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Abstract: Deformation monitoring of engineering structures using the advanced Global Navigation
Satellite System (GNSS) has attracted research interest due to its high-precision, constant availability
and global coverage. However, GNSS application requires precise coordinates of points of
interest through quick and reliable resolution of integer ambiguities in carrier phase measurements.
Conventional integer ambiguity resolution algorithms have been extensively researched indeed
in the past few decades, although the application of GNSS to structural health monitoring is still
limited. In particular, known a priori information related to the structure of a body of interest is
not normally considered. This study proposes a composite strategy that incorporates modified
least-squares ambiguity decorrelation adjustment (MLAMBDA) method with priori information of
the structural deformation. Data from the observation sites of Baishazhou Bridge are used to test
method performance. Compared to MLAMBDA methods that do not consider priori information,
the ambiguity success rate (ASR) improves by 20% for global navigation satellite system (GLONASS)
and 10% for Multi-GNSS, while running time is reduced by 60 s for a single system and 180 s
for Multi-GNSS system. Experimental results of Teaching Experiment Building indicate that our
constrained MLAMBDA method improves positioning accuracy and meets the requirements of
structural health monitoring, suggesting that the proposed strategy presents an improved integer
ambiguity resolution algorithm.

Keywords: GNSS deformation monitoring; integer ambiguity resolution; multi-GNSS; MLAMBDA;
known priori information; constraint conditions

1. Introduction

GNSS is one of the most efficient tools in structural health monitoring due to its high precision,
continuity and real-time performance, irrespective of weather conditions [1]. For this reason, many
studies have been conducted into GNSS applications. Li proposed a real-time interference monitoring
technique for GNSS based on twin support vectors which used twin support vector machine (TWSVM) to
satisfy the requirement in real-time interference monitoring [2]. Barzaghi analyzed the GNSS-estimated
displacements on the Eleonora D’Arborea (Cantoniera) dam and compared it with pendulum data.
In his study, the results led to the conclusion that GNSS technique can be applied to dam monitoring
allowing adenser description, both in space and time, of the dam displacements than the one based on
pendulum observations [3]. Meng proposed a new system for large bridge monitoring, referred to as
GNSS structural health monitoring (GeoSHM), which was crucial to ensure the safety, serviceability,
and sustainability of large infrastructures, the preliminary results in his study showed GeoSHM Demo
Project had huge potential of the state-of-the-art Earth Observation in offering a better understanding
of ground movements surrounding bridge sites [4]. Integer ambiguity resolution is required to obtain
precise real-time coordinates of monitoring site. The ambiguity search region is like an ellipsoid and
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the search radius is the flag of its size [5]. The LAMBDA method is widely used to fix ambiguities,
which involves sorted-sequence double-difference (DD) measurements [6]. Decorrelation is used to
reduce the correlation of DD ambiguities and sequence sorting is employed to reorder DD ambiguities
according to their variance. A modified LAMBDA method is proposed by Chang to update search
radius every time [7]. Park proposed the strategy to reduce the search radius of ambiguity through
the constraints of observation accuracy and variation between adjacent epochs, and Wang employed
constrained LAMBDA for Global Positioning System (GPS) attitude determination by further deriving
Park’s algorithm. In Park and Wang’s study, the integer ambiguity resolution for GPS performed better
than unconstrained algorithm [8,9]. Landry R combined the recursive least squares (RLS) method
and LAMBDA to improve the baseline estimation and attitude accuracy [10]. Gong reduced search
radius using the baseline information. In his study, the prior information of baseline length, heading,
and pitch were all integrated into objective function [11]. However, an ambiguity resolution algorithm
for use in GNSS structural health monitoring has not yet been developed, and this deficiency limits
fast and efficient integer ambiguity resolution in this field.

The development of GNSS, together with the decreasing cost of hardware and increasing
reliability of high-frequency observations, promotes structural monitoring applications. GPS automatic
monitoring of the Geheyan dam, China, achieved positioning accuracy of 0.5 mm in the horizontal
direction and 1.0 mm for vertical direction [12]. The wind and structural health monitoring system
(WASHMS) for the three long-span cable-supported bridges in Hong Kong provides a GPS-monitoring
observation accuracy of 10–20 mm, correctly identifying a structural vibration frequency of 10 Hz [13–15].
Previous studies have been largely based on GPS, and as a result, the majority of integer ambiguity
resolution algorithms have been developed for use with GPS. The development of Multi-GNSS
strengthens the geometric observation structure with an increased number of satellites, allowing for
positioning-algorithm optimization.

Previous studies have proved that priori information obtained at the preparation stage of
GNSS structural health monitoring is key to algorithms optimization. The similar single-difference
model provided an approach to calculating the monitoring site position that involves constructing
vector models of satellites and stations [16]. This method uses single-difference equations for
stations, and requires receiver clock errors obtained from priori information. Its mathematical model
restricts the observation range of structural monitoring because it skips the ambiguity-fixing process.
Based on the fact that a point of interest changes only slightly between adjacent epochs, Bai and Ren
proposed a single-epoch algorithm with irrespective of cycle by increasing the sampling rate [17].
Algorithms employing real-time kinematics provide templates for converting priori information to
integer ambiguity resolution constraints. Algorithms based on ambiguity resolution with constraint
equation (ARCE) enable the fixing of ambiguities with single measurements, even in case of long
baselines [18].

This study proposes a strategy that utilizes geometric model of satellite-station distance and
deformation characteristics to obtain constraints for the MLAMBDA method. The large error in
pseudo-range observations means that it is not advisable to make constraints based on these. Structural
health monitoring involves ultra-short baseline observation, and baseline conversion is suitable for
obtaining the necessary constraints. In contrast to Park’s method, the standard observation accuracy is
replaced by coordinate-based and environmental errors. Environmental errors have a great impact
on the progress of the coordinate solution, while the maximum deformation value places additional
constraints on each satellite system for stricter constraints. The intersection of the above two constraints
is the final constraints for the MLAMBDA method in GNSS structural health monitoring.

2. Materials and Methods

As opposed to employing ordinary relative positions, deformation monitoring solves the baseline
and requires pre-observations to obtain priori information. Priori information provides valid constraints
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for structural health monitoring. Reducing the ambiguity search radius through the use of converted
constraints greatly reduces the running time of the proposed algorithm.

For the Multi-GNSS algorithm, the burden of ambiguity searching will abruptly increase with
an increasing number of satellites, and a large variance value could adversely affect the ambiguity
resolution procedure. The Multi-GNSS algorithm provides more observations for calculating the
monitoring coordinates. In the case for which a single satellite system is poorly observed, its data can
be corrected using other systems. Hence, determining suitable MLAMBDA method constraints for use
in GNSS structural monitoring is key to optimizing the proposed algorithm. This study proposes a
strategy aimed at constraints for the MLAMBDA method in GNSS structural monitoring. The progress
of the proposed approach is detailed in Figure 1.
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As shown in the flowchart in Figure 1, the detailed steps of the proposed algorithm are as follows:

1. Conduct LD decomposition of ambiguity variance matrix Q = LTDL, where Q is the ambiguity
variance matrix and D is a diagonal matrix.

2. Construct integer ambiguity transform matrix Z using matrix L: Q = LTDL = ZTQ1
TQ1Z.

3. Transfer the float solution into a fixed solution z = ZTa,where a is the DD integer ambiguity.
The constraints are also transformed to zn = ZTb, where b denotes the constraints.

4. Search for the optimal integer ambiguity. The MLAMBDA method involves shrinking the search

radius through updating the radius as
∑ (z j−z j)

d j
, where j is the serial number of the fixed ambiguity

in matrix z.
5. Transfer the search result of DD ambiguities back to the integer ambiguities.

2.1. Constraint of Deformation Information

The MLAMBDA method can be divided into two parts: multidimensional integer transformation
for decorrelation and searching. The formula of ambiguity searching is expressed as follows.

f =
n∑

i=1

(zi − zi)

d
≤ r2 (1)
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where d denotes the variance matrix after integer transformation.; zi is the float solution for the
ambiguity; zi is the alternative integer solution for the ambiguity; and r is the radius that will be
updated at every epoch. As shown in Equation (1), the size of the search radius is directly related to the
searching time of the integer ambiguity resolution. The search radius will be large for high variance
values. In this situation, searching ambiguities might prove to be a difficult task. Moreover, in the
case of Multi-GNSS monitoring, there are more satellites. These factors could lead to difficulties if we
adopt the MLAMBDA method without constraints. The derivation of constraints is discussed in the
following section.

Priori deformation information can be divided into two parts: monitoring-sites characteristics
and the baseline information. Constraints with structural characteristics are used to reduce the search
radius based on environmental and coordinate accuracy. The linear GNSS phase observation equation
is represented in the following form.

∇∆Φ = A× a + λ×∇∆N +∇∆ε (2)

where ∇∆Φ is the DD carrier phase observation matrix; a is the deflection matrix of the site of interest;
A is the coefficients matrix of the DD observation equation; λ is the carrierphase length; ∇∆N is the DD
integer ambiguity matrix; and ∇∆ε is the DD residual correction matrix. The ambiguity formula can be
derived from the following equation.

σ∇∆N =

√
σ(∇∆Φ−A×a)

2 + σ∇∆ε
2

λ
=

√
σa2 + σ∇∆ε

2

λ
(3)

where σ∇∆Φ is accuracy of carrier phase which is negligible with respect to σa; σa is the standard
deviation(STD) matrix for the monitoring site; and σ∇∆ε is the STD matrix for the environmental error.
The coordinate error can be calculated by the priori observation. The first constraint of the DD integer
ambiguity can be described in the following form.

∇∆N0 − δ∇∆N ≤ b1 ≤ ∇∆N0 + δ∇∆N (4)

where ∇∆N0 is the float solution; b1 is the first constraint for all the satellites; δ∇∆N =
β×σ∇∆N

λ ; β is the
double-tail quantile value of the t (Student) distribution, where the confidence level is 1 − α and the
freedom is f, where f is the number of satellite and α = 0.01. In general, β = 3 is assumed to be the
value for the rule of thumb [19].

Based on the fact that the displacement of an observer between adjacent epochs is smaller than the
maximum deformation values, an additional constraint is used to obtain stricter constraints. In contrast
to the approach proposed by Park and Dai, the constraints of the maximum deformation values are
set as the additional constraints. After the procedure of integer Z transformation, DD ambiguities
are sorted according to their variance. From Equation (1), we see that DD ambiguities with larger
variances have larger search radius. For this season, it is particularly important to select suitable
satellites for the additional constraints. Information from the integer Z transformation is used as a
reference for this selection process. If there are insufficient observations, these insufficient observations
are grouped to obtain further restrictions. In this way, there are more restrictions than in the case
of Dai’s algorithm. The deflection between two adjacent epochs must be less than the maximum
deformation value. This relationship is expressed as Equation (5).

d2
≥ ∆E2 + ∆N2 + ∆U2 (5)

where d is the max deformation value of the structures; E, N, U are the variations in the local coordinate
system. In contrast to the work of Dai, a Kalman filter is used to make the prediction for the next
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epoch [20]. Based on this prediction, the maximum value is substituted by subtracting the observation
value of the previous epoch from the predicted value.

d2 = (∇∆ε− λ×∇∆N)T
× (A−1)

T
×A−1

× (∇∆ε− λ×∇∆N) = (∇∆ε− λ×∇∆N)T
× (A×AT)

−1
× (∇∆ε− λ×∇∆N) (6)

Cholesky decomposition of is to transform the positive definite matrix AAT to a upper triangle
matrix and a lower triangle matrix. And it is expressed as AAT = LLT, where L is the lower matrix,

L−1 =


l11

l21 l22

l31 l32 l33

 and li j is the element in row i and column j of L. Equation (6) then reflects the

matrix of deformation. Based on this matrix, the partial constraints b2 of the first selected satellite are
expressed as follows.

MAX(−δ∇∆N1 ,−
d

λ× l11
+
∇∆ε1

λ
) ≤ b2 ≤MIN(δ∇∆N1 ,

d
λ× l11

+
∇∆ε1

λ
) (7)

According to the process employed for the first selected satellite, the partial constraints of the
second and third satellite are determined as follows.{

MAX(−δ∇∆N2 ,γ1) ≤ b3 ≤MIN(δ∇∆N2 ,γ2)

MAX(−δ∇∆N3 ,γ3) ≤ b4 ≤MIN(δ∇∆N3 ,γ4)
(8)

where γ1 =
−

√

d2−B2+l21(∇∆ε1−λ×∇∆N1)+l22×∇∆ε2
λ×l22

and γ2, γ3, γ4 have the same form, which is derived
from the Equation (6). These three additional constraints allow for further restrictions on Multi-GNSS
structural health monitoring. After this module, the ambiguity constraints are further reduced.

In previous studies, the part of the residual ∇∆ε in Equation (6) is an ellipsis but this is integral to
guaranteeing the mathematical rationality of the above procedures. The observation environment of
structural health monitoring means that the influence of ∇∆ε is remarkable. Another reason to retain
the residual ∇∆ε is that when selecting the satellites, the Multi-GNSS corrections, such as inter system
bias (ISB), differential code bias (DCB), or fractional cycle bias (FCB), are assigned to the residual ∇∆ε.
The process may be interrupted if the residual is ignored.

The use of constraints based on baseline length is another effective method for optimizing
algorithms. Kores proposed precise gravity recovery and climate experiment (GRACE) baseline
determination using GPS [21]. In his study, the resulting solution matches the GRACE K-Band ranging
system measurements with an accuracy of 1 mm, whereby 83% of the DD ambiguities are resolved.
We propose a strategy in which satellite-station distances are obtained using a mathematical model.
The satellite-station distance is transformed by the baseline length and satellite-station vector, expressed
by A in Equation (2). A mathematical conversion allows us to describe the system in the following form.

− round(
|∆A| ×m

λ
+ 0.5) < b5 < round(

|∆A| ×m
λ

+ 0.5) (9)

where b5 is the another constraints for all the satellites; |∆A| is the length of ∆A; and m is the length
of the baseline which is updated in every epoch. There are many ways to obtain a priori baseline
distance, such as using laser rangefinders. The algorithmic conditions in this study are independent
of satellite systems. The constraints of all the satellites and frequencies can be obtained from the
baseline length using known priori information. To ease the computational burden on the system,
this constraint is placed on the position values for the reference and monitoring stations. The precise
coordinates of the two observation stations are among the priori data, which could be used to optimize
positioning progress. These are all the constraints employed in this study, using the priori information
of monitoring-site characteristics and baseline information.
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2.2. Constraints on Multi-GNSS MLAMBDA

In this section, we elaborate on our approach to determining intersection and its transformation
into constraints for used in the proposed MLAMBDA method. The selection of constraints for
deformation characteristics using satellites is based on the order of matrix Z. The constraint of the
satellite-station distance is in the original order. The final constraint on the above two constraints is
their intersection. The constraint on Multi-GNSS MLAMBDA is expressed in the Equation (10).

Zn = ZT
× b (10)

where Zn is the final constraint on the Multi-GNSS and b is the intersection of b1, b2, b3, b4, b5. Z is the
integer transform matrix for the MLAMBDA method Zn = ZT

×∇∆N. The integer transform matrix
Z for Multi-GNSS MLAMBDA is different from that of a single system. Matrix block operation is
considered in the procedure. Progress is sorted according to the system and frequency. The order
of matrix Z is recorded for use as an additional constraint on the maximum deformation value.
This section makes the constraints for the Multi-GNSS MLAMBDA method.

3. Experiments and Analysis

Experiments on both the Baishazhou Bridge, Wuhan, China, and the Teaching Experiment building
of Wuhan University, China, were performed to test the advantages and feasibility of the proposed
constrained MLAMBDA method, respectively. The running environment for the program was vs2012
C language on a 64 bit Windows 8.1 personal computer, with 4GB RAM and an Intel(R) Core (TM)
i5-6200U processor CPU @2.30 GHz 2.40 GHz.

3.1. Experiment on the Baishazhou Bridge

The advantages of the proposed constrained MLAMBDA method are evaluated through an
experiment conducted on the Baishazhou Bridge. The running time of the program, ambiguity success
rate (ASR), ambiguity alternative group size and epoch-to-first fixed ambiguity were selected as the
evaluation indicators. The experiment was conducted for 1 h (GPST 12:00:07–13:00:08, September
26th, 2016) on 10 Hz GPS/beidou navigation satellite system (BDS)/GLONASS data of the Baishazhou
bridge. Baishazhou Bridge is a cable-stayed bridge comprised of double towers and double cable
planes. The site of interest sites is referred to as S012 in the middle span. Observations were performed
using a ComNav-K508 system. The monitoring coordinate accuracy of this experiment was 0.1 m,
0.1 m, 0.3 m. The priori observation also provided the precise coordinates for the site of interest.

Table 1 shows a comparison of the experimental results for monitoring site S012. The proposed
constrained MLAMBDA method provided a 60 s reduction in running time for both GPS and BDS,
a 90 s reduction for GLONASS, a 120 s reduction for GPS+BDS, and a 180 s reduction for Multi-GNSS.
With the respect to the epoch-to-first fixed ambiguity, the proposed method optimized the initialization
process for ambiguities, which fixes the ambiguity in the first epoch for BDS, while initialization for
GLONASS is poor in this experiment. BDS and GPS both outperform GLONASS and the initialization
of Multi-GNSS initialization is better than GLONASS.
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Table 1. Comparison of experimental results for the site of interest S012.

Baseline
Length (m) Multi-GNSS Method Running Time

(s)

Epoch-to-First
Fixed

Ambiguity
ASR (%)

2480.4751

GPS
constrained 719.451 5 95.9

unconstrained 788.561 60 91.6

BDS
constrained 768.111 1 99.8

unconstrained 838.462 51 99.6

GLONASS
constrained 674.581 2231 89.2

unconstrained 760.271 5272 65.1

GPS+BDS
constrained 1162.402 1 94.0

unconstrained 1280.622 1 87.6

GPS+BDS+GLONASS
constrained 1763.982 90 76.9

unconstrained 1945.271 1655 66.3

In the case of the ASR, the proposed constrained MLAMBDA method provides an improvement
of 4 % for GPS, 0.2% for BDS, 24% for GLONASS, 7% for GPS+BDS, and 10% for Multi-GNSS. GPS and
BDS outperform GLONASS, wherein the BDS observation is particularly accurate. Optimization is the
most significant in the case of GLONASS due to its poor observation. These results indicate that the
proposed constrained MLAMBDA method optimizes ambiguity resolution and that the observation
of GLONASS is relatively poor. Low running time and higher ASR are important to make accurate
calculation in real-time structural healthy monitoring.

Figure 2 shows the results of the ambiguity alternative group size for three single systems
and Multi-GNSS. The ambiguity alternative group size reflects the radius of the search radius in
single-epoch resolution. When using the proposed algorithm, the size of GPS, BDS and Multi-GNSS
ambiguity alternative groups were each reduced by approximately four, whereas the GLONASS
ambiguity alternative groups was reduced by approximately six. The changes in satellite numbers
in Figure 3 highlight the abrupt fluctuations of each of the four figures shown in Figure 2. All four
results exhibited significant fluctuations at approximately the 12000 epoch. Figure 2 indicates that
the proposed constrained MLAMBDA method provided a high level of restriction in contrast to the
unconstrained method.
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Figure 3 shows the change in the satellite numbers during the experiment on the S012 site.
There were a sufficient number of single-system satellites during the observation. The numbers of
satellites for the three single-system were approximately equal before the 25,000th epoch, after which
there were three fewer satellites for GLONASS. The number of satellite for Multi-GNSS fluctuated at
approximately the 12,000th epoch.

Table 2 shows the accuracy statistics for the S012 site. The proposed constrained MLAMBDA
method outperforms the unconstrained approach in terms of observation accuracy, to varying degrees.
GPS and BDS exhibit less improvement than others because of the high accuracy of their raw data.
GLONASS shows the most significant improvement, because of the poor quality of its raw data. From
the overall results, we may conclude that the conclusion that the constrained MLAMBDA outperforms
the unconstrained method.

Table 2. Internal accuracy statistics of the S012 monitoring site for the E, N, U and total displacement V
directions (in mm).

Multi-GNSS Method E N U V

GPS
constrained 6.13 7.84 13.56 16.82

unconstrained 9.51 11.03 18.47 23.52

BDS
constrained 3.29 3.87 7.15 8.77

unconstrained 4.13 4.24 8.64 10.47

GLONASS
constrained 11.84 13.57 24.52 35.35

unconstrained 176.42 195.52 403.12 481.52

GPS+BDS
constrained 7.84 8.61 15.45 19.35

unconstrained 13.46 14.57 26.87 33.40

GPS+BDS+GLONASS
constrained 72.14 85.21 143.87 182.11

unconstrained 154.58 162.82 334.87 403.17

3.2. Experiment on the Teaching Experiment Building of Wuhan University

The experiment on Baishazhou Bridge indicated that the constrained MLAMBDA method
presents advantages such as a high fixed ambiguity success rate and low running time, compared to the
unconstrained approach. An experiment on the Teaching Experiment building of Wuhan University
was performed to verify the feasibility of the constrained MLAMBDA method in structural monitoring.
The experiment was conducted for 90 min (GPST 07:00:00–08:50:00, January 30th, 2018) by using
1 Hz GPS + GLONASS data. In this experiment, a directional mobile observation base was used to
verify the accuracy of the algorithm in terms of structural monitoring. The maximum moving ranges
of the mobile observation base are 12 cm (E direction), 17 cm (N direction) and 0 cm (U direction).
A 5-min-long observation is conducted as a group, and the base was moved by 1 cm in the E and
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U directions for each time. Internal accuracy and external accuracy factors were used to evaluate
positioning accuracy.

Table 3 shows the results for the Teaching Experiment building experiment. Because of the
high-quality experimental environment and small impact of errors, this test is suitable for verifying
the feasibility of using the constrained MLAMBDA method for structural monitoring. The program
running time is reduced by approximately 20 s compared to the unconstrained algorithm, and the ASR
is increased by 6%. Since a small dataset is used in this experiment, the improvement in running time
is not significant. Similar to the conclusions drawn from Table 1, the constrained algorithm effectively
improves the GNSS positioning algorithm in structural health monitoring.

Table 3. Comparison of experimental results for the Teaching Experiment building, Wuhan.

Baseline Length (m) Method Running Time (s) ASR (%)

427.8865
constrained 486.681 99.8

unconstrained 508.970 93.8

Figure 4 shows the results of the mobile quantitative observation experiment. We can see that in
the E and U directions, the calculation results are in good agreement with the actual displacement,
indicating that the proposed constrained algorithm can accurately fix ambiguities in the deformation
monitoring experiment. The deviation between the calculated result and the actual displacement
is different in two directions. This experiment moves in the E and N directions, and the settlement
result in the N direction is better than that in the E direction. Though better than the characteristics
of GNSS observation, the deviation in the U direction is larger than those in the N and E directions.
This deviation is most pronounced for the epochs from 0–300 s. Due to limitations in the initial
coordinate accuracy of the monitoring station prior information, the residuals are relatively obvious
at the beginning of this period. Figure 4 shows that using the constrained MLAMBDA method for
structural monitoring can meet the requirements of centimeter-level structural monitoring.
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proposed constrained algorithm.

Table 4 shows the accuracy analysis results for the experiment on the Teaching Experiment
building. In addition to the three directions of E, N and U, there is a precision statistic for the total
displacement V. From Table 4 we can see that the constrained algorithm effectively improves the internal
and external accuracy of the observation points for the E, N, and U directions and V. When applied
to structural monitoring, the constrained MLAMBDA method can reach an accuracy of 3 mm in the
horizontal direction and 5mm in the elevation direction. However, the accuracy of the observation
points in the three directions E, N and U also significantly differ. The accuracy in the E direction is
slightly worse than that in the N direction, and is the worst in the U direction.
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Table 4. Accuracy statistics for tests on the Teaching Experiment building for the E, N and U directions,
and the total displacement V (in mm).

E N U V

Constrained
Internal
accuracy 2.65 2.14 4.31 5.49

External
accuracy 3.89 3.22 5.05 7.14

Unconstrained
Internal
accuracy 3.05 2.69 5.13 6.53

External
accuracy 3.98 3.54 6.11 8.11

4. Conclusions

We propose a composite optimization strategy for an MLAMBDA-based GNSS structural health
monitoring to reduce the running time and improve ASR. Drawing on the work of Park and Dai,
priori information were used to transform into effective constraints for the MLAMBDA method.
The necessary priori information included baseline length, impact on environmental errors, and the
maximum deformation values of structures. A Kalman filter was used to obtain predictions for the next
epoch and prediction substitutes for the max deformation values. In addition, this approach provides
next-epoch prediction substitutes for the maximum deformation values. As a result, the proposed
constrained MLAMBDA method improves on the ASR by approximately 20% and reduces the running
time of Multi-GNSS by 180 s. Experiments conducted on the Teaching Experiment building of Wuhan
University indicate that the proposed algorithm can achieve positioning accuracy of 3 mm in the
horizontal direction and 5 mm in the elevation direction. The proposed algorithm improves the
positioning accuracy of the monitoring points and fully meets the requirements of structural monitoring.

However, in the process of formula derivation, the proposed algorithm is still subject to certain
limitations. In particular, the satellite selection is aimed at adding more constraints to the search radius
of ambiguity. We also note that the residuals are placed into an equation that need more rigorous
studies so it can be refined. Further optimization of the float solution and refinement error are required
to obtain stricter constraints.
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