)
∈Mc, where Mc = {U ∈ Vcn |

uik ∈ {0, 1}, 1 ≤ i ≤ c, 1 ≤ k ≤ Q;
∑c

i=1 uik = 1,∀k ∈ {1, 2, . . . , Q}; 0 <
∑Q

k=1 uik < Q,∀i ∈ {1, 2, . . . , c}
are true}; Vcn is the set of real c × Q matrices U = [uik] (hard c-partition space for =).
Step 2. At iteration l, where l = 0, 1, 2, . . . , compute the c-mean centers using Equation (8).
In Equation (8), [uik

(l)] = U(l) and i = 1, 2, . . . c:

V(l)
i =

∑Q
k=1 Xkuik

(l)∑Q
k=1 uik

(l)
(8)

Step 3. Update U(l) to U(l+1) = [uik
(l+1)] using Equation (9), where data points with short distances

among them should be grouped together:

uik
(l+1) =

 1 ,
0 ,

∣∣∣∣∣∣∣∣Xk −Vi
(l)

∣∣∣∣∣∣∣∣= min1≤ j≤c
(∣∣∣∣∣∣Xk −V j

(l)
∣∣∣∣∣∣)

otherwise
(9)

Step 4. Compare U(l) with U(l+1): if ||U(l+1)
− U(l)|| < ε for a prespecified small tolerance, stop;

otherwise, set l = l + 1 and go to Step 2. The cluster centers found by Equation (8) through
k-means clustering are used to heuristically determine the center and spread parameters of each
Gaussian basis functions of Equation. (1). Data points with short distances among them are
clustered together by k-means clustering and learned by an exponential of a distance measure
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between the data points and their cluster center that characterizes the Gaussian basis function
at a hidden neuron in the hidden layer of the RBF-ANN in Figure 6.

(2) Stage 2. Use the SVD technique applied to Equation (6) with the training data points collected
onsite to train the standard RBF-ANN of Equation (1) characterized in Stage 1. Once the
k-means clustering combined with RBF-ANN has been well trained in the ThingSpeakTM cloud,
it is autonomously and automatically deployed onsite on (ported on) the developed smart
autonomous power meter prototype as edge analytics via the Internet. Then, the developed
prototype is used to perform online load identification for DSM.

IoT edge devices can be hosted in devices such as industrial controllers, MCUs, switches, routers,
embedded systems or servers, and video surveillance cameras. As many such IoT devices may not
have sufficient and powerful computation resources to efficiently perform AI (data science analytics)
for real-time responsiveness and local interpretable and actionable data insights, it is necessary
to use lightweight AI deployed and run on IoT devices (lightweight AI does not require high-end
computational resources [62]). Hence, in this study, the biologically inspired RBF-ANN lightweight AI
in Equation (6) is conducted over fog-cloud analytics in the described architecture. Due to its simplicity
in the training process, the RBF-ANN has much shorter training time than a multilayer perceptron
model [63] trained by the commonly used back-propagation algorithm [62,63]. It has the merits
of (1) a simple network structure and (2) conspicuous fast and high learning and generalization
performance [23,64,65].

3. Experiments

3.1. Demo Prototype and Evaluation

In this section, the developed smart autonomous time and frequency analysis current sensor-based
power meter prototype in the edge analytics-based AIoT architecture launched with the open and
powerful ThingSpeak™ IoT platform with MATLAB® analytics as cloud analytics for DSM in a smart
grid is experimentally and practically demonstrated. Figure 7 shows the proof-of-concept demonstration
of the developed prototype. The prototype is installed for an electrical network topology and used
as a smart electrical outlet (wall socket), as shown in Figure 7a. Figure 7b shows the experimental
setup of the prototype where advanced AI well trained by Algorithm 1 in the ThingSpeak™ cloud is
autonomously and automatically deployed via the Internet, as shown in Figure 7c.

As shown in Figure 7b, we assembled hardware and software of the Arduino MEGA 2560 MCU
mounted with the Arduino W5100 Ethernet shield, which was used to: (1) acquire current signals sensed
by the CT and conditioned by the MCU; (2) extract and identify electrical features extracted through
the time- and frequency-domain analysis from the conditioned and digitized current signals and
identified by advanced AI autonomously and automatically deployed onsite; (3) transmit data (such as
electrical energy consumption and electrical features including P [46,47], turn-on transient power [46],
and current harmonics) to and retrieve data (such as trained advanced AI entries) from the ThingSpeak™
cloud via the Internet (refer to Figure 7c, showing the prototype working over fog-cloud analytics);
and (4) provide mobile push notification service to end users for DSM. In the fog-cloud analytics
architecture in this study, load identification for DSM shown in Figures 2 and 3 is performed onsite
and online. The prototype can be further developed based on analysis of daily electrical energy
consumption for DSM, to disaggregate whole-house load data into appliance-level load information
with no intrusive deployment of individual smart plugs installed for electrical appliances monitored
in a residential field of interest.

Figure 7c shows that the prototype in Figure 7a,b communicates with the ThingSpeak™ cloud via
the Internet, where they collaborate to work over fog-cloud analytics for load identification in DSM.
The ThingSpeak™ cloud configured for advanced AI is shown later.
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architecture. (a) Sketch of the prototype designed, implemented, and installed for an electrical network
topology and used as a smart electrical outlet for DSM in a smart grid. (b) Experimental setup
of the prototype experimentally and practically evaluated (the prototype developed and experimentally
tested in a laboratory environment in [23] is upgraded in this study). (c) The prototype automatically
communicates with the ThingSpeak™ cloud via the Internet (updating ThingSpeak™ channel data
with HTTP GET() or POST()). Its total controllability was shown in [23].

In the experiment demonstrated in this study, instantaneous current signals sensed and conditioned
are acquired and the electrical features, P, turn-on transient power, and current harmonics are extracted
by the prototype shown in Figure 7a,b from the acquired instantaneous current signals. According to
the Nyquist–Shannon sampling theorem, in which the sampling frequency specified to indicate how
frequently a signal one is trying to acquire is sampled per second needs to be at least twice the frequency
of the signal acquired, the sampling frequency specified in this experiment is 2 kHz (0.5 ms/sample).

Algorithm 1. The two-stage method developed for the advanced AI k-means clustering-integrated
RBF-ANN over fog-cloud analytics in this study.

• Use k-means clustering on a training dataset collected onsite, = = {Xk, dk}
Q
k=1, to heuristically determine

the center and spread parameters of each Gaussian basis function of the RBF-ANN of Equation (1).
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↬ Compute the spread parameters of the centered Gaussian basis functions of Equation (1) using 

Equation (7). 

 

 Use Equation (6) involving the SVD technique applied to the training dataset collected onsite, 

Randomly initialize the c cluster centers, where c has been specified.

l← 0

Sensors 2019, 19, x FOR PEER REVIEW 15 of 30 

 

Figure 7. Proof-of-concept demonstration of the developed smart autonomous time and frequency 

analysis current sensor-based power meter prototype as edge analytics in the launched edge 

analytics-based AIoT architecture. (a) Sketch of the prototype designed, implemented, and installed 

for an electrical network topology and used as a smart electrical outlet for DSM in a smart grid. (b) 

Experimental setup of the prototype experimentally and practically evaluated (the prototype 

developed and experimentally tested in a laboratory environment in [23] is upgraded in this study). 

(c) The prototype automatically communicates with the ThingSpeak™ cloud via the Internet 

(updating ThingSpeak™ channel data with HTTP GET() or POST()). Its total controllability was 

shown in [23]. 

Figure 7c shows that the prototype in Figure 7a,b communicates with the ThingSpeak™ cloud 

via the Internet, where they collaborate to work over fog-cloud analytics for load identification in 

DSM. The ThingSpeak™ cloud configured for advanced AI is shown later. 

In the experiment demonstrated in this study, instantaneous current signals sensed and 

conditioned are acquired and the electrical features, P, turn-on transient power, and current 

harmonics are extracted by the prototype shown in Figure 7a,b from the acquired instantaneous 

current signals.  According to the Nyquist–Shannon sampling theorem, in which the sampling 

frequency specified to indicate how frequently a signal one is trying to acquire is sampled per second 

needs to be at least twice the frequency of the signal acquired, the sampling frequency specified in 

this experiment is 2 kHz (0.5 ms/sample). 

Algorithm 1. The two-stage method developed for the advanced AI k-means clustering-integrated 

RBF-ANN over fog-cloud analytics in this study. 

 Use k-means clustering on a training dataset collected onsite, Q
kkk dX 1},{  , to heuristically 

determine the center and spread parameters of each Gaussian basis function of the RBF-ANN 

of Equation (1). 

 

↬ Require the values of the number of cluster centers c and a small constant of the tolerance ε to be 

specified. 

↬ Randomly initialize the c cluster centers, where c has been specified. 

 

l  0 

↬ Repeat  

       Compute the c cluster centers using Equation (8). 

       Update the hard c-partition space U using Equation (9). 

 

       l  l + 1 

Until  
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− U(l)|| is less than the specified small tolerance ε.
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the RBF-ANN of Equation (1) characterized by k-means clustering.
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autonomous power meter prototype as edge analytics via the Internet for online load identification in DSM.
In this study, the RBF-ANN facilitated with k-means clustering is developed over fog-cloud analytics.

This sampling frequency means analog current signals conditioned and acquired for the time-
and frequency-domain analysis are sampled 2000 times per second (i.e., sampled in a time resolution
of 1/2000th of a second); the high-speed predictable interrupts enabled by the Arduino MEGA 2560
MCU are specified through the configurable submillisecond timer resolution of the FlexiTimer2
library [55]. The specified sampling frequency limits the speed at which analog current signals from
monitored electrical appliances can be sampled.

Figure 8 shows the analog current signals conditioned and acquired by the specified MCU’s analog
pin in Figure 7a, from two electrical appliances, an electric fan (Figure 8a) and a hair dryer (Figure 8b).
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The conditioned and acquired analog current signals have an amplitude and offset such that they
almost span the complete range of 0–5 V, well suiting the MCU’s ADC properties. Figure 9 shows
the single-sided amplitude spectrums by FFT applied on the conditioned and acquired analog current
signals in Figure 8.
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Figure 8. Current signals conditioned and acquired from (a) an electric fan and (b) a hair dryer.
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Figure 9. Frequency-domain single-sided amplitude spectra: (a) fast Fourier transform (FFT) applied
for (a) electric fan in Figure 8a, and (b) hair dryer in Figure 8b. The fundamental frequency of the
conditioned, acquired, and digitized current signals transformed is 60 Hz. On average, longer signals
produce better frequency approximation. Note the logarithmic scale.
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The conditioned and acquired analog current signals from the two electrical appliances are
transformed through FFT from the time domain to the frequency domain, which shows that the current
harmonics produced by the two appliances are distinguished. FFT enables seeing which frequencies
are present and understanding which is the most dominant in analog signals conditioned, acquired,
and digitized to be transformed, which works with a finite number of samples of such signals.

In the FFT applied in this study, the Hanning window, a mathematical function expressed as
w(n) = 0.5(1 − cos(2π n

N )), 0 ≤ n ≤ N (window length L = N + 1) [53], was used for general data
analysis with a good trade-off between frequency and amplitude to mitigate the spectral leakage
(i.e., the leakage effect) by smoothing the sinusoidal signals added together with different levels
of frequency and amplitude in the time domain. Due to the 256 samples transformed through
FFT in this experiment, a total of 128 bins (shown in Figure 9) distributed over 0–1 kHz because
of the specified sampling frequency of 2 kHz were obtained; the number of bins obtained through FFT
is half the amount of samples spanning the frequency range from 0 to half the sampling frequency.
In the FFT implemented and run on the Arduino® MCU, the number of samples transformed (256
in this study) must always be a power of 2, and the specified sampling frequency (2 kHz in this study)
has to comply with the Nyquist–Shannon sampling theorem and be less than the maximum reading
rate of analogRead() (10 kHz in this study) due to the technical specification of the MCU’s ADC.

Table 2 lists the current harmonics produced by the two electrical appliances and obtained through
FFT in this experiment. As shown in Figure 9a,b, patterns and levels of amplitude (magnitude)
at certain frequencies are used as electrical features to distinguish between the two appliances analyzed
for feature extraction and used for load identification.

Table 2. Resulting current harmonics produced by two types of electrical appliances and obtained
through fast Fourier transform (FFT) in this experiment.

Electric Fan

DC Offset Fundamental
Harmonic (60 Hz)

2nd-Order
Harmonic

3rd-Order
Harmonic

4th-Order
Harmonic

5th-Order
Harmonic

0.002 0.144 0.000 0.018 0.000 0.003

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th-order
harmonic

0.000 0.001 0.001 0.001

Hair Dryer

DC Offset Fundamental
Harmonic (60 Hz)

2nd-Order
Harmonic

3rd-Order
Harmonic

4th-Order
Harmonic

5th-Order
Harmonic

0.070 1.498 0.741 0.105 0.103 0.020

6th-Order
Harmonic

7th-Order
Harmonic

8th-Order
Harmonic

9th-Order
Harmonic

0.066 0.016 0.028 0.002

Current harmonics are needed, as ambiguous electrical features in4P and4Q (reactive power) [47]
exist realistically for load identification; spectrum analysis conducted for feature extraction is suitable
to complete load identification. More representative electrical features, such as total harmonic
distortion of current signals computed from current harmonics, can be further extracted for feature
extraction, evaluated for feature selection, and used for load identification. The open and powerful
ThingSpeak™ cloud [36] configured in this study offers free cloud storage for electrical features
extracted by the smart autonomous power meter prototype from different types of monitored
electrical appliances. Table 3 summarizes the fields of two ThingSpeak™ channels, electrical energy
management and (advanced) AI, configured over fog-cloud analytics for load identification in DSM
in this study. Table 4 shows the code by which extracted electrical features are uploaded (transmitted)
to the ThingSpeak™ cloud for advanced AI, which is executed by the prototype shown in Figures 3 and 7.
Figure 10 shows electrical energy consumption identified by the prototype, where a simple web page
is provided by ThingSpeak™ to user clients for data visualization.
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Table 3. Fields of two ThingSpeak™ channels configured over fog-cloud analytics for load identification
in DSM in this study.

Channel Field Physical Meaning/Sensor

Electrical energy management

Field 1
(RMSPower 1) Real power/CT

Field 2
(Ptransient/peakPower) Turn-on transient power/CT

Field 3
(maximum magnitude up

to 9th-order current harmonics)
Current harmonics/CT

Field 4
(label) Advanced AI

AI
(RBF-ANN facilitated by k-means clustering)

Field 1
(q (= c by k-means clustering)) –

Field 2
(σ) –

Field 3
(centers by k-means clustering) –

Field 4
(centers by k-means clustering) –

Field 5
(centers by k-means clustering) –

Field 6
(centers by k-means clustering) –

Field 7
(centers by k-means clustering) –

Field 8
(W) –

1 Real power computed at each time interval, for example, 1 s.
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Table 4. Code executed by the developed smart autonomous power meter prototype and used to upload
(transmit) extracted electrical features to the ThingSpeak™ cloud for data storage to be further analyzed
in cloud analytics.

/* . . . */
. . .
String currentHarmonics = ““;
byte server[] = { 184, 106, 153, 149 }; // IP address (or api.thingspeak.com) for ThingSpeak
(https://thingspeak.com/)
String writeAPIKey = “Ex8QxxxTxxxxxx4U”; // Write API key for a ThingSpeak channel

. . .

. . .
updateThingSpeak(“field1=“ + String(RMSPower) + “&field2=“ + String(peakPower) + “&field3=“
+ currentHarmonics);

. . .

. . .
void updateThingSpeak(String tsData) { // RMSPower, peakPower (Ptransient), current harmonics,
. . . more

if (client.connect(server, 80)) {
Serial.println(F(“Connected to ThingSpeak...”));
client.print(“POST /update HTTP/1.1\n”);
client.print(“Host: api.thingspeak.com\n”);
client.print(“Connection: close\n”);
client.print(“X-THINGSPEAKAPIKEY: “+writeAPIKey+”\n”);
client.print(“Content-Type: application/x-www-form-urlencoded\n”);
client.print(“Content-Length: “);
client.print(tsData.length());
client.print(“\n\n”);
client.print(tsData);

}
. . .

}

. . .

The ThingSpeak™ cloud used and configured in this study also offers data science analytics that
provides MATLAB® analytics, and collected and stored electrical features are learned by advanced AI,
the k-means clustering integrated with RBF-ANN described in Section 2.2, implemented in MATLAB®

programming language and trained offline in cloud analytics. The k-means clustering-combined
RBF-ANN is autonomously and automatically deployed via the Internet on the developed prototype
for load identification (DSM) performed onsite and online.

Two electrical appliances, an electric fan and a hair dryer, were monitored in this experiment
by the developed prototype. Electrical features, P, turn-on transient power, and current harmonics
were extracted from the two appliances, transmitted to the ThingSpeak™ cloud for advanced AI,
and identified by the prototype once the advanced AI applied on stored electrical feature data
in the ThingSpeak™ cloud was well trained and autonomously and automatically deployed onsite
on the prototype via the Internet for on-demand data science analytics for DSM. Figure 11 shows
the MATLAB® script coded for advanced AI in this study, where the following steps were applied:

(1) Use the MATLAB® Analysis app [66,67] to read, analyze, and write data for advanced AI
(data science analytics) implemented in MATLAB® programming language and trained offline
in the ThingSpeak™ cloud.

(1.1) Read collected electrical feature data.

https://thingspeak.com/
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(1.2) Analyze collected electrical feature data accessed from the fields of the ThingSpeak™
channel, electrical energy management, where advanced AI, the RBF-ANN facilitated with
k-means clustering, is investigated, implemented, and trained on the processed electrical
feature data in the ThingSpeak™ cloud.

(1.3) Write the trained RBF-ANN facilitated with k-means clustering to the fields of the ThingSpeak™
channel, where advanced AI, the trained k-means clustering-combined RBF-ANN, is retrieved
by the developed prototype via the Internet (refer to Figure 7c) and autonomously and
automatically deployed onsite as edge analytics for on-demand data science analytics for DSM.

(2) Use the TimeControl app [66,67] to schedule the coded MATLAB® script to regularly train
advanced AI, the RBF-ANN facilitated with k-means clustering, for model updates. The advanced
AI trained and scheduled in the ThingSpeak™ cloud is remodeled under a specific date range
of collected (historical) electrical feature data learned with timestamps in a regular periodic
manner for model updates (historical electrical feature data can be weighed in chronological
order for user-centric IoT-oriented applications in DSM [8] because there are more non-working
than working hours in a week, activities of daily living by occupants related to electricity can
lead to more electrical energy wasted during non-working hours than consumed during working
hours [68–70]).

(3) Use the MATLAB® Visualization app [66,67] to visualize analyzed data (optional).
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In this study, in the k-means clustering used to initialize the RBF-ANN, the specified number
of cluster centers c was 5, the maximum number of iterations was 1500, and the (squared) Euclidean
distance metric in which data clustered together have the least Euclidean distance was adopted. A 12-5-1
network structure of the RBF-ANN was structured, and its weighting connections, W in Equation (6),
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were trained offline in the ThingSpeak™ cloud, where the number of Gaussian basis functions
of the RBF-ANN in Equation (1), q(= c), was 5. The cluster centers found through the k-means clustering
process and used to allocate the center parameters of the Gaussian basis functions of the RBF-ANN
in Equation (1) are shown in Table 5.

Table 5. Center parameters found through k-means clustering are used to characterize the RBF-ANN
of Equation (1), where electrical feature data are normalized in this experiment.

Cluster
center 1

P Turn-on
transient power DC offset Fundamental

harmonic (60 Hz)
2nd-order
harmonic

3rd-order
harmonic

0.394 0.387 0.344 0.442 0.985 0.883

4th-order
harmonic

5th-order
harmonic

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th order
harmonic

0.903 0.676 0.865 0.529 0.829 0

Cluster
center 2

P Turn-on
transient power DC offset Fundamental

harmonic (60 Hz)
2nd-order
harmonic

3rd-order
harmonic

0.997 0.984 0.684 0.990 0.022 0.152

4th-order
harmonic

5th-order
harmonic

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th-order
harmonic

0.067 0.611 0.024 1.000 0.056 0.333

Cluster
center 3

P Turn-on
transient power DC offset Fundamental

harmonic (60 Hz)
2nd-order
harmonic

3rd-order
harmonic

0.048 0.050 0.071 0.059 0 0.168

4th-order
harmonic

5th-order
harmonic

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th-order
harmonic

0 0 0 0 0 0

Cluster
center 4

P Turn-on
transient power DC offset Fundamental

harmonic (60 Hz)
2nd-order
harmonic

3rd-order
harmonic

0.391 1.000 0.474 0.437 0.970 0.818

4th-order
harmonic

5th-order
harmonic

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th-order
harmonic

0.900 0.667 0.857 0.500 0.667 0

Cluster
center 5

P Turn-on
transient power DC offset Fundamental

harmonic (60-Hz)
2nd-order
harmonic

3rd-order
harmonic

0 0 0.042 0 0 0

4th-order
harmonic

5th-order
harmonic

6th-order
harmonic

7th-order
harmonic

8th-order
harmonic

9th-order
harmonic

0 0 0 0 0 0

The spread parameter of the Gaussian basis functions of the RBF-ANN that were computed by
Equation (7) was 0.42. The input neurons of the RBF-ANN facilitated by the k-means clustering directly
convey the normalized electrical features to the neurons in the hidden layer, where its output neuron
is labeled as {0 (none), 1, 2, 3,..., N (total number of electrical appliances monitored and identified)},
normalized, and represented as a load indicator to indicate the identified electrical appliance that is
present and active.

The RBF-ANN initialized by k-means clustering was well trained by Equation (6), where λ was
0.05 in the ThingSpeak™ cloud. In this experiment, the collected training dataset, electrical features
used as input variables of the RBF-ANN, was normalized so that its range is in the interval [0, 1].
Table 6 shows the well-trained RBF-ANN, W, in this study.
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Table 6. W.

W

0.478

0.901

4.966

0.320

−4.445

The well-trained and updated advanced AI in Tables 5 and 6 was autonomously and automatically
deployed onsite on (ported on) the developed prototype via the Internet [71,72], where: (1) present time
was retrieved from the RTC chip and recognized by the prototype for autonomous AI updates,
and (2) the ThingSpeak Communication library [72] was included in the programmed Arduino sketch
in Figure 7b and used to read the newest trained advanced AI entry from the fields of the created AI channel
in the ThingSpeak™ cloud for the latest advanced AI update. The ThingSpeak Communication library
enables an Arduino MCU or compatible hardware to read data from or write data to the ThingSpeak™
cloud. The latest advanced AI update was autonomously and automatically deployed onsite on
(ported on) the prototype via the Internet as edge analytics for DSM in this study (refer to Figure 7c).
ArduinoJson [73], a C++ JavaScript® Object Notation (JSON) [74,75] library for Arduino® and IoT,
instead of the ThingSpeak Communication library, can be included in the programmed Arduino sketch
and used to parse the responded latest JSON-formatted advanced AI.

Finally, the well-trained RBF-ANN facilitated with k-means clustering (shown in Tables 5 and 6)
was autonomously and automatically deployed onsite and run on the Arduino MEGA 2560 MCU as
edge analytics for online load identification in DSM, where the programmed Arduino sketch used
43,744 bytes (17%) of the maximum program storage space of 253,952 bytes; the global variables used
5622 bytes (68%) of the maximum dynamic memory of 8192 bytes, leaving 2570 bytes for local variables.
Load identification in DSM in this study was performed by the developed prototype onsite and online.
Table 7 shows the overall load identification rate obtained in this study: 94.26% (a total of 122 data
instances are identified, and seven data instances are misidentified). An analysis of the k-means
clustering (k = 5) combined with RBF-ANN with no regularization risk functional (λ = 0) in Equation
(6) was conducted and compared with k-means clustering (k = 5) combined with RBF-ANN with
a regularization risk functional (λ = 0.05) in Equation (6), as shown in Table 7; the overall load
identification rate was improved by 5.74%.

Table 7. Overall load identification rate achieved in this study.

K-means clustering (k = 5) combined with
RBF-ANN (λ = 0.05) well trained in the cloud is
autonomously and automatically deployed as

edge analytics on the developed prototype
for onsite and online load identification in DSM

K-means clustering (k = 5)
combined with RBF-ANN

(λ = 0)

Overall load
identification rate
improvement (%)

Overall load
identification rate (%)

94.26 88.52 +5.74

Figure 12 demonstrates auto-labeling or auto-data cleaning by means of online load identification
performed onsite on the developed prototype through converged analytics (more IoT service-oriented
applications for DSM could build upon this demonstration; also refer to Figure 2). In Figure 12,
two more different types of electrical home appliances, a refrigerator and an electric water boiler, can be
monitored by the developed prototype considering more representative extracted electrical features,
where an unseen load profile by a new appliance monitored in a practical field (consumer B) can be
identified through converged analytics (leveraging consumer A to provide data insights for consumer
B) by the developed prototype as edge analytics (edge AI).
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Figure 12. Demonstration of auto-labeling or auto-data cleaning by means of online load identification
performed onsite on the developed prototype through converged analytics (as edge-to-edge connectivity).

Regarding push notification service in the fog-cloud analytics architecture in this study, a practical
paradigm of IFTTT [37] with Webhooks [38] was conducted, where an IFTTT rule with Webhooks
publishing a new trigger received or an action made was created for LINE-Notify mobile devices,
as illustrated in Figure 13. Figure 14 shows a load event message received by a LINE-Notify mobile
phone over the IFTTT paradigm with Webhooks for load identification in DSM in this study. As shown
in Figure 13, the sent LINE message was received when an appliance event, the monitored hair dryer
energized and identified in this experiment, identified by the developed prototype with well-trained
advanced AI was triggered and published by Webhooks [38].Sensors 2019, 19, x FOR PEER REVIEW 25 of 30 
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Figure 14. Load event message received by a LINE-Notify mobile phone over the IFTTT paradigm with
Webhooks. A prespecified appliance event was identified and triggered for the monitored hair dryer.

3.2. Discussion

Figure 7 shows the proof-of-concept demonstration of the developed smart autonomous time-
and frequency-domain analysis current sensor-based power meter prototype as edge analytics in an
edge analytics-based AIoT architecture launched with an open and powerful cloud analytics platform.
The prototype is based on an Arduino MEGA 2560 MCU mounted with a WIZNet W5100 hardwired
TCP/IP embedded Ethernet shield; the configured cloud analytics platform is based on ThingSpeak™
with MATLAB® analytics. Also, the k-means clustering combined with RBF-ANN, advanced AI,
is applied on electrical features, P, turn-on transient power, and current harmonics, where it is
trained offline in the ThingSpeak™ cloud and autonomously and automatically deployed onsite on
the developed prototype. Table 7 shows the overall load identification rate of 94.26% achieved and
improved by 5.74% in that the regularization risk functional (λ = 0.05) is considered by k-means
clustering combined with RBF-ANN (k = 5). Different types of electrical home appliances can be
monitored by the developed prototype, as seen in Figures 2 and 12. More IoT service-oriented
applications for DSM in a smart grid could be based on it. A digital signal processing (DSP)
MCU-versioned powerful smart autonomous power meter prototype can be conducted alternatively
and developed with the functionalities of the developed prototype in the described architecture over
fog-cloud analytics in this study, which is given in Figure 15. In Figure 15, a Texas Instruments (TI)™
DSP MCU integrates (1) a TI™MSP430 MCU as an e-meter for current and voltage measurements with
(2) an IoT SoC/TITM Internet-on-a-chip Wi-Fi MCU as a portfolio of cloud integration with Internet
connectivity (the REST API).
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4. Conclusions and Future Work

A smart grid is an innovative electrical energy network with two-way communication that can
improve the reliability and flexibility of conventional power grids based on DSM. Fog-cloud analytics is
extremely important to reduce network latency, conserve network bandwidth (throughput), and enable
innovative AIoT applications. DSM, an essential part of a smart grid, enhances the efficiency, reliability,
and flexibility of a traditional power grid upgraded to meet continuously increasing electrical energy
demands by consumers. In this study, we designed and implemented a smart autonomous time-
and frequency-domain analysis current sensor-based power meter prototype as edge analytics in an
edge analytics-based AIoT architecture launched with an open and powerful cloud analytics platform
for DSM in a smart grid. The prototype is based on an Arduino MEGA 2560 MCU mounted with
a WIZNet W5100 hardwired TCP/IP embedded Ethernet shield; the cloud analytics platform is based
on ThingSpeak™ with MATLAB® analytics. Also, advanced AI, the k-means clustering combined
with RBF-ANN presented in this study, is: (1) applied on electrical features, P, turn-on transient
power, and current harmonics; (2) trained offline in the ThingSpeak™ cloud; and (3) autonomously
and automatically deployed onsite on the developed prototype. As demonstrated and reported
in this study, an overall load identification rate of 94.26%, where the regularization risk functional is
considered, is achieved for auto-labeling or auto-data cleaning by means of online load identification
performed onsite on the developed prototype through converged analytics. More IoT service-oriented
applications for DSM could build upon it. The prototype designed and implemented to collaborate
with the configured ThingSpeak™ cloud over fog-cloud analytics for DSM in this study is feasible
and workable.

An ensemble-based AI model such as multi-label classification based on random forest
algorithms [76] will be developed and evaluated in the future, as various AI algorithms are effective
approaches that can be used for load classification and long short-term load prediction in electrical
energy management [77,78]. In the future, the developed smart autonomous power meter prototype
in this study will be investigated for prognostics and health management in industry 4.0, where the
availability and efficiency of equipment monitored by the prototype further investigated will be
assessed. Electric energy consumption data from all consumers accumulate as Big Data (which is
very computationally intense) in a power utility’s cloud server, which will also be investigated and
addressed through modern graphics processing unit technology.
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