ﬂ SCNSors m\py

Article

A Role-Based Access Control Model in Modbus
SCADA Systems. A Centralized Model Approach

1,2,%

Santiago Figueroa-Lorenzo ,Javier Afiorga 1'2(0 and Saioa Arrizabalaga /2

1 Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastian, Spain; jabenito@ceit.es (J.A.B.);
sarrizabalaga@ceit.es (S.A.)

Universidad de Navarra, Tecnun, Manuel Lardizabal 13, 20018 Donostia/San Sebastidn, Spain
* Correspondence: sfigueroa@ceit.es; Tel.: +34-943-213076 (ext. 2910)

check for
Received: 15 August 2019; Accepted: 11 October 2019; Published: 14 October 2019 updates

Abstract: Industrial Control Systems (ICS) and Supervisory Control systems and Data Acquisition
(SCADA) networks implement industrial communication protocols to enable their operations.
Modbus is an application protocol that allows communication between millions of automation devices.
Unfortunately, Modbus lacks basic security mechanisms, and this leads to multiple vulnerabilities,
due to both design and implementation. This issue enables certain types of attacks, for example,
man in the middle attacks, eavesdropping attacks, and replay attack. The exploitation of such
flaws may greatly influence companies and the general population, especially for attacks targeting
critical infrastructural assets, such as power plants, water distribution and railway transportation
systems. In order to provide security mechanisms to the protocol, the Modbus organization released
security specifications, which provide robust protection through the blending of Transport Layer
Security (TLS) with the traditional Modbus protocol. TLS will encapsulate Modbus packets to
provide both authentication and message-integrity protection. The security features leverage X.509v3
digital certificates for authentication of the server and client. From the security specifications, this
study addresses the security problems of the Modbus protocol, proposing a new secure version of a
role-based access control model (RBAC), in order to authorize both the client on the server, as well as
the Modbus frame. This model is divided into an authorization process via roles, which is inserted as
an arbitrary extension in the certificate X.509v3 and the message authorization via unit id, a unique
identifier used to authorize the Modbus frame. Our proposal is evaluated through two approaches:
A security analysis and a performance analysis. The security analysis involves verifying the protocol’s
resistance to different types of attacks, as well as that certain pillars of cybersecurity, such as integrity
and confidentiality, are not compromised. Finally, our performance analysis involves deploying our
design over a testnet built on GNS3. This testnet has been designed based on an industrial security
standard, such as IEC-62443, which divides the industrial network into levels. Then both the client
and the server are deployed over this network in order to verify the feasibility of the proposal. For
this purpose, different latencies measurements in industrial environments are used as a benchmark,
which are matched against the latencies in our proposal for different cipher suites.

Keywords: Modbus; RBAC; access control; authentication; authorization; IIoT; operational
technologies (OT)

1. Introduction

Modbus is an application layer message exchange protocol, which provides client-server
communication between devices connected on different sorts of buses or networks [1]. Modbus
has been known as industry’s serial de facto standard since 1979 and keeps on enabling millions of
automation devices to communicate [2]. The Internet community can access Modbus at a reserved

Sensors 2019, 19, 4455; d0i:10.3390/s19204455 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5687-1927
https://orcid.org/0000-0003-3799-1410
http://dx.doi.org/10.3390/s19204455
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/20/4455?type=check_update&version=2

Sensors 2019, 19, 4455 2 o0f 24

system port 502 on the TCP/IP stack. Modbus is a request/reply protocol, and offers services specified
by function codes. The Modbus protocol allows an easy communication within all types of network
architectures. Every type of device (PLC, HMI, Control Panel, Driver, Motion control, I/O Device, and
so on) can use the Modbus protocol to initiate a remote operation [2].

The Figure 1 allows identifying action fields of Modbus based on the ISA 95 model and related
standards. The Modbus protocol is part of the first two levels of this layered model. However, Modbus
TCP/IP is mostly used in the data sharing between the field device level (e.g., PLC, CAN J1939 to
the Modbus Gateway) and the SCADA system level. Although Modbus TCP/IP as a protocol could
support communication between field devices via TCP, i.e., between sensors, actuators and PLCs, at
this point there is an additional requirement: The behavior as a real-time system (RTS). Real-Time
support is a requirement mainly for devices at the field level (e.g., sensors and actuators).

| STANDARDS || 1sa95 moDEL |

Femmmmmmm———————————— -
1 1SO 15704, 1SO 19440, 1SO 20140

I
|

| PMMN, PMML, DMN, B2MML ! Enterprise Level
|

| IEC 62541, IEC 62837

| IEC 62264 (ISA 95)
1150 22400
| OAGIS, PMML, DMIS, QIF

MOM Level
(MOM/MES)

| IEC 62541 (OPC UA) :
: IEC 61512 (ISA88) : SCADA Level Non-deterministic area that supports changing latencies (e.g. 2ms,
1 Modbus ' (HMI/DCS) 100ms and so on), so it uses TCP/IP.

1

v
| BatchML, PackML s
Lo o o = - - ———— 1 o

<
---------------------- 7
| MT Connect 2 Includes a control level that handles facturing processes directly,
: IEC 61158 (EtherCAT, PROFINET) 8 so it maintains communication with the process level, but also
: |EC 61784 ! S | | interfaces with the supervision area (Scada Level).

| Modbus/PROFIBUS, PROFlenergy (Field/loT Devices)

:IEC 62591/HART, IEC 62541 (FDI) Presents a process level which is deterministic (e.g. 2ms latency

H continuously) so standards such as PROFIBUS or PPROFINET are needed.

|

|

1

| .

" Device Level
|

1

|

|

Figure 1. Action fields of Modbus based on the ISA 95 model and related standards [3,4].

In an RTS, if the time constraints are not fulfilled, it can be said that the system has failed. As we
have defined, the Modbus protocol TCP/IP implementation is in the application layer, therefore, taking
into account the buffering problem, and given that the frames are queued FIFO (First Input First
Output), unless a priority setting mechanism is used, as implemented by PROFINET RT, the process is
not deterministic, and therefore is prone to introduce delay. In order to contextualize our work, Figure 2
shows an example of Modbus Network Architecture, where Modbus TCP/IP is not on the field device
level, such as Modbus RTU (serial communication over RS-232, RS-485 and RS-422) or Modbus HDLC
(MB+). Therefore, Modbus TCP/IP is suitable to enable the communication, for example, between
two gateways, an HMI with a PLC, a gateway with a HMI, or an Input/output (I/O) device without
RTS requirements.

Sensors 2019, 19, 4455 3of24

Driver PLC HMI 1/0 1/0 PLC

¥Modbus on TCP/IP Modbus on TCP/IP

Gateway Gateway Gateway

PLC PLC
HMI HMI
1/0 I/0

Device

Modbus on MB+

Modbus on RS232
Modbus on RS485

Figure 2. Example of Modbus Network Architecture [2].

Therefore, our work focuses on level two in Figure 1 The high usability of the Modbus protocol at
this level, in both Operational Technologies (OT) environments and within industry 4.0 or the Industrial
Internet of Things (IIoT), (due to its ability to integrate into industrial processes such as process
automation, industrial automation, building automation, power system automation and automatic
meter reading), makes the security the main concern of the Modbus protocol. In that sense, we can
affirm that the Modbus TCP/IP security problem has its focus on the protocol design. Modbus RTU was
scaled to Modbus TCP/IP because the controllers could manage the bandwidth more efficiently, where
a client (e.g., a SCADA) could support the connection with multiple servers; however, the Modbus
frame TCP/IP was scaled without considering security.

The Figure 3 helps to understand the statement. As is shown, by default, Modbus PDU includes
the Function Code field and Data payload. This function code indicates to the server which kind of
action to perform. All function codes are found in the specifications [2]. When the Modbus TCP/IP
frame was defined, only the Slave ID field was changed to an Application Protocol (MBAP) header,
and the check error field was removed. MBAP contains only seven bytes [2]. Therefore, the frame
does not include any mechanism to provide authentication or access control. In addition, the default
Modbus specification [2] does not include a mechanism to provide integrity or confidentiality, using,
for instance, end-to-end encryption. Therefore, if we adopt the criteria shown in [5], where it is
established that design vulnerabilities are inherent to a protocol specification, present even in perfect
implementations, we can confirm that Modbus security problems are related to the protocol design.

Sensors 2019, 19, 4455 4 of 24

ADU (Modbus TCP: 260 bytes / Modbus RTU: 256 bytes)

| >
!

PDU (253 bytes)

Modbus Additional Function Error

General Frame address Code Data check

: Slave | Function

Modbus RTU :

odbus | D Code Data CRC

Function

Modbus TCP MBAP Data
Code
MBAP Header (7 bytes)

v/

i
4

Transaction | Protocol

D D Length | UnitID

Figure 3. The Modbus frame [2].

However, until a few years ago it was not a problem, since industrial networks (traditional OT)
were isolated. Now, it is the age of new factory (the industry 4.0) floor platforms, new technologies
such as OPC-UA ([6] enhances the value of OPC-UA for industry 4.0), new paradigms, such as the
Internet of Things (IoT) or IloT, and the integration between IT and OT environments. Security is no
longer a privilege, it is a necessity, and therefore mandatory.

Despite this, several vulnerabilities are found in devices that support the Modbus protocol,
which are classified into vulnerabilities by protocol implementation (i.e., exploitation on a specific
device because of, e.g., firmware error) or by protocol design (i.e., exploitation on any device using
the protocol).

For instance, in the CVE-2017-6819 vulnerability, during the communication between the operator
and the PLC through the Modbus 0x5A function, it is possible for an attacker to send specially-crafted
packets to consume the PLC resources, and hence freeze it. The product affected was the Modicon
M340 PLC. The next reference details the Schneider Electric Report [7].

In addition, at the Defconf security conference in 2018, a study was presented where an injection
attack was made upon three types of PLC (one Modicon, another Allen-Bradley and the third based
on an open source PLC, known as OpenPLC [8]) which supported the Modbus protocol. To perform
the injection attack, the same crafted frame was sent to each of the PLC, causing the same result:
Denial-of-Service (DoS) [9].

In order to include security mechanisms to the protocol, in October 2018 the Modbus organization
released security specifications [10], which provide robust protection through the blending of Transport
Layer Security (TLS) [11] with the traditional Modbus protocol. TLS will encapsulate Modbus packets
to provide both authentication and message-integrity protection. The security features leverage
X.509v3 digital certificates for the authentication of both the server and the client. The protocol also
supports the transmission of role-based access control (RBAC) information using an X.509v3 extension
to authorize the request of the client.

Although the implementation of the system provides protocol security, authorized voices in the
automation world argue that instead of securing Modbus, organizations should invest in technology
to deploy a protocol that provides security by design, such as OPC-UA [12]. However, considering
the number of devices supporting Modbus on the network, the option of providing security to the
protocol is a solution that many organizations will adopt.

Sensors 2019, 19, 4455 50f 24

Although the specifications are a guideline to provide security for the Modbus protocol, they
have a general approach to implementation, leading to new proposals. For this reason the objective
of our work is to improve the security of the Modbus protocol, based on the recommendations [10],
i.e., our proposal is a way to contextualize the specifications [10] and to demonstrate the viability
of it through both a security and a performance analysis. Within the implementation process, we
introduce on the one hand the way in which the implementation is carried out, [, the authorization
process, and on the other hand, the message authorization of the Modbus frame. Both points are
not detailed in the specifications. To this end, this study proposes a role-based access control model
(RBAC), which allows the server (e.g., PLC) to authorize a client (e.g., SCADA system) and that once
this process has been carried out, and the Modbus frames flow through a secure channel, i.e., they
are encrypted, they are also authorized. Since by default, TLS provides authentication of the server
and client. Therefore, we are talking about an Authentication and Authorization (AA) model for the
Modbus protocol. The authorization process is via a role-based access control. The roles are included
as an arbitrary extension in the X.509v3 certificate and validated through a query from the server
to a secure database, which has been populated by the client, e.g., the organization that own the
SCADA, via an out-of-band (OOB) mechanism such as a secure web form. The authorization process
takes place within the handshake phase of establishing a TLS connection, more precisely when the
server receives the certificate from the client. Therefore, once this phase is over, any client-server
communication will be secure, i.e., encrypted. At this point, the Modbus frame is also authorized,
because the Modbus TPC frame contains a unique identifier (unit id) as part of its header, and also
since this is transmitted in a secure way. So it can be used to authorize the frame, validated also via
a query from the server to the secure database (the same used in the entity authorization process).
In order to demonstrate the viability of our proposal, we provide both a security and performance
analysis. The security analysis demonstrates the resistance of the proposal to different kinds of attacks.
The performance analysis examines the latency behavior, not only for the cipher suites established
by the security specifications ([10]), but also for others that involve a more complex processing and
consequently higher latency measures. The remainder of the manuscript consists of related work
in order to provide security to Modbus, followed by our implementation proposal. In addition, the
corresponding security analysis is carried out. To evaluate our proposal, we will deploy our model
on a GNS3 (Graphical Network Simulator-3) network built under the IEC-62443 standard that will
allow traffic capture in a controlled environment. This represents our performance analysis. Finally,
we provide the results obtained, the conclusions and the future research lines.

2. Related Work

Several efforts have been made to provide security to the Modbus protocol. In order to establish a
balance around the analyzed proposals, they are divided between offensive security proposals and
defensive security proposals.

On the offensive security side, the first works analyzed was the reference [13]. It presents a
formal model for evaluating the security of the Modbus protocol based on a formal demonstration of
the existence of man-in-the-middle (MiTM) attacks in Modbus-based systems. An additional work
analyzed is the reference [14] which adopts a penetration testing approach using a penetration-testing
tool based on Intrusion Detection Systems (IDS) to examine the insider threat, as well as the external
threat through internal and external penetration testing, respectively. The work presented by the
reference [15] involves an automated tool to generate malicious SCADA Modbus traffic to be used to
evaluate such systems. Additionally, the work [16], demonstrates the attacks to the authentication
protocol initially presented by [17]. A deep analysis of the Modbus protocol specification in order
to distinguish the possible attacks was presented by [18]. The same work ([18]) identifies several
taxonomies, divided into the serial transmission mode and Modbus TCP/IP protocol. All of them
consider the existence of a Modbus sniffer or a packet injector.

Sensors 2019, 19, 4455 6 of 24

Other work analyzed was the reference [19]. It investigates the impact of malware attacks on
Modbus-based SCADA networks, such as Code Red, Nimda, Slammer and Scalper. The authors also
developed specialized malware to attack Modbus TCP/IP devices. One of them performs DoS attacks
to the SCADA system by injecting valid but malicious Modbus packages, consuming bandwidth
without alarming a possible IDS system that monitors the network.

On the defensive security side, i.e., mechanisms for detecting and preventing attacks, we have
also been able to find numerous works. For instance, the article [20], proposes a special smart fuzzing
technology for Modbus TCP/IP which satisfies the requirement of the vulnerability detection for
Modbus TCP/IP. In addition, an abnormal traffic detection mechanism by tracing Modbus TCP/IP
transactions is proposed by [21]. The proposed method ([21]) enables a response immediate and
fast, not only to Denial-of-Service (DoS) attacks, but also to various types of malfunctions, such as
routing loops, misconfigured devices and human mistakes. In addition, an authentication model,
based upon the one-way property of cryptographic hash functions is proposed by [17]. Additionally,
the article [22], investigates unauthorized, malicious and suspicious SCADA Modbus activities by
leveraging the Darknet address space in order to establish attack prevention models. A solution based
on SCTP (Stream Control Transmission Protocol) and HMAC (Hash-based Message Authentication
Code) named ModbusSec, is presented by the reference [23]. The SCTP is a transport layer protocol
that provides a reliable message-oriented communication channel, with features such as congestion
control and multi-homing. A new secure version based on the TLS protocol which addresses some
security problems of the Modbus is proposed by [24]. The experimental results show that it is feasible
to implement TLS by using it as a benchmark of power grid applications. Finally, the work addressed
by the reference [25] is the only precedent of a role-based access control (RBAC) system for Modbus.
Additionally, this reference performs a detailed review of the root causes of vulnerabilities in industrial
environments. The access control is done on the client side, since they developed a security-hardened
architecture for delivering enhanced security for SCADA remote terminal (RTU) devices, i.e., not
focused on Modbus TCP. However, it is an interesting proposal, because in addition to presenting the
access control approach, they protect the frames cryptographically and check for the existence of a
CRC, even though, it does not check for a valid CRC.

From the related work, we can conclude on the one hand that there is evidence of several efforts
made, both offensive and defensive security, in order to provide security to the Modbus protocol in
the TCP/IP version. In particular, there are two works closely related to our approach, [24], which
proposes an implementation of TLS for Modbus TCP/IP, and [25], which proposes an RBAC model
for Modbus RTU. However, these two schemes, and in general the rest of the efforts, are outside the
context of the specification [10], which is the starting point of our proposal. On the other hand, we can
affirm that our proposal presents novelty, because from the recommendations and guidelines provided
by the specification [10], we propose a scheme that includes the following points. First, follows the
recommendations of the specification, since it provides the implementation of an RBAC model, over a
centralized system, which uses the X.509v3 certificate, for the server to authorize the client, i.e., the role
of the client. All of the above procedure is performed within the framework of the TLSv1.3 handshake
between the client and the server, which is not a condition established in the specification. Secondly,
since the communication channel between the client and the server is protected after the handshake
phase ends, i.e., encrypted, we perform the Modbus frame authorization from a unique identifier (unit
id) found in the MBAP frame header (Figure 3). The second point of the proposal is not also addressed
in the specification [10]. In order to demonstrate the viability of our proposal, our analysis includes
two stages: Security analysis and performance analysis. The security analysis examines the resistance
of the proposal to different kinds of attacks, such as eavesdropping, replay, forgery, and so on. The
performance analysis verifies the implementation of the proposal, based on concrete and objective
variables, which is measured with respect to changing conditions. These results are compared with
established or adopted references. For our proposal, the variable is the latency; the changing conditions
are the cypher suites, which, on one hand are defined by the specifications [10], and on the other hand,

Sensors 2019, 19, 4455 7 of 24

we propose to use other cipher suites which are more complex in terms of operations processing, i.e.,
resource consumption and the benchmarking are latencies and jitter of some industrial services.

3. Proposal of An RBAC Model on A Centralized Architecture

Our proposal consists of a Role-based Access Control (RBAC) model, which is based on a
centralized architecture. Figure 4 shows the general architecture of the proposal. The general
architecture of the proposal is formed by five sub-systems: The client, the MBAPS handler, the MBAP
handler, the AC module and the Roles Database. It should be noted that the server is composed of
three of the five sub-systems: The MBAPS handler, the MBAP handler and the AC module. MBAPS is
the acronym for Modbus Application Protocol Secure. Below is a breakdown of how each of these
entities interact as part of our proposal. The clients are sub-systems that send the connection request,
e.g., a SCADA. Each client must store an X.509v3 certificate. The extension RoleSpecCertldentifier has
been added (Figure 4) to this certificate. We associate the OID ("1.3.6.1.4.50316.802.1") provided by the
Modbus organization on the security specifications [10]. Additionally, our extension contains three
fields. These fields are: roleName (e.g., operator), roleCertIssuer (e.g., client), roleCertSerialNumber
(where we will store the Unit ID field). More details about the X.509v3 certificates can be found in the
ITU recommendations [26]. The MBAPS is the entity or sub-system responsible for establishing the
secure connection with the client, i.e., it is the entity that receives the client’s secure connection request,
authenticates the client via certified, as part of the mutual-authentication process of TLS; hence, it also
needs direct communication with the AC module (Figure 4). Once the secure connection has been
established and the frame has been authorized, the MBAPS handler interacts with the MBAP handler
to which it sends the Modbus frame. Therefore, this module participates in both the authorization
and authentication processes. The AC module is in charge of executing the policies found performing
the corresponding verifications in the role database (Figure 4). The trigger to perform its functions is
received from the MBAPS handler module, so in addition to the role database, the AC Module only
interacts with this entity (MBAPS Handler).

Certx.500v3 [“~=-__ SERVER 00B
Role, Unit ID ok o 2 Senqg [ITTTTmToTmmeooTooTToToTooooooees
ety Secyragrie~ <
Client 1 . ure(MBAP;f’DD)‘~~— | Cert Request Query
s o égl;-{ﬂeceiv req M1 x.509v3 AL A, AC \Unit ID, Role
e(MBap: s~ _ - i
00~ | MBAPS Response Module
NPy Handler A iy
?e‘zé\il\%P 3 : Request Resplonse
.- $ecé\\!e ro’\)\ws PHU PDHU Role
PRrac 2o
e S
Cert x.509v3 RCC\ Database
Role, Unit ID e ‘ MB:: P T i
Client n - Handler ’
Coils Inputs Tnput Holding
Registers Registers
MODBUS MEMORY AREA

Figure 4. Role-based access control model (RBAC) based on centralized architecture.

The role database is a very simple entity whose interaction is based on one side with an out-of-band
(OOB) mechanism through which the client populates the database before the connection request,
and on the other side, with the AC module, which queries the stored data. This data enables one to
perform access control policies (Figure 4). The MBAP handler module is the entity that communicates
directly with the Modbus Memory Area (Figure 4) and for this, it must receive the Modbus frames
from the MBAPS handler. Once the frames have been received, this module separates them according
to their function code.

These entities interact as part of the RBAC model, which is composed of two authorization phases.
The first uses the role extension of the client’s certificate to authorize it within the TLS handshake

Sensors 2019, 19, 4455 8 of 24

stage, and the second authorization phase enables each of the Modbus frames based on the unit_id.
Additionally, as part of the TLS handshake, it executes an authentication process of the client and
server entities.

Therefore, the next section analyzes both the authorization and authentication phases as part of
the handshake. In addition, the Section 3.2 analyzes the second authorization phase.

3.1. Authentication Phase via TLS and Entity Authorization Phase via Role on X.509v3 Certificate

As Figure 5 illustrates, the first step in the process is to populate the Role Database. We assume
that there is an OOB mechanism (e.g., via a secure web form). The interaction of the role database
with the OOB system is shown in Figure 4. Through this system, the client will be able to insert the
Role that they will have in the server, as well as Unit ID that the Modbus frames will have in their
header. The client then sends a request to establish a secure connection to the server. Until step 8
in Figure 5 a normal handshake, this process is performed between a client and a server as part of a
TLS implementation. However, this normal handshake includes an important feature of TLS, the first
step of the mutual authentication, i.e., the server authentication through the verification of the server
certificate (step 5). In step 9, the client adds an extension with the corresponding role to its certificate,
as mentioned in the previous section, before sharing it with the server. All of this as part of the TLS
session management.

IMBAPSHandIer| I AC Module I I Role Databasel | MBAP Handler I

\ ::1: E Populate_Role_DB
|

121 Client_Hello()

1 3:5 Server_Hello()

41 Server_Certificate()

-y '
i 151 Verify_Server_Cert_Sig(): Server Authentication

'_6:2 Server_Key_Exchange()

[7:5 Certificate_Request()

i
H
'_8:5 Server_Hello_Done() E

91 Generate Cert extension
-1 RoleSpecCertldentifier

710

Client_Certificate()

i) 117 Verify_Client_Cert._sig(): Client Authentidation
' =P ! H

o 1_2_5 Extract_ Cert_R?J/e()

TLS Handshake

{13} Client_Key_Exchange() |

_‘: Change_Cipher_Spec()

:::1:5: E Finished()

Client Authorization RBAC

[__123_5 Change_Cipher_Spec() / Exception Error()

i-}z_i Finished() / C/osed_connectfon(}

E:ZZZ:E Exec_Authorization_Method

Modbus Frame
Authorization

‘: Authorization Response (AuthZ frame / No AuthZ frame)

ception Error message i PDU_Req(Functign__code)

T

1Server
24.A2 1 VA

Fommmmn

1 24.A4 | MBAPS(MBAF, PDU)Res

Modbus Frame
Or Exception Error

1
'
'
'
'
v

v v
'
'
'
'
'
'
'
'
'

| MBAPS Handler l I AC Module | I Role D;tabase | l Server Data store |

Figure 5. Sequence Diagram of Modbus Transport Layer Security (TLS) handshake and RBAC
client authorization.

Sensors 2019, 19, 4455 9 of 24

Once, the MBAPS handler has received the X.509v3 certificate (step 10), it verifies the certified
(step 11). This process is the second step of the mutual authentication process, i.e., client authentication
(step 11). In addition, the server extracts from it the role; sends it to the AC module, which queries the
Roles Database and executes the RBAC policy (step 12 A-step 12 D). This RBAC policy validates that
the role stored in the database coincides with the one included in the certificate. Without knowing if
their role will be authorized, the client sends relevant information to the server (steps 13-15). These
steps are also common within the TLS session generation process. Until the server receives the
“Finished” message from the client (step 15), the MBAPS handler will retain the authorization or
non-authorization response received from the AC Module. If the role is authorized, the MBAPS handler
sends the messages to confirm the cipher specifications and finishes, which steps are also regular in the
generation of a TLS session. If the role has not been authorized, the handshake phase ends when the
MBAPS handler sends an exception error message to the client and closes the connection.

3.2. Message Authorization Phase

Once the authorization phase between client and server is over, frames can be exchanged securely,
using symmetric encryption. These frames will contain the traditional Modbus frames (MBAP + PDU
(Figure 3)). In the Figure 5, when the MBAPS Handler receives the frame request (MBAP + PDU)
(step 18), it extracts the unit_id from the MBAP header and sends it to the AC module (step 19), which
queries the Role Database (steps 20-21) and executes the authorization method. The authorization
method validates that the unit_id stored in the database matches with the one included in the MBAP
header field (step 22). Then the AC module responds by authorizing (or not) the frame (step 23), from
which MBAPS handler sends an exception, error message to the client (step 24.B1) or sends the frame
to the MBAP handler (step 24.A1) that processes the frame from the function code and interacts with
the four areas of the Modbus Memory Area (MMA). The Figure 4 shows the four areas of the MMA.

4. Implementation Phase

From the sequence diagram of the Figure 5, in the Figure 6 we divided into logical actions these
design phases in order to simplify the implementation phase. There are three challenges at this point:
(1) Select the base library (core library) on which to implement, (2) analyze the mechanism to implement
encryption and to enable other security features and (3) analyze the cipher suites to implement.

Our Zenodo reference contains the implementation details that include the Role Database, the
arbitrary extension configuration file and the video demonstration [27].

4.1. Selection of the Core Library

In order to accomplish our implementation we used the open source library, supported by the
Community pymodbus [28]. Although as part of the evaluation phase is shown through performance
analysis details of latencies between client and server, without any encryption, i.e., using the unmodified
pymodbus library, at this point we can mention that these measurements of latencies was the first
criterion used for the selection of the library (see column TCP of both tables of Section 6.1). The second
criterion considered was the language in which it was written: Python; and in third place was analyzed
the broad community that has pymodbus, hence, the troubleshooting is simplest.

Sensors 2019, 19, 4455 10 of 24

Server Side

A
‘ Start TLS handshake ‘

l

‘ Extract the role of the client certificate X.509v3 ‘

l

‘ Query to Role DB (Role) ‘

l

’ Policy RBAC Execution (Check Role) ‘

I

I Client Authorized I

l

I Finish TLS handshake l

I

A
i I Secure MBAPS frame request l

|

l Extract Unit ID of the MBAP frame l

l

I Query to Role DB (Unit ID) l

!

’ Authorization Method Execution (Check Unit ID) ‘

l

‘ Modbus Frame Authorization l

l

‘ MBAP frame PDU Request ‘

l

‘ MBAP frame PDU Response I

I

‘ Secure MBAPS frame request l

Asymmetric encryption

Symmetric encryption

v t;

Figure 6. Step-by-step, successful server-side; the two-authorization process.

4.2. Mechanism to Implement the Encription and Other Security Requirements

Once the core library was selected, we proceeded to implement each of the steps shown in Figure 6,
where we show the followed server-side procedure. In order to generate the handshake session a TLS
socket was used. Over this socket, the client sends the certificate with the added role extension. Next,
the role of the client’s certificate is extracted, the database is queried to recover the associated role to
the specific OID, the policy is executed, i.e., it is checked that the role stored in the database, as well as
the extracted role from the client certificate, do in fact match, determining the client’s authorization. At
this point, the handshake stage and the asymmetric encryption stage are completed.

Therefore, when a Modbus frame is received, the ID unit is extracted from the header, the database
is queried again, and the authorization method is executed, i.e., the unit id associated with the OID
of the certificate of the client is verified to match with the frame. Finally, the frame authorization
is determined, allowing the core library to perform the function code over the Modbus Memory
Area (MMA).

Next we detail the three most important points during the implementation stage: (1) The library
used to generate the TLS socket, (2) the certificate generation process and (3) the database where the
roles are stored.

The implementation of TLS was based on the recommendations provided by Python Software
Foundation (PSF) from the wrap_socket handler [29]. This module provides access to TLS (a.k.a.,
“Secure Sockets Layer”) encryption and peer authentication facilities for network sockets, both
client-side and server-side. This module uses the OpenSSL library. This library supports the use of
TLSv1.3, and the management of X.509v3 certificates, where both are essential requirements in our

Sensors 2019, 19, 4455 11 of 24

implementation. Another advantage of the library is that it presents the SSLContext.set_ciphers()
method, which enables the efficient management of the cipher suites to be selected. The SSL module
disables certain weak ciphers by default, but it is possible to restrict the choice of ciphers even further.
The following subsection analyzes the used encryption suites.

In order to generate an arbitrary extension, i.e., an extension with a custom OID, a configuration
file (openssl.conf) is previously generated, and it is loaded in the command line to generate the
certificate. The expression (1) shows the command used to generate the certificate with the added
extension. This extension is contained in the openssl.conf configuration file. For more detail, our
Zenodo reference contains these implementation details.

Finally, the Role DB database has been implemented using SQLite database. For instance,
expression (2) is the simple instruction used to create the Table over our “RoleDB.db” to perform the
proof of concept (PoC). It is composed of a table with the attributes: Role, oid, and unit_id, which
are gotten from the same client, and are used to authorize the client and to authorize the Modbus
frame, respectively.

openssl req -newkey rsa:2048 -nodes -keyout {0} -extensions RoleSpecCertldentifier-out {1}

1
-subj “/C=NA/ST=NA/L=NA/O=0T/CN={2}/description={3}" -config ./openssl.cnf, M

CREATE TABLE roleTable (ID INTEGER PRIMARY KEY, unit_id INTEGER, role text, oid STRING), (2)

4.3. Cipher Suites to Implement

The specifications [10] set the lowest boundary of the cipher suites to be used, in terms of resource
consumption due to processing, while maintaining minimum security levels. However, as cipher suites
will be used as a resource in our evaluation phase for performance analysis, we have decided to perform
an analysis of other cipher suites and to establish a comparative analysis with respect to those defined
by the specification [10]. The cipher suite represents which cryptographic algorithms and methods
should be used, and it is defined by [30]. Currently, there are 339 suites officially supported, that
target different applications and security levels. The cipher suite name contains the key exchange, the
authentication method, the key exchange algorithm and the symmetric algorithm for an authenticated
encryption of application data transfer between entities.

For instance, TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA (0xC004) states that the
Elliptic-curve Diffie-Hellman (ECDH) will be used as key exchange, while Elliptic Curve Digital
Signature Algorithm (ECDSA) will be used as digital signature, and AES_CBC_SHA will be used
to construct the symmetric authenticated encryption (Advanced Encryption Standard (AES, a.k.a.
Rijndael) with Cipher Block Chaining (CBC) mode for encryption and HMAC with SHA for the
construction of the Message Authentication Code). Table 1 sets the encryption suites recommended by
the specifications [10] and Table 2 sets the cipher suites that are additionally sampled.

Table 1. Cipher suites defined by the specification [10].

Cipher Mode Cipher Suite Number !
Null TLS_RSA_WITH_NULL_SHA256 0x003B
CBC TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C
GCM TLS_RSA_WITH_AES_128 GCM_SHA256 0x009C

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B
1 JANA Format (0xC0, 0x2D) equal to Number (0xC02D).

Sensors 2019, 19, 4455 12 of 24

Table 2. Cipher suites used as additional samples.

Cipher Mode Cipher Suite Number !
CBC TLS_RSA_WITH_AES_256_CBC_SHA 0x0035
TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D
GCM TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C
1 TANA Format (0xC0, 0x2D) equal to Number (0xC02D).

As it can be noticed when comparing both tables, the cipher suites proposed in Table 2 are more
complex than those proposed in Table 1, i.e., in terms of the computational cost required to implement
each. However, in order to select the suites that we have proposed in Table 2, we have examined
the corresponding relationship with those presented in Table 1, with the objective of stressing the
system and obtaining measures of higher latencies. For instance, if we compare 0xC02B with 0xC02C, a
similar structure is visible in terms of the key exchange, the authentication method and the symmetric
algorithm construction for encryption, however, on the one hand, 0xC02B uses AES_128_GCM while
0xC02C uses AES_256_GCM, and on the other hand, 0xC02B uses SHA256 while 0xC02C uses SHA384.

5. Evaluation Phase

At this point, we consider it important to analyze the phases of the proposal in order to understand
the evaluation phase. The Figure 7 contains the roadmap followed. Once the design and implementation
phase has been completed, we will divide the evaluation phase into two stages. The first, corresponding
to the next section, exposes our proposal to a security analysis, while the second corresponds to the
performance analysis of the proposal. The purpose of the evaluation phase is to determine whether the
proposal is feasible.

Evaluation phase
Design i
O_> phasge g lmplepr::::atlon > | Security | Performance
Starting Analysis Analysis Successful
point Proposal

Figure 7. Proposal roadmap.
5.1. Security Analysis

The security analysis of a system traditionally starts with the definition of the attacker’s model.
Since we do not strictly propose a protocol, but rather we base our analysis upon the improvements
proposed by the specifications [10], we have divided our security analysis into some issues of an
attacker model, as well as the analysis with respect to other parameters and the pillars of cybersecurity.
At this point we should mention that in our demonstration the database is local. However, in the
specification [10], it is indicated that it can be external to the server, so in that case it would be secured
via a TLS socket. The attacker model used is the classic Dolev-Yao [31]. The following analysis is
a consequence of the analysis of the exchange of messages between a client and a server through
the network.

1. Mutual Entity Authentication: Our proposal contains one mechanism where authentication
is implemented. It is the TLS authentication proper, which happens when the endpoints
verify the validity of the certificates. These certificates has been previously installed, i.e., they
are factory-installed.

2. Confidentiality and Message Authentication: As the recommendations [10] indicate, providing
security to MBAP through the implementation of TLS via the construction of symmetric encryption,
i.e., encryption + MAC, a.k.a., authenticated encryption (e.g., in Table 1, AES 128 CBC will be
used for encryption) ensures the confidentiality of the information.

Sensors 2019, 19, 4455 13 of 24

3. Integrity: TLS provides a security-focused protocol alternative to MBAP (to see MBAP sub-system
in Figure 4) by adding data integrity via certificates, and authorization via information embedded
in the certificate, such as user and device roles. So, the integrity is provided by on one hand the
public-key cryptography in the TLS handshake process, and on the other hand by symmetric
encryption (encryption + MAC).

4. Replay attack: TLS properties guarantee freshness, so TLS protects against replay attacks.
In addition, an attacker cannot replay a message that has been logged in previous sessions,
because both the oid and the unit id change in every session. Moreover, it must be taken into
account that the generation of the oid, the role and the unit id is performed through an OOB
mechanism (Figure 4)

5. Man-in-the-Middle (MiTM) attacks: Because all of our client-server communications are encrypted
through TLS, mutual entity authentication is required before performing a transaction. Mutual
entity authentication exists, because according to TLS, it requires that each end-point send its
domain certificate chain to the remote end-point (step 5 and step 11 of Figure 5) Subsequent
communication between entities over authenticated encryption (symmetric encryption algorithms)
also provides a MAC algorithm, which protects the communication against MiTM attacks.

6. Eavesdropping attack: Thanks to the implementation of TLS, our proposal guarantees the
confidentiality and integrity of the information. For this reason, we consider our proposal
resistant to any eavesdropping attack.

Implementation Test

Summarizing, the demonstration of resistance to the attacks mentioned above, as well as the
guarantee that the pillars of cybersecurity are not compromised, is because TLS, by default, provides
security to MBAP by adding data confidentiality, data integrity, anti-replay protection, end-point
authentication via certificates and authorization via information embedded in the certificate, such as
user and device roles. Additionally, we provide a mechanism to authenticate the Modbus frame.

Therefore, from a design point of view, we can justify our analysis, which means that if there was
a failure it would be due to the implementation. For this reason, we carry out a new demonstration by
using a framework to measure the quality of the software.

For Python, there is a well-known library called Pytest. Pytest automatically catches warnings
during test execution. In addition, pytest can be synchronized with Allure. Allure Framework is a
flexible lightweight multi-language test report tool that not only shows a very concise representation
of what has been tested in a neat web report form, but also allows everyone participating in the
development process to extract a maximum of useful information from the everyday execution of tests.
Therefore, Allure-Pytest is our Software Quality Framework.

Figure 8 contains the most basic part of the test we apply to TLS, where (the client’s ip that
appears in Figure 8) matches the client’s ip of the evaluation architecture, which will be analyzed in the
Section 5.2.1. Multiple tests have been carried out, including tests for connection and disconnection,
data transmission and data receipt. The Figure 9 shows a part of the report that is generated through
Allure, where it is possible to monitor the number of tests performed and their success rate. Although
there are more rigorous frameworks, Pytest gives a good measure of the correct implementation of our
security proposal.

Sensors 2019, 19, 4455 14 of 24

.assertEqual("Modb nt(1¢)=, striclient)}

Figure 8. Test TLS client via the Pytest module.

STATUS SEVERITY
&

W Failed ;
Broken 2

”

Passed
3
2

Skipped

99.57%

1

2tests (9.52%) blocker ciical | nomal minor trivial
Skipped

DURATION DURATION TREND

16 26m 405
1
i3 23m 205

o 20m 005

s
16m 405
13m 205
10m 005

6m 405

3m 205

Figure 9. Report sample generated through Allure.

5.2. Performance Analysis

The performance analysis is given by the deployment of an evaluation architecture, from a
test-network, which is built on GNS3 and is based on the industrial standard IEC-62443, which divides
the network into levels. Both the client and the server are deployed on this architecture in order
to measure the latencies generated for different cipher suites. The results of these measurements
are compared with the time constraints collected for several industrial services. Therefore, each
of the sections below are presented according to the logical order mentioned, i.e., (1) evaluation
architecture, (2) tool for measuring the latency, (3) test scenarios to be executed and (4) time constraints
in industrial services.

5.2.1. Evaluation Architecture

In order to evaluate our proposals, models that use an in-depth defense approach are used,
aligned with industrial security standards such as IEC-62443 ICS Security and NIST 800-82 Industrial
Control System (ICS) security [32]. IEC-62443 divides the network of an industrial environment into
levels. Based on the application environment defined in Section 1 we consider that our implementation
should be based upon levels one and two of the Purdue Model. Level 1 contains all of the controlling

Sensors 2019, 19, 4455 15 of 24

equipment. The main purpose of the devices (e.g., our server) in this level is to open valves, move
actuators, start motors, and so on. Typically, in Level 1 we find devices such as PLCs, Variable
Frequency Drives (VFDs), dedicated proportional-integral-derivative (PID) controllers, and so on [33].
In addition, Level 2 specifies parts of the system to be monitored and managed with HMI systems
(e.g., our client), which allows to start or stop the machine and see some basic running values and
manipulate machine specific thresholds and set points [33].

According to this requirement we generate a testnet in GNS3, which includes a firewall (ASA
5505), switches L2 (cisco 2960), routers (cisco 1941) and Docker containers to simulate the Modbus TLS
Client and the Modbus TLS Server. The Cisco Adaptive Security Appliance (ASA) is an advanced
network security device that integrates a stateful firewall, VPN, and other capabilities. This testnet
employs an ASA 5505 to create a firewall and protect an internal industrial network from external
intruders, while allowing internal hosts” access to the Internet.

The ASA creates three security interfaces: Outside, Inside, and DMZ. It provides Outside users
limited access to the DMZ, and no access to inside resources. Inside users can access the DMZ and
outside resources. For this reason, the Modbus TLS client has access to the Modbus TLS server.

Testnet configurations include NAT, VLAN and Access Control over the ASA 5505. We share all
configurations (ASA 5505, R1, R2, and R3) as an additional resource using a Zenodo reference [27].
The architecture designed is shown in the Figure 10.

(outside)
209.165.200.224/29
225 226,

LA
(dmz)
192.168.2.0/24 A

F0/24 E0/2
eo/1f -1
VLAN 1
(inside)
192.168.1.0/24

DMz 172.16.3.3

192.168.2.3 Modbus TLS
(Role DB)

(4
Modbus TLS

Figure 10. Diagram of the architecture deployed on GNS3.

5.2.2. Tool for Measuring Latencies

Once the architecture is deployed, and taking into account that our development was based on
python, we use the time module. The python docs say that clock should be used for benchmarking.
In the time module, there are two timing functions: These are time and clock. In expression (4), the
variable t; is elapsed CPU seconds since ty was started (expression (3)). By moving the start and end
within the code we can obtain the results of interest. We have recorded the latency times for the client,
i.e., when the client requests a function (e.g., read coils), this function is executed in the server and
until the response is received.

ty = time.clock(), 3)

Sensors 2019, 19, 4455 16 of 24

tr = time.clock() - to, 4)

5.2.3. Test Scenarios for Performance Evaluation

On the one hand, the Modbus specifications [2] list the set of functions that are implemented, and
additionally describes therefore the specific functions to be tested in the PI-MBUS-300 guidelines [34].
These three specific functions should be executed over the maximum number of coil (65535) or register
(123) allowed by the protocol. These three functions are: Read Coils (0x01), Read Holding Registers
(0x03) and Read-Write Multiple Register (0x17).

On the other hand, in order to evaluate the contribution of the RBAC model to the latencies, the
following two approaches have been tested. First, Modbus over TLS, but without the RBAC model, is
used to perform all of the measurements. This means that some steps that were included in Figure 6
are skipped for this first approach. More specifically, in the first phase of the extraction of roles from
the certificate, the database query and the execution of the RBAC policy are removed, while in the
second phase the extraction of the unit ID, the database query, the authorization mechanism and the
authorization response, are removed. These results will be analyzed in Section 6.1.

In the second approach to be tested, all the steps also including the RBAC model (described in
Figure 6) are executed at each test. These results will be analyzed in Section 6.2, and as it has more
steps than the measurements without RBAC policy (approach 1), it is expected that obtained latency
measurements will be higher in the second approach.

In both approaches, there are several options for selecting the cipher suite to be used, as established
in the specifications [10] (see Tables 1 and 2). Hence, all of these cipher suites will also be tested in
order to analyze the contribution to the final latencies in both approaches. Additionally, as we are
based on Modbus TCP and it is non deterministic, each test will be repeated 1,000 times. The Table 3
summarizes all the tests that have been carried out.

Table 3. Total samples analyzed.

Tested Approach Tested Cipher Suites Tested Modbus Functions Number of Tests

Without RBAC 9 3 27000
With RBAC 8 3 24000
Total: 51000

As an example, the implementation used to evaluate the performance using the Read Holding
function to the TCP samples is shown in the Figure 11 In order to execute the function on TLS, instead
of using the ModbusTcpClient function, the ModbusTLSClient function is used. The cycle’s variable
is in charge of monitoring the number of samples that are collected (to consider that the client’s ip,
Figure 11, also matches the client’s ip of the evaluation architecture, Figure 10).

Finally, it is necessary to specify the measurement process with regard to the TLS session and the
number of times that a function will be executed per session, since this is a requirement that we have
established. As we mentioned before, the Figure 6 illustrates how for a TLS session, the process by
which a single function (e.g., read coil (0x01)) is executed once, is composed of two phases. A phase
where the TLS session is established (asymmetric encryption, Figure 6) and another where the Modbus
frame is authorized, as well as the interaction between the MBAP handler and the MMA, i.e., the
execution of the read coil function (0x01), under symmetric encryption, i.e., encryption + HMAC
(Figure 6). Although it would be possible to execute many functions within the same TLS session, in
the tests only one function is executed: In order to obtain the worst case latency, we have generated a
new session for each one of the functions to be executed.

Sensors 2019, 19, 4455 17 of 24

% 0s.getpid())

client = ModbusTcpClient(host, por

Figure 11. Read Holding function used to evaluate the performance.

5.2.4. Latencies Benchmarking

Once the measurements are carried out, we set latency constraints in order to reach conclusions
about proposals feasibility. In order to achieve this, we take as a reference an ITU appendix: “Technical
and operational aspects of Internet of Things and Machine-to-Machine applications by systems in the
Mobile Service” [35]. Table 4 shows the latencies and jitter of some industrial services. ITU defines
latency such as a “parameter for characterizing the communication service delay from an application
point of view”. In addition, it defines jitter, such as “variation of latency”.

Table 4. End-to-end latency constraints [35].

Service End-to-End Latency Jitter
Factory automation (motion control) 1 ms 1us

Factory automation 10 ms 100 ps

Process automation (remote control) 50 ms 20 ms

Process automation (monitoring) 50 ms 20 ms
Electricity distribution (medium voltage) 25 ms 10 ms
Electricity distribution (high voltage) 5ms 1ms
Intelligent transport systems (infrastructure backhaul) 10 ms 2ms
Remote Control 5ms 1ms

It is necessary to emphasize firstly that most of the services listed in Table 4 are deterministic in
nature, and as we have mentioned in the introduction section, our work focuses on Modbus TCP/IP,
which is non-deterministic. However, we will adopt these values as latency constraints to be fulfilled.
Secondly, it is important to remark that Modbus can be used in more application areas (see Table 5)
than those identified in Table 4. Our proposal will be feasible if it finally fulfills the latency constraints
defined for the specific use case, which might be even higher that those presented in Table 4.

Sensors 2019, 19, 4455 18 of 24

Table 5. Modbus use cases.

Service Reference
Process automation [36]
Industrial automation [34]
Building automation [37]
Power System Automation [38]
Automatic Meter Reading [39]

6. Results

Although security analysis has determined that our proposal is resistant to different attacks and
that pillars of cybersecurity have not been compromised, it is also relevant to analyze its performance
in order to assure the feasibility of our proposal (see Figure 7). For this reason, this section discusses
the results of the tests described in Section 5.2.3.

As a reminder, the first section includes the performance analysis for the tests carried out when
using different cipher suites but without applying RBAC model, for the different Modbus functions.

The second section includes the performance analysis for the tests carried out when applying
RBAC model, comparing also results for different cipher suites and different Modbus functions.

In both approaches, each test was repeated 1000 times.

6.1. Comparison between Cipher Suites Latencies without Applying RBAC Model

Table 6 shows the average and standard deviation of the 1000 measurements of latencies obtained
for each combination of cipher suite and Modbus function.

Table 6. Average latencies (ms) and standard deviation in Cipher Block Chaining (CBC) cipher mode

(without RBAC model).

. Read Holding Read-Write Multiple

Read Coils (0x01) Registers (0x03) Register (0x17)

Cipher Suite Code Ave. Std. Ave. Std. Ave. Std.

TCP 0.93 0.56 1.03 0.61 1.13 0.72

0x003B 1.37 0.73 1.46 1.09 1.68 1.26

0x003C 1.65 0.83 1.77 0.89 2.05 1.56

0x0035 1.46 0.80 1.60 0.87 1.86 1.43

0x003D 1.69 091 1.81 0.98 2.17 1.67

As shown in Table 6 the fastest tested null-encryption suite with the secure hash function,
TLS-RSA-WITH-NULL_SHA256 (0x003B), is in average 0.09 ms (Read Coils), 0.14 ms (Read Holding
Registers) and 0.18 ms (Read-Write multiple Registers) faster than the lower latency encrypted option
(0x0035) which implements TLS-RSA-WITH-AES_256_CBC_SHA256. In addition, the average latency
of the former cipher suite (0x003B), is 0.44 ms (Read Coils), 0.43 ms (Read Holding Registers) and
0.55 ms (Read-Write multiple Registers) slower than the insecure Modbus (Modbus TCP). This shows
that the highest latency is provided by asymmetric encryption implemented by the TLS handshake.

Although it is difficult to establish a comparison between CBC and Galois/Counter Mode (GCM)
with these data, given that our approach depends on the requirements of the specification [10], GCM
beats CBC categorically. For instance, Table 6 contains the encryption suite (0x003D), while Table 7
contains the encryption suite (0x009D). Clearly, it is observed that despite presenting a more complex
hash function the latencies of 0x009D are lower. Table 7 shows that despite the high requirements
(AES_256) and (SHA384), TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 would be faster than
either of those, use a lot less bandwidth, and be more secure.

Sensors 2019, 19, 4455 19 of 24

Table 7. Average latencies (ms) and standard deviation in Galois/Counter Mode (GCM) cipher mode

(without RBAC model).

. Read Holding Read-Write Multiple

Read Coils (0x01) Registers (0x03) Register (0x17)

Cipher Suite Code Ave. Std. Ave. Std. Ave. Std.

TCP 0.93 0.56 1.03 0.61 1.13 0.72

0x009C 1.55 0.91 1.65 1.13 2.11 1.75

0xC02B 1.47 0.83 1.54 1.24 2.03 1.53

0x009D 1.81 1.26 2.03 1.35 2.48 2.36

0xC02C 1.56 0.93 1.64 1.31 2.11 1.77

Standard deviation is also calculated, taking into account that the process that handled the
communication is not deterministic. If it is taken into consideration that a low standard deviation
indicates that the data points tend to be close to the mean of the set, while a high standard deviation
indicates that the data points are spread out over a wider range of values. From Tables 6 and 7 we
conclude that as the operations complexity tends to increase, the standard deviation increases and
therefore the latency values tend to be further away from the mean. For instance, if the cipher suite
0x009C is compared with 0x009D, both share operations, but the operations from 0x009D are more
complex. This situation is reflected also in each value of the standard deviation.

The Figure 12 confirms the analysis performed, once the maximum, minimum and mean values
of the latencies associated with each of the three test functions have been recovered. As both the
processing of the operations of the encryption suites, as well as the processing of the Modbus function
increase, the latency values also increase. If we compare the three functions associated with 0x003C, the
greatest increase in latencies is given through the "read-write multiple records" function. Additionally,
if we compare 0x003B without symmetric encryption and 0x003C with AES_CBC_128 for the same
function, e.g., "read-write multiple records", we observe that latencies increase due to the processing
introduced by symmetric encryption.

L]

\
it 10 ol a0 gl |
il 00 00 0 o0 50)

w

[

]

Latencies (ms)

N
]
]

L |

|

TCP Ox009C 0OxC02B 0Ox009D OxC02C Ox003B Ox003C Ox0035 0x003D

—

ead Coils ead Holding Registers ead-Write Multiple Register
] Read Coil [Tl Read Hold R t Read-Write Multiple R t

Figure 12. Boxplot (maximum, average, minimum) of latencies (ms) for each of the cipher suites
(without applying RBAC model).

Despite the additional computational complexity, even the slowest cipher suite achieves transaction
times below to those shown in Table 4 related to Factory automation (not for motion control),
Process automation (remote control and monitoring), Electricity distribution (medium voltage) and
intelligent transport systems. Anyhow, encryption algorithms with block cipher operation, such as

Sensors 2019, 19, 4455 20 of 24

AES-128-CBC, show the worst performance. Therefore, stream operated ones should be preferred,
such as AES-256-GCM, for high parallelizable devices.

6.2. RBAC Model Results

Table 8 shows the average and standard deviation of the 1,000 measurements of latencies obtained
for each combination of cipher suite and Modbus function, where at each execution of the test the
entire process of the RBAC model was carried out as described in the Figure 6.

Table 8. Average latencies (ms) and standard deviation for each of the cipher suites when applying the

RBAC model.
. Read Holding Read-Write Multiple

Read Coils (0x01) Registers (0x03) Register (0x17)

Cipher Suite Code Ave. Std. Ave. Std. Ave. Std.
0x003B 11.31 3.01 13.34 3.45 17.55 454
0x003C 17.17 3.34 20.12 3.65 25.27 4.89
0x009C 19.01 3.29 22.13 3.61 26.11 473
0xC02B 18.14 2.79 21.07 3.43 25.24 412
0x0035 12.15 3.55 14.41 3.79 19.45 5.01
0x003D 20.31 3.89 24.04 3.99 30.01 5.14
0x009D 23.18 4.03 26.23 422 31.43 5.31
0xC02C 20.19 291 23.22 3.58 27.33 4.35

The increase of the latencies in Table 8 with respect to the latencies analyzed in Tables 6 and 7 is
coherent. On one hand, because more steps are carried out: When the RBAC model is executed, in
addition to the TLS handshake and the symmetric encryption, in the server side the role is extracted
from the certificate, two queries to Role database are executed and two policies are verified. On the
other hand, the client must generate the certificate extension. All these additional steps imply
extra processing.

A conclusion from Table 8 is the implication of the execution of Modbus functions on latency.
For instance, for all cases it is fulfilled that the difference between the average times of the reading
operations is less than the difference between the average times of either of the two reading operations
with respect to the read-write operations.

With respect to the standard deviation, the conclusion reached in the previous section is verified,
where it was determined that the standard deviation increased depending on the complexity of the
operations to be performed. This increase occurs both when the complexity of the Modbus function
increases, as well as when the complexity of the cipher suite increases. An analysis of the results in
Table 8 for the cipher suites compared in the previous section shows that the behavior is the same.
These conclusions can be clearly seen in the Figure 13. For instance, it is evident from 0x009C, the
latencies generated by “read-write multiple registers” is higher than “read coils”. In addition, if we
compare the behaviors of the 0x009D cipher suite with the 0x003D cipher suite, for the same function,
e.g., "read-write multiple registers", we can see that the latency generated by 0x009D is higher, which is
associated with a higher hash function despite using GCM, while 0x003D uses CBC.

Sensors 2019, 19, 4455 21 of 24

30 ~ M
@ : L
S LJ I
= 25
N
(¢4} r T
2 2 ' - ‘ ‘ ‘ |
g ¢ H |
c |
3 | L I
15 I
10

Ox0038B Ox003C Ox009C OxC02B Ox0035 Ox003D Ox009D 0OxC02C
[[] Read Coils [Read Holding Registers Read-Write Multiple Register

Figure 13. Boxplot (maximum, average, minimum) of latencies (ms) for each of the cipher suites when
applying RBAC model.

Although latency increases with respect to the values analyzed in Tables 6 and 7, it is demonstrated
that our proposal is feasible to be used in remote control and monitoring in Process automation, as
it fulfills with the latency constraints shown in Table 4. However, at this point it must be reminded
that all processes included in Table 4 are deterministic, which is not a requirement for our application
context. Finally, it is important to highlight that these results were for the worst case scenario, where
for each execution of the Modbus function a new session was established.

7. Conclusions

Applications that use SCADA systems rely upon protocols such as Modbus to enable their
operations. Many protocols widely deployed lack basic security mechanisms, such as confidentially
and the authenticity of transmitted data. When deployed in critical infrastructure assets, these
applications enable advanced control possibilities. The exposition of those systems by incorrect
deployment or existing vulnerabilities, both in design and implementation, create new attack scenarios.
Based on the security recommendations established by the Modbus organization, our manuscript
includes a role-based access control model (RBAC) as an access control mechanism, in order to authorize
and authenticate systems based on Modbus. This model is divided into an authorization process and
an authentication process. The authentication process is provided by TLS, because by default this
implements mutual authentication. The authorization process includes both the entity authorization
as well as the message authorization. The entity authorization is via roles, which are included as an
arbitrary extension in the X.509v3 certificate. The roles are validated with a value stored in a secure
database, populated from an out-of-band mechanism. The message authorization process is via a unit
id, where it comes from a unique identifier containing the frames, which is validated from a query
to the secure database (same database used by the authorization process). In order to evaluate our
implementation that we have based on a security analysis, which indicates the attacks against which
our implementation is resistant, also justifying the correct implementation. In addition to the security
analysis, we perform a performance analysis, since the cipher suites support the mechanism mentioned
above different cipher suites were analyzed, establishing a comparison with benchmarks, arriving at
the conclusion of the feasibility of the model presented.

Since one of our lines of research is access control, based on attributes (ABAC) in decentralized
systems ([40,41]) and this model of access control based on roles (RBAC) has been applied in a
centralized environment (Role Database), the first future line of research is to apply this model in a
decentralized environment based on blockchain. Additionally, we want to provide results to systems
based on both Hyperledger Fabric Blockchain and Ethereum blockchain. Thirdly, the creation of a

Sensors 2019, 19, 4455 22 of 24

robust mutual authentication RFID protocol that works together with our ABAC blockchain system in
order to build a secure supply chain system.

Author Contributions: Investigation, S.F-L.,].A. and S.A.; Methodology, J.A. and S.A.; Software, S.F-L.;
Supervision, J.A. and S.A.; Validation, J.A. and S.A.; Writing—original draft, S.F-L.; Writing—review & editing,
J.A. and S.A.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Joelianto, E. Performance of an industrial data communication protocol on ethernet network. In Proceedings
of the 2008 5th IFIP International Conference on Wireless and Optical Communications Networks (WOCN "08),
Surabaya, Indonesia, 5-7 May 2008; pp. 1-5.

Modbus Organization. Available online: http://www.modbus.org/docs/Modbus_Application_Protocol _V1_
1b.pdf (accessed on 21 July 2019).

Bullema, J.E. Available online: https://www.researchgate.net/publication/321770622_2017_-_Bullema_-_
Smart_Manufacturing_-_not_only_for_greenfield_high_tech_factories (accessed on 22 July 2019).

Lu, Y,; Morris, K.C.; Frechette, S. Standards landscape and directions for smart manufacturing systems.
In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE),
Gothenburg, Sweden, 24-28 August 2015; pp. 998-1005.

Whalen, S.; Bishop, M.; Engle, S. Protocol Vulnerability Analysis; Technical Report CSE-2005-04; Department of
Computer Science, University of California: Davis, CA, USA, 2005.

Rinaldi, J. OPC UA - Unified Architecture: The Everyman’s Guide to the Most Important Information Technology in
Industrial Automation, 1st ed.; Independent Publishing Platform: Scotts Valley, CA, USA, 2016; pp. 18—-41.
Schneider Electric. Available online: https://www.schneider-electric.com/en/download/document/SEVD-
2019-134-05/ (accessed on 21 July 2019).

Alves, TR,; Buratto, M.; de Souza, EM. OpenPLC: An open source alternative to automation. In Proceedings
of the IEEE Global Humanitarian Technology Conference (GHTC 2014), San Jose, CA, USA, 10-13 October
2014; pp. 585-589.

Thiago Alves. Available online: https://www.slideshare.net/cisoplatform?7/hacking-plcs-and-causing-havoc-
on-critical-infrastructures (accessed on 23 July 2019).

Modbus Organization. Modbus TCP Security. Available online: http://modbus.org/docs/MB-TCP-Security-
v21_2018-07-24.pdf (accessed on 25 July 2019).

Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.3. Available online: https://tools.ietf.org/
html/rfc8446 (accessed on 27 July 2019).

Rinaldi, J. Available online: https://www.rtautomation.com/rtas-blog/modbus-security-2/ (accessed on
29 July 2019).

Nardone, R.; Rodriguez, R.J.; Marrone, S. Formal security assessment of Modbus protocol. In Proceedings of
the 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST), Barcelona,
Spain, 5-7 December 2016; pp. 142-147.

Luswata, J.; Zavarsky, P.; Swar, B.; Zvabva, D. Analysis of SCADA Security Using Penetration Testing: A Case
Study on Modbus TCP Protocol. In Proceedings of the 2018 29th Biennial Symposium on Communications
(BSC), Toronto, ON, Canada, 6-7 June 2018; pp. 1-5.

Al-Dalky, R.; Abduljaleel, O.; Salah, K.; Otrok, H.; Al-Qutayri, M. A Modbus traffic generator for evaluating
the security of SCADA systems. In Proceedings of the 2014 9th International Symposium on Communication
Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 23-25 July 2014; pp. 809-814.

Phan, R.C.W. Authenticated Modbus Protocol for Critical Infrastructure Protection. IEEE Trans. Power Delivery
2012, 27, 1687-1689. [CrossRef]

Liao, G.Y.; Chen, YJ.; Lu, W.C.; Cheng, T.C. Toward Authenticating the Master in the Modbus Protocol.
IEEE Trans. Power Delivery 2008, 23, 2628-2629. [CrossRef]

Huitsing, P.; Chandia, R.; Papa, M.; Shenoi, S. Attack taxonomies for the Modbus protocols. Int.]. Crit.
Infrastruct. Prot. 2008, 1, 37-44. [CrossRef]

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b.pdf
https://www.researchgate.net/publication/321770622_2017_-_Bullema_-_Smart_Manufacturing_-_not_only_for_greenfield_high_tech_factories
https://www.researchgate.net/publication/321770622_2017_-_Bullema_-_Smart_Manufacturing_-_not_only_for_greenfield_high_tech_factories
https://www.schneider-electric.com/en/download/document/SEVD-2019-134-05/
https://www.schneider-electric.com/en/download/document/SEVD-2019-134-05/
https://www.slideshare.net/cisoplatform7/hacking-plcs-and-causing-havoc-on-critical-infrastructures
https://www.slideshare.net/cisoplatform7/hacking-plcs-and-causing-havoc-on-critical-infrastructures
http://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
http://modbus.org/docs/MB-TCP-Security-v21_2018-07-24.pdf
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://www.rtautomation.com/rtas-blog/modbus-security-2/
http://dx.doi.org/10.1109/TPWRD.2012.2187122
http://dx.doi.org/10.1109/TPWRD.2008.2002942
http://dx.doi.org/10.1016/j.ijcip.2008.08.003

Sensors 2019, 19, 4455 23 of 24

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Fovino, ILN.; Carcano, A.; Masera, M.; Trombetta, A. An experimental investigation of malware attacks on
SCADA systems. Int.]. Crit. Infrastruct. Prot. 2009, 2, 139-145. [CrossRef]

Xiong, Q.; Liu, H.; Xu, Y.; Rao, H.; Yi, S.; Zhang, B.; Jia, W.; Deng, H. A vulnerability detecting method for
Modbus-TCP based on smart fuzzing mechanism. In Proceedings of the 2015 IEEE International Conference
on Electro/Information Technology (EIT), Dekalb, IL, USA, 21-23 May 2015; pp. 404-409.

Kim, B.K,; Kang, Y. Abnormal Traffic Detection Mechanism for Protecting IIoT Environments. In Proceedings
of the 2018 International Conference on Information and Communication Technology Convergence (ICTC),
Jeju, South Korea, 17-19 October 2018; pp. 943-945.

Fachkha, C. Cyber Threat Investigation of SCADA Modbus Activities. In Proceedings of the 2019 10th
IFIP International Conference on New Technologies, Mobility and Security (NTMS), Canary Islands, Spain,
24-26 June 2019; pp. 1-7.

Hayes, G.; El-Khatib, K. Securing modbus transactions using hash-based message authentication codes
and stream transmission control protocol. In Proceedings of the 2013 Third International Conference on
Communications and Information Technology (ICCIT), Beirut, Lebanon, 19-21 June 2013; pp. 179-184.
Ferst, M.K,; de Figueiredo, H.E.; Denardin, G.; Lopes, J. Implementation of Secure Communication With
Modbus and Transport Layer Security protocols. In Proceedings of the 2018 13th IEEE International
Conference on Industry Applications (INDUSCON), Sao Paulo, Brazil, 12-14 November 2018; pp. 155-162.
Graham, J.; Hieb,]J.; Naber, J. Improving cybersecurity for Industrial Control Systems. In Proceedings
of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA,
8-10 June 2016; pp. 618-623.

X.509: Information technology - Open Systems Interconnection - The Directory: Public-key and attribute
certificate frameworks. Available online: http://www.itu.int/rec/T-REC-X.509-201610-I/en (accessed on
1 August 2019).

Figueroa Lorenzo, S.; Afiorga, J.; Arrizabalaga, S. A Role-Based Access Control model in Modbus SCADA
systems. A Centralized Model Approach. Available online: https://doi.org/10.5281/zenodo.3366479 (accessed
on 2 August 2019).

Collins, G. Pymodbus Documentation. Available online: https://buildmedia.readthedocs.org/media/pdf/
pymodbus/latest/pymodbus.pdf (accessed on 3 August 2019).

The Phython Software Foundation. TLS/SSL Wrapper for Socket Objects. Available online: https://docs.
python.org/3/library/ssl.html (accessed on 3 August 2019).

Transport Layer Security (TLS) Parameters, TLS ClientCertificateType Identifiers. Available online: https:
//[www.iana.org/assignments/tls-parameters/tls-parameters.xhtml (accessed on 29 July 2019).

Herzog, J. A computational interpretation of Dolev—-Yao adversaries. Theor. Comput. Sci. 2005, 340, 57-81.
[CrossRef]

Stouffer, K.; Falco, J.; Scarfone, K. Guide to Industrial Control Systems (ICS) Security. Gaithersburg, MD
National Inst. Stand. Technol. (NIST) 2011, 800, 16.

Pascal, A. Industrial Cybersecurity Governance. Efficiently Secure Critical Infrastructure Systems; Packt Publishing
Ltd.: Birmingham, UK, 2017; pp. 16-22.

Dachao, H.; Yu’an, H.; Shaokuan, C. Research and Application of Sinec L2 and Modbus Plus Networks
on Industrial Automation. In Proceedings of the 2007 International Conference on Mechatronics and
Automation, Harbin, China, 5-8 August 2007; pp. 3424-3428.

Groups, R.S. Technical and operational aspects of Internet of Things and Machine-to-Machine applications
by systems in the Mobile Service (excluding IMT) Geneva, 2017. Available online: https://www.itu.int/dms_
pub/itu-r/md/15/wpb5a/c/R15-WP5A-C-0469!N36!MSW-E.docx (accessed on 4 August 2019).

Khuzyatov, S.S.; Valiev, R.A. Organization of data exchange through the modbus network between the
SIMATIC S7 PLC and field devices. In Proceedings of the 2017 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), St. Petersburg, Russia, 16-19 May 2017; pp. 15-17.
Tenkanen, T.; Hamalainen, T. Security Assessment of a Distributed, Modbus-Based Building Automation
System. In Proceedings of the 2017 IEEE International Conference on Computer and Information Technology
(CIT), Helsinki, Finland, 21-23 August 2017; pp. 332-337.

Triangle Microworks. Available online: http://www.trianglemicroworks.com/products/SCADA-data-
gateway/iccp-tase-2 (accessed on 5 August 2019).

http://dx.doi.org/10.1016/j.ijcip.2009.10.001
http://www.itu.int/rec/T-REC-X.509-201610-I/en
https://doi.org/10.5281/zenodo.3366479
https://buildmedia.readthedocs.org/media/pdf/pymodbus/latest/pymodbus.pdf
https://buildmedia.readthedocs.org/media/pdf/pymodbus/latest/pymodbus.pdf
https://docs.python.org/3/library/ssl.html
https://docs.python.org/3/library/ssl.html
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://dx.doi.org/10.1016/j.tcs.2005.03.003
https://www.itu.int/dms_pub/itu-r/md/15/wp5a/c/R15-WP5A-C-0469!N36!MSW-E.docx
https://www.itu.int/dms_pub/itu-r/md/15/wp5a/c/R15-WP5A-C-0469!N36!MSW-E.docx
http://www.trianglemicroworks.com/products/SCADA-data-gateway/iccp-tase-2
http://www.trianglemicroworks.com/products/SCADA-data-gateway/iccp-tase-2

Sensors 2019, 19, 4455 24 of 24

39. Bonganay, A.C.D.; Magno, J.C.; Marcellana, A.G.; Morante,].M.E.; Perez, N.G. Automated electric meter
reading and monitoring system using ZigBee-integrated raspberry Pi single board computer via Modbus.
In Proceedings of the 2014 IEEE Students” Conference on Electrical, Electronics and Computer Science,
Bhopal, India, 1-2 March 2014; pp. 1-6.

40. Figueroa, S.; Afiorga, J.; Arrizabalaga, S.; Irigoyen, I1.; Monterde, M. An Attribute-Based Access Control
using Chaincode in RFID Systems. In Proceedings of the 2019 10th IFIP International Conference on New
Technologies, Mobility and Security (NTMS), Canary Islands, Spain, 24-26 June 2019; pp. 1-5.

41. Figueroa, S.; Afiorga, J.; Arrizabalaga, S. An Attribute-Based Access Control Model in RFID Systems Based
on Blockchain Decentralized Applications for Healthcare Environments. Computers 2019, 8, 57. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/computers8030057
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposal of An RBAC Model on A Centralized Architecture
	Authentication Phase via TLS and Entity Authorization Phase via Role on X.509v3 Certificate
	Message Authorization Phase

	Implementation Phase
	Selection of the Core Library
	Mechanism to Implement the Encription and Other Security Requirements
	Cipher Suites to Implement

	Evaluation Phase
	Security Analysis
	Performance Analysis
	Evaluation Architecture
	Tool for Measuring Latencies
	Test Scenarios for Performance Evaluation
	Latencies Benchmarking

	Results
	Comparison between Cipher Suites Latencies without Applying RBAC Model
	RBAC Model Results

	Conclusions
	References

