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Abstract: In this paper, we present an implementation work of sensing and actuation capabilities for
IoT devices using the oneM2M standard-based platforms. We mainly focus on the heterogeneity of
the hardware interfaces employed in IoT devices. For IoT devices (i.e., Internet-connected embedded
systems) to perform sensing and actuation capabilities in a standardized manner, a well-designed
middleware solution will be a crucial part of IoT platform. Accordingly, we propose an oneM2M
standard-based IoT platform (called nCube) incorporated with a set of tiny middleware programs
(called TAS) responsible for translating sensing values and actuation commands into oneM2M-defined
resources accessible in Web-based applications. All the source codes for the oneM2M middleware
platform and smartphone application are available for free in the GitHub repositories. The full details
on the implementation work and open-source contributions are described.
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1. Introduction

Since the term was coined by Kevin Ashton in 1999, the Internet-of-Things (IoT) has been
an obvious trend and has crept into our everyday life, for example, appearing as Internet-connected
home appliances such as a WiFi-enabled, programmable thermostats or LED light bulbs embedded
with a ZigBee radio chip. Such home appliances are directly, or via a gateway, connected to the Internet
so that end-users can access them remotely from anywhere at any time perhaps mostly through
smartphones; for example, set the desired temperature of rooms while driving back to home
from workplace.

The advances in IoT are changing our home to a ’connected home’ where home appliances
and utilities connected each other can share the information about the changes in their status and
surroundings, and thus provide home occupants with smart services in a proactive and intelligent
manner [1]. Also, in the manufacturing sector IoT is considered as a key to the ’smart factory’ where
all things in the factory itself as well as throughout the supply chain are fully connected and thus
almost real-time data analytics and insights could be generated, helping manufacturers adapt their
facilities and assets accordingly, maintain workforce productivity efficiently, and manage their supply
chain proactively [2].

A key requirement of realizing the connected world is to ensure interoperability among different
connected devices, i.e., enable all different types of things to talk to each other. However, it seems
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a challenging task to make different types of devices interoperable because they will have a wide
variety of heterogeneous hardware systems, for example in case of a home, ranging from the front door
(e.g., near field communication-based door locks) to the basement (e.g., programmable thermostats
linked to its heating/cooling system that helps avoid peak-time energy use). Indeed, these systems
will rely on different network protocol stacks and their proprietary service layer platforms.

Middleware solutions could play a pivotal role in bridging the highly fragmented market for
IoT industry. Specifically, they can help interconnected devices communicate and “understand” each
other even though each speaks its own language [3]. Therefore, although it might be a challenging
task to achieve a universal standard for IoT, it would be very helpful for individual programmers and
numerous organizations to provide a well-designed middleware solution that can interpret a wide
variety of low-level hardware signals (e.g., digital input and outputs) to an Internet-accessible resource
(e.g., Web object) based on widely used IoT standards, which echoes our motivation for this research.

The main contribution of this paper are three fold. First, we develop an IoT software
platform (called nCube) complying with the oneM2M, a well-known IoT standard, which works
as a middleware for IoT devices to support various different hardware interfaces including digital
input and output, UART (universal asynchronous receiver/transmitter), SPI (serial peripheral
interface), I2C (inter-integrated circuit). Second, we also develop an Android application working
with the nCube-equipped IoT devices via oneM2M-defined Web APIs (application programmable
interfaces) that enable to access and interact with sensors and actuators of the IoT devices. Finally,
all source codes for the developed software are shared via GitHub for free in order for many other
developers to download and utilize them in building new IoT products in the fragmented ecosystem
of IoT industry.

The remaining organization of the paper is as follows. Section 2 summarizes the requirements for
IoT middleware and Section 3 presents various IoT middleware solutions and the interoperability issue
in our IoT landscape. Section 4.1 introduces the oneM2M-based scenarios for sensing and actuation
capabilities of IoT devices, and Section 4.2 demonstrates our oneM2M middleware platform and
its architecture for IoT devices. In Section 5, we present the implementation work and open-source
contribution. Section 6 discusses some limitations of our method and remaining challenges. Finally,
Section 7 offers concluding remarks.

2. Related Works

IoT envisions everyday objects and industrial products to be connected together, sharing their
information over the Internet, working and interacting in a cooperative way, and thus building
a smart environment. Many research works have been working on realizing IoT middleware for smart
solutions in a variety of application domains. Brouwers et al. developed a pragmatic middleware
framework for mobile phone sensing that provides features fine-grained user-level control to protect
privacy of smartphone users [4]. The proposed middleware was implemented on the Android
platform outlining an architecture featuring a publish and subscription framework and evaluated
with a localization application. Silva et al. implemented an architecture for smart solutions based
on IoT technologies, which consists of user interfaces, devices, and middleware [5]. They validated
the architecture using the scenarios involved with a monitoring device of water and electricity
consumption and LED-based user interfaces. Alvisi et al. developed a highly interoperable smart
water metering solution using an interoperable wireless IoT middleware based on the Edge computing
paradigm [6]. They developed smart metering devices using a Raspberry Pi, LTE module, and wireless
radio modules including LoRa and M-Bus, increasing interoperability across heterogeneous wireless
protocols. Benayache proposed a micro-service middleware for smart wireless sensor network-based
IoT applications inspired from artificial neural network architecture, which allows dynamic service
integration and solves the heterogeneity and interoperability problems [7]. Souza Cimino et al.
introduced a middleware solution for integrating high performance computing characteristics into
IoT systems to build user applications requiring both high computing performance and IoT features
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such as smart logistics and smart buildings [8]. They implemented a Java/Android based middleware
solution and evaluate it with an increasing number of sensors and devices connected through several
concurrency scenarios.

A great deal of effort has been devoted to clarify requirements for IoT middleware , including
network protocol bridging [9,10], device and network management [11], resource searching [12],
REST (representational state transfer) API [13], semantics [14,15], security [16], and support for cloud
and fog computing [17–20]. Cruz et al. proposed an application layer gateway (called MiddleBridge)
running on Java virtual machine, which translate widely used message protocols including constrained
application layer protocol (CoAP), message queuing telemetry transport protocol (MQTT), data
distribution service (DDS), and WebSocket to hypertext transfer protocol (HTTP) [9]. Bouloukakis et al.
introduced a solution for the automated synthesis of lightweight protocol mediators by abstracting
any IoT protocol with a data exchange API, allowing for middleware-layer protocol interoperability
in the IoT [10]. Silva et al. proposed a new IoT management platform that supports important
requirements for IoT networks and device management including security, context-aware, a standard
model for message exchange, and friendly user interface [11]. Pattar et al. presented a comprehensive
review of the existing search methods for the IoT resources and categorized them according to design
principles and search approaches [12]. They highlights an IoT middleware as a key component
of the search system, which supports scalability, heterogeneity and inteoperability. Cheng et al.
introduced a lightweight IoT service mashup middleware based on REST-style architecture so as
to build comprehensive and situational mashup applications in response to demands by the end
users [13]. They illustrated the scenarios of IoT service mashups for coal mine safety monitoring and
control and perform an evaluation study. Tao et al. presented a multi-layer cloud architectural model
to enable effective and seamless interactions/interoperations on heterogeneous devices/services in
IoT-based smart homes [14]. In particular, an ontology-based security service framework is proposed in
order to provide security and privacy preservation in interactions and interoperations. Caballero et al.
presented an ontology-defined middleware-agnostic approach for IoT architectures in order to allow
the reusability and shareability of the execution flow among heterogeneous IoT devices by describing
and executing the behavior of IoT devices using ontology-based technologies [15]. Ammar et al.
presented a survey of the security of the IoT frameworks [16]. Stergiou et al. presented a survey of
IoT and Cloud Computing with a focus on the security issues of both technologies [17]. Nguyen et al.
reported the preliminary results of a systematic mapping study to support the deployment or
orchestration at IoT device levels across IoT, edge, and cloud infrastructures [18]. Aazam et al. analyzed
IoT middleware technologies in mobile and IoT service provisioning architecture under the concept of
fog computing paradigm [19]. Farahzadi et al. presented a survey of IoT middleware that can address
the problem of heterogeneity of different objects in terms of main features and characteristics [20].
The authors also introduced middleware appropriate for building platforms based on Cloud of Things
(CoT) to enhance the large-scale IoT platforms.

3. IoT Middleware and oneM2M Standard

In particular, a few literature reviews over the past years summarized issues and challenges
on requirements for IoT middleware by examining relevant articles [21]. Razaque et al. highlights
the importance of middleware for the IoT, which allows massive amounts of heterogeneous devices
to be connected by means of diverse networks and platform technologies, supporting interoperability
across physical and virtual objects and enabling a wide range of applications and services [22].
They outlined a set of requirements for IoT middleware, including functional, non-functional, and
architectural requirements and summarized a comprehensive review of the published middleware
solutions against their proposed requirements. Ngu et al. conducted an extensive survey on the
existing IoT middleware and categorized them into service-based, cloud-based, and actor-based
middleware [23]. They also summarized the issues and challenges in developing an IoT middleware,
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including the heterogeneity of IoT divides, need to support the essential ingredients of composition,
adaptability, and security aspects of an IoT system.

As many research and survey works described above, IoT middleware (sometimes called IoT
platform) will be crucial to the development of IoT domains, and its requirements could be categorized
into functional and non-functional aspects as described in [3]. Table 1 summarized the requirements.

Table 1. Functional and non-functional requirements for IoT middleware [3].

Functional Requirements Non-Functional Requirements

Resource discovery Scalability
Resource management Real-time or timeliness
Data management Availability
Event management Security
Code management Privacy

Ease of deployment, maintenance, and use
Interoperability
Spontaneous interaction
Multiplicity
Adaptability and flexibility

Several standard development organizations have been working on developing IoT standards
for solving the fragmentation of IoT landscape. Among them, the oneM2M initiative aims to develop
standardized technical specifications considering a common horizontal M2M/IoT service layer
platform across a number of industry verticals for globally applicable, access independent M2M/IoT
services [24]. The oneM2M standard focuses on interoperability in service layers rather than protocol
stacks in network and Internet layers, e.g., IEEE 802.15.4 and wireless long-range network. Accordingly,
the oneM2M standard defines common service functions for IoT systems, including device registration
and discovery, data management and repository, subscription and notification, semantics, security, etc.,
which support most of the requirements summarized in Table 1.

The oneM2M standard-based IoT platforms have shown its practical feasibility in developing
home appliances [25], smart farm [26], smart office [27], medication [28], and semantic interworking
in smart cities [29,30]. Recently, Ouedraogo et al. considered the quality of service (QoS) required by
the IoT applications as scientific challenges, and then presented a solution consisting of the dynamic,
autonomous and seamless deployment of QoS management mechanism integrated with an oneM2M
standard-based IoT middleware [31]. Zhao et al. proposed an oneM2M-complaint stacked middleware
to integrate open-source hardware and software projects for IoT development and research [32].

Interoperability in IoT would be achieved by speaking the same language (i.e., a universal
standard like the oneM2M) [33] or bridging two different systems and translating their messages
and protocols each another [34], which is the key role of IoT middleware. However, another
important feature of IoT middleware, in particular for devices (i.e., embedded systems), is to provide
an abstraction layer that masks the complex underlying hardware interfaces wired with sensors
and actuators and instead exposes a set of useful APIs with which IoT applications can access their
resources residing in IoT platforms. In this paper, we call this sensing and actuation capabilities for IoT
middleware. Although the oneM2M-based IoT middleware platform considering such capabilities was
proposed in the previous work [25], it was implemented as a Java program and has some limitations
on fast and easy development compared to other programming languages (e.g., Node.js) supported by
a lot of community-developed codes, providing our motivation into this research.
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4. oneM2M Platform for Sensing and Actuation of IoT Devices

4.1. oneM2M-Based Scenarios for Sensing and Actuation Capabilities

The oneM2M standard supports resource-oriented architecture (ROA) and adopts a layered model
as shown in Figure 1. Figure 1 illustrates the oneM2M reference architecture whose environments
are divided into two domains: infrastructure domain where an infrastructure node (IN) locates and
field domain where middle nodes (MNs), application service nodes (ASNs), and application dedicated
nodes (ADNs) locate. IN, MN, ASN have to contain common service entities (CSEs) which provide
common service functions (e.g., the functional requirements described in Table 1) to other CSEs
or application entities (AEs) which provide application service logics (e.g., sensing and actuation).
Networking services are provided by network service entities (NSEs) located in the underlying network
service layer. More details are well described in the previously published literature [35].

ADN-AE ASN-CSE

ASN-AE

ASN-CSE

ASN-AE

ADN-AE

IN-AE

Field domain

Infrastructure domain

IoT devices

IoT gateway

IoT server

REST API 
(HTTP, CoAP, MQTT)

To NSE

MN-AE

MN-CSE

IN-AE

IN-CSE

To network service 
entity (NSE)

To an IN of other 
service providers

To NSE

Figure 1. The oneM2M reference architecture.

In our work, we focus on the sensing and actuation capabilities for IoT devices, so three
components are mainly considered from the oneM2M reference architecture as highlighted in Figure 1:
IoT server (IN-CSE), IoT device (ADN-AE), smartphone application (IN-AE). We assume that all three
components can talk to each other via oneM2M standard-defined REST APIs on HTTP, CoAP, or MQTT
protocols. With this assumption, we can image sensing and actuation scenarios between IoT devices
and smartphone applications as demonstrated in Figures 2 and 3.

On the left side of Figure 2, the AE residing in the IoT device embedded with a temperature sensor
is registered to the IoT server. In other words, an AE resource for the IoT device is created under the CSE
resource of the IoT server. Subsequently, a container resource is created under the AE for the ‘thing’
connected to the IoT device, i.e., the temperature sensor. After that registration procedure, the IoT
device will create new contentInstance resources under the container if needed (e.g., at a regular
sensing interval), in which each contains the sensing value of the temperature sensor. The string
example of {27,56} represents a temperature of 27◦ in Celsius and a relative humidity of 56%.

While the IoT device creates new contentInstance resources, the AE residing in the smartphone
application on the right side of Figure 2 is able to get the sensing values via oneM2M standard-defined
REST APIs supported by the IoT server.

It provides two types of methods: request/response and subscription/notification. In the first
method (marked by the circled number of ‘1’), the smartphone AE sends a HTTP GET request
to the IoT server with the URL (uniform resource locator) linked to the contentInstance resource
it wants to get. If the request is asked with the appropriate privileges (called access control policy
in the oneM2M standard), the IoT server sends back the smartphone AE the HTTP response containing
the JSON (JavaScript object notation) or XML (extensible markup language) body, which stands for
the temperature sensor’s sensing value.
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Figure 2. The proposed sensing scenario using oneM2M standard-based sensing capabilities.
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Figure 3. The proposed actuation scenario using oneM2M standard-based actuation capabilities.

The second method (marked by the circled number of ‘2’) can be accomplished by the common
service function of the oneM2M platform, called ‘subscription/notification’. Since the smartphone
AE creates a subscription resource under the container which it is interested in, the IoT server
will notify its subscriber such as the smartphone AE of any events under the subscribed resource.
Accordingly, the smartphone AE will be able to get alerts as soon as new contentInstance
resources are created under the container (i.e., just after the IoT device measures new temperature
values and creates its corresponding contentInstance resources under the container). All these
subscription/notification procedures will be performed by the HTTP POST requests.

Figure 3 illustrates the actuation scenarios for IoT devices. On the left side of Figure 3, the AE
residing in the IoT device embedded with a lightbulb is registered to the IoT server. Subsequently,
the IoT device creates two container resources under the AE for the lightbulb, one for “light control”
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and the other for “status monitoring”. After that registration procedure, the IoT device will create
a new subscription resource (marked by the circled number of ‘1’) in order to get alerts as soon as
new contentInstance will be created under the container (i.e., to be notified of control messages
triggered by other IoT applications). The string example of {‘On’} represents a semantic command
of ‘turn the light on’.

On the right side of Figure 3, the smartphone AE can send the lightbulb incorporated into
the IoT device a control command by creating a new contentInstance under the container
for light control with the HTTP POST request. At the same time, the smartphone AE can create
a subscription resource under the container for status monitoring. The subscription/notification
function (marked by the circled number of ‘2’) is intended to get notified when the IoT device updates
its new status, e.g., ‘the light is now on’. Actually, this status monitoring procedure can be optional,
but it would be clearly helpful for the smartphone AE to monitor the change of status of the IoT
device, for example, to clarify whether the IoT device performs the control command properly or
not. Likewise the sensing scenario described above, the subscription/notification procedures for
the actuation scenario will be performed by the HTTP POST requests defined in the oneM2M standard.

4.2. oneM2M Middleware Platform for IoT Devices

With the sensing and actuation scenarios with oneM2M-based sensing and actuation capabilities
described above, we propose the architecture for the oneM2M middleware platform as shown
in Figure 4. Here, we assume that the IoT server is supported by the oneM2M server platform,
called the Mobius, described in the previous work [35].

IoT device

Uploader Downloader

Resource 
module

Notification 
module

TAS module

Application

TAS microserver

OS

Sensor

Hardware interface

Actuator

TAS TAS

Smartphone
application

Mobius

IoT server

REST API
(oneM2M-defined)

nCube (oneM2M device platform)

Mobius (oneM2M server platform)

Figure 4. The architecture for the oneM2M middleware platform.

The oneM2M device platform, called nCube, was originally presented in the previous work [25].
However, it was implemented as a Java program that requires the Java runtime environment
(JRE) and thus has some limitations, in particular for event-driven input/output applications of
resource-constrained IoT devices. In addition, from the point of view of fast and easy development,
we need to adopt another Web-based framework supported by a lot of community-developed codes
supporting a wide variety of hardware interfaces deployed in IoT devices. Accordingly, we propose
a new version of the architecture for the oneM2M device platform, as shown in Figure 4.

The nCube consists of six modules: Application, Uploader, Downloader, Resource module,
Notification module, and TAS module. In particular, a set of tiny software programs called
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‘thing adaptation software (TAS)’ are responsible for translating the messages transmitted from
sensors or to actuators of IoT devices through the corresponding hardware interfaces. In other words,
a TAS works as a software glue (i.e., middleware) translating proprietary sensor data formats and
actuator commands into oneM2M standard-defined resources or vice versa. Accordingly, the nCube
can be referred to as an IoT middleware platform as described in [3]. Also, a TAS is considered
as an interworking proxy entity (IPE) in the oneM2M standard offering interworking capabilities
between the oneM2M system (i.e., IoT devices) and non-oneM2M system (i.e., sensors and actuators).

Among various hardware interfaces, we mainly considered two types of interfaces: input/output
and communication, as summarized in Table 2. For input and output interfaces, we chose digital inputs
and outputs. For supporting communication interfaces, we selected UART, SPI, and I2C. Analog inputs
and outputs (i.e., analog-to-digital conversion and digital-to-analog conversion) could be supported
by employing additional hardware, for example, MCP3008 analog-to-digital converter (ADC) with SPI
communication interface. Because most of sensors and actuators used in widely deployed embedded
systems can be covered by the hardware interfaces listed in Table 2, all we need to do is to develop
the TAS program corresponding to each hardware interface.

Table 2. Hardware interfaces for the oneM2M middleware platform.

Types Hardware Interfaces

I/O Digital inputs and outputs

UART (universal asynchronous receiver-transmitter)
Communication SPI (serial peripheral interface)

I2C (inter-integrated circuit)

5. Implementation and Open Sources

5.1. Software Environment and Hardware Platform

For realizing the proposed IoT middleware platform, we need to consider two important aspects:
software environment and hardware platform appropriate to our implementation work, which shows
the practical feasibility of the oneM2M standard-based sensing and actuation capabilities.

First, Node.js was chosen for the software environment because it provides a JavaScript runtime
environment running real-time Web-based applications outside of a browser. Also, it can offer
non-blocking, asynchronous, event-driven input/output models, which would be very efficient
for resource-constrained IoT devices, e.g., single-thread machine frequently interacting with file
systems, networks, and peripherals. In addition, Node.js developers can be supported by open-source
communities (e.g., node package manager [36]) providing thousands of open-source libraries including
those for hardware interfaces. This open-source-based contribution has proved to be very effective
in development but also research works [37,38].

Second, the Raspberry Pi was chosen for our hardware platform because it offers all the hardware
interfaces listed in Table 2 but also a lot of Node.js packages tested for the Raspberry Pi are available
in open-source communities.

Finally, we have chosen ten types of hardware (nine sensors and one actuator) connected
to the Raspberry Pi via the hardware interfaces listed in Table 2. Table 3 summarizes the hardware
interfaces and Node.js modules (explained in the next section) for the sensors and actuator we have
chosen. Figure 5 demonstrates the photos of sensors and actuator in our implementation work;
(a) the eight-pushbutton matrix from WaveShare Electronics, (b) passive infrared (PIR) sensor
(HC-SR501), (c) ambient sound sensor from WaveShare Electronics, (d) capacitive touch sensor from
DFRobot, (e) temperature/humidity sensor (DHT11 module) from WaveShare Electronics, (f) ultrasonic
sensor (HC-SR04P), (g) particulate matter (PM) sensor (PMS7003 from Plantower Technology) with
USB-to-UART converter (PL2303 from WaveShare Electronics), (h) accelerometer (ADXL345 from



Sensors 2019, 19, 4567 9 of 18

Analog Devices embedded module), (i) ambient light sensor from DFRobot with analog-to-digital
converter (MCP3008 from Microchips), (j) RGB LED module from DFRobot.

Table 3. The sensors and actuators chosen for our implementation work and corresponding Node.js
package deployed.

Types Sensors and Actuators Hardware Interfaces Node.js Modules

Pushbutton Digital input onoff [39]
Passive infrared (PIR) sensor Digital input onoff [39]
Ambient sound sensor Digital input onoff [39]
Capacitive touch sensor Digital input onoff [39]

Sensors Temperature sensor Digital input node-dht-sensor [40]
Ultrasonic sensor Digital input/output pigpio [41]
Particulate matter sensor UART serialport [42]
Accelerometer I2C i2c-bus [43]
Ambient light sensor (with ADC) SPI spi-device [44]

Actuators RGB LED Digital output onoff [39]

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5. The photos of sensors and actuators deployed in our implementation work; (a) eight-pushbutton
matrix, (b) passive infrared (PIR) sensor, (c) ambient sound sensor, (d) capacitive touch sensor,
(e) temperature sensor, (f) ultrasonic sensor, (g) particulate matter sensor (left) with PL2303
USB-to-UART converter (right), (h) accelerometer, (i) ambient light sensor (left) with MCP3008
analog-to-digital converter (right), (j) RGB LED.
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5.2. Implementation of the oneM2M Platforms and TAS

The Node.js source code for the Mobius, oneM2M server platform, is available in the OCEAN
(Open allianCE for IoT stANdards), an open source-based global partnership project for IoT [45].
Developers can download all open-source software and codes for free and utilize them to develop
IoT products and services under the BSD3-clause license. We can create our own IoT server based
on the Mobius open-source. In this work, however, we employed the public Mobius-based IoT server
providezd by Korea Electronics Technology Institute (KETI) for research and education. One advantage
of using the KETI’s public IoT server is that we can use the Web-based oneM2M resource monitoring
application that makes it easy to monitor sensing values and actuation commands of the IoT devices
in real-time. Further details will be described in the next section.

The nCube, oneM2M middleware platform, has been developed using various open-source
Node.js libraries, including express, fs, util, http, ip, url, coap, mqtt, websocket that are available
in their GitHub repositories. The latest version of the nCube is available in the OCEAN Developer
homepage [46]. The nCube is installed on the Raspberry Pi 3 Model B+ and configured to be registered
with the KETI’s IoT server, i.e., create an AE for the Raspberry Pi under the CSE resource of the IoT server.

The most important part of implementing the nCube is building the TAS software programs
for the sensors and actuator listed in Table 3, because they serve as the middleware programs
translating sensing and actuation messages with the sensors and actuator. We developed the TAS
programs using the widely used open-source Node.js libraries, including onoff for normal digital
inputs and outputs [39], node-dht-sensor for DHT11 temperature sensor [40], pigpio for HC-SR04P
ultrasonic sensor [41], serialport for UART communication [42], i2c-bus for I2C communication [43],
spi-device for SPI communication [44], as shown in the rightmost column of Table 3. Of course, other
Node.js libraries could be chosen and utilized to develop TAS programs supporting the hardware
interfaces. All the TAS programs we have developed are available for free in the GitHub repository [47].

5.3. Resource Monitoring and Android Application

Once the nCube and TAS programs are installed in the Raspberry Pi, they start performing
the functions of translating the sensing values into the corresponding oneM2M standard-based
resources or vice versa in case of actuators. Figure 6 presents the captured image of the oneM2M
resource monitor, which is only available in the public KETI’s IoT server. A similar standalone
application (not Web-based) for resource monitoring is available in the OCEAN [48].

In Figure 6, we can see that the AE for the Raspberry Pi is created with the name of sch19999999
under the CSE resource for the Mobius. Subsequently, 10 containers are created under the AE resource,
each of which is for the thing connected to the Raspberry Pi, i.e., nine sensors and one actuator. Here,
we can say that a TAS program is responsible for creating its corresponding container. It should be
noted that the rightmost column of the figure demonstrates the contentInstance and subscription
resources under their parents containers. The topmost contentInstance under the ledm container
is for the RGB LED actuator where ‘1’ stands for a control command such as ‘turn the red light
on.’ Otherwise, the other contentInstance resources represent the string-formatted latest measured
sensing values. For example, under the temp container, ‘24.0,58.0’ represents a temperature of 24◦ in
Celsius and a relative humidity of 58%. The subscription resource under the ledm container is created
by the Raspberry Pi (i.e., sch19999999) so that it could be notified when a new contentInstance is
created under the ledm container (i.e., a new control command is triggered by other applications).
The bottommost two subscription resources are created by the oneM2M application for Android
(explained the next paragraph) so that it could be notified when new sensing values are updated in the
pir and sound containers.
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CSE AE

container

contentInstance

subscription

subscription

Figure 6. A captured image of the oneM2M resource monitor.

A smartphone might be the most user-friendly device interacting with people in our daily
lives. Thus, a smartphone application working with the oneM2M platforms (i.e., Mobius and nCube)
will help normal users to experience the benefits of standards-based IoT products and services.
The OCEAN has already worked on an open-source project for developing an Android application
working with the oneM2M platforms [49]. However, it only offers the TAS programs for digital output
and UART communication interfaces. Accordingly, based on the open-source code in the OCEAN,
we created a new Android application working with the Mobius and nCube, as shown in Figure 7.
The Activity view mainly consists of four panels. The top panel is for setting the application, including
the IoT server’s IP address, button for connecting the server, button for retrieving sensing values,
sliding button for turning notification functions (i.e., MQTT) on. The second panel is for showing
the measuring values of seven sensors (pushbutton and capacitive touch sensor are not considered
in the application). Whereas the top five sensors can be retrieved by pressing the button named
‘Retrieve Data’ in the first panel, the time at which events are occurred in the PIR and ambient sound
sensors can be notified when new contentInstance are created under their container, i.e., when
someone is detected in a specified area of the PIR sensor and sound is detected around the space
of the ambient sound sensor. The third panel is for presenting the oneM2M-defined JSON objects
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contained in HTTP messages from the Mobius, which can be used efficiently when debugging. The last
one is for sending control commands to the RGB LED module, where the commands for turning
the red light on and off are translated into 1 and 2, turning the green light on and off into 3 and 4,
turning the blue light on and off into 5 and 6. The source code for the oneM2M Android application
we have developed is also available for free in the GitHub repository [50].

Panel for setting

Panel for 
sensing 
values

Panel for 
oneM2M-
defined 
JSON 
objects

Panel for 
actuation

Figure 7. The captured image of the oneM2M Android application.

6. Discussion and Remaining Challenges

The primary advantage of the proposed middleware platform is that it can provide sensing
and actuation capabilities of IoT devices while complying with one of widely used IoT standards
for the application service layer, oneM2M. IoT standards in the service layer like oneM2M focus
on interworking of its service layer to underlying networks like 4G/5G networks or other service
layer standards such as OCF (open connectivity foundation) or LwM2M (lightweight M2M) of
OMA (open mobile alliance). It should be emphasized that integrating of its physical hardware
interfaces to connected things (i.e., sensors and actuators) is also important to produce standards-based
IoT devices. Unfortunately, however, most service layer standards including oneM2M leave
parts of specification for integrating with legacy hardware interfaces of embedded systems such
as UART unspecified, remaining a significant implementation issue for developers. We focus
on this implementation issue and propose the oneM2M-based IoT middleware platform supporting
the mostly used hardware interfaces in embedded systems including UART, I2C, and SPI, which
enables developers to easily realize the commonly used sensing and actuation functions of IoT devices.
It can also leverage the already-existing embedded systems to be integrated with the IoT systems
newly constructed in the future.
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Although the functional and non-functional requirements analyzed in the survey literature [3]
(demonstrated in Table 1) are not comprehensively satisfied in the proposed IoT middleware
platform, it is summarized in Table 4 what requirements we tried to take into consideration and
how the requirements are realized in developing the oneM2M middleware platform. It should be also
noted that some requirements are not fulfilled in the proposed platform and remains our future work.

Table 4. A summary of how the functional and non-functional requirements are realized in the proposed
oneM2M-based middleware platform.

Type Requirements Support Descriptions

Resource discovery © oneM2M supported
Resource management © oneM2M supported

Functional Data management © oneM2M supported
Event management © oneM2M supported
Code management © oneM2M supported

Scalability 4 Implementation dependent
Real-time or timeliness © Node.js supported
Availability 4 Partially realized
Security 4 Partially realized

Non-functional Privacy × Need to be developed
Ease of deployment, maintenance, and use © oneM2M/Node.js supported
Interoperability © oneM2M/Node.js supported
Spontaneous interaction 4 Implementation dependent
Multiplicity × Need to be developed
Adaptability and flexibility × Need to be developed

Functional requirements

• Resource discovery:
The oneM2M specifications define the common services provided by the application service
layer in IoT systems, referred to as common service functions (CSFs) [51]. ‘Discovery’ is one
of the oneM2M-defined CSFs which allows IoT entities to send discovery requests to search
resources about applications and services.

• Resource management:
The ‘resources’ considered in Table 1 include battery-time, memory usage, and other data related
to application performance to make quality of service (QoS) reliable. Although some parts of this
requirement rely on its implementation, the oneM2M CSFs of ‘Application and Service Layer
Management’ and ‘Device Management’ could probably support these requirements.

• Data management:
The oneM2M CSF of ‘Data Management and Repository’ is responsible for providing data storage
and management converting aggregated data into a specific format and preparing for further
analytics such as semantic processing.

• Event management:
The oneM2M CSF of ‘Subscription and Notification’ can manage subscription to the resources
hosted in the oneM2M platform, and can provide notification containing the changes
on the resources to the address where the subscriber wants to receive them. Accordingly,
application and services can acquire all the information about the proper events in real-time.

• Code management:
The oneM2M CSF of ‘Device Management’ utilizes the already-existing technologies including
broadband forum (BBF) TR-069, OMA-DM, LwM2M for managing device capabilities. Of course,
code updating operations for IoT devices could be achieved with the help of management clients,
servers, and adapters defined in the oneM2M CSF specifications.
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Non-functional requirements

• Scalability:
An IoT platform needs to support rapidly growing numbers of IoT devices and keep a certain
level of QoS support. Although the scalability of an IoT platform is crucial, it highly depends
on implementation and performance in IoT servers rather than connected devices. Accordingly,
in support of a well-designed oneM2M-based IoT server we can say that our middleware platform
may deliver some level of QoS appropriate for the given environment and applications.

• Real-time or timeliness:
Our middleware platform is written in JavaScript and run on Node.js runtime environment
built on Chrome’s V8 JavaScript engine. Because Node.js works in a single-thread, event-driven,
non-blocking I/O model, it has shown powerful performance in building scalable network
applications handling massive number of network connections simultaneously. Therefore,
our proposed middleware platform written in Node.js would work well in real-time applications
requiring simultaneous file access, network connection, or input and output peripherals.

• Availability:
Availability could be achieved by ensuring some level of fault-tolerance. The developed IoT
platform does not deal with all fault tolerance issues that mainly occur in hardware interfaces.
However, a watchdog function is able to detect the failure of middleware components interacting
with hardware interfaces, and restart or reconnect if needed.

• Security:
Security is a very critical requirement in IoT solutions, and the oneM2M defines its security
framework including identification, authorization and authentication. Our middleware platform
can be registered to the oneM2M server (i.e., Mobius) as an application entity. It can attempt
to access a list of authorized resources hosted by the server with its server-generated unique
identifier and privileges, called access control policy. However, authentication and other security
components such as certificates still remain incomplete.

• Privacy:
A huge amount of data will be stored in IoT platforms, having great potential in providing
people with valuable services across different application domains. At the same time, however,
it leads to obvious privacy issues, for example, normal users obviously need to decide the level
of disclosure for the collected personal data to protect privacy. Our current IoT platform provides
no privacy-preserving solutions, but it would be possible to build a simple way by utilizing
semantic descriptor resources defined oneM2M container resources that can describe their
categories and impact in privacy concerns.

• Ease of deployment, maintenance, and use:
The oneM2M CSF of ‘Device Management’ allows the application entities registered to an oneM2M
server platform (i.e., our platform-installed devices) to be easily maintained through
existing device management technologies. Also, the Node.js-based implementation enables
the middleware components (i.e., Node.js modules) to be updated or replaced accordingly
without any high-level of technical expertise.

• Interoperability:
One of main advantages of the oneM2M standard is to provide oneM2M protocol bindings
with most common service layer protocols including HTTP [52], CoAP [53], MQTT [54],
and WebSocket [55], enabling interoperability and interworking in the application service layer.
Also, it defines a standardized ontology-based interworking [56]. All the functions supported by
our platform are exposed in the form of REST APIs, fostering collaboration in the domain of IoT.

• Spontaneous interaction:
The oneM2M CSFs of ‘Registration’ and ‘Device Management’ are responsible for interacting
with newly connected devices containing appropriate identifiers such as globally unique object
identifiers (OIDs). However, more efforts are needed to realize a truly plug-and-play experience
with minimal human intervention.
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• Multiplicity:
This requirement belongs to a part of intelligence for IoT devices, and the proposed IoT device
platform provides no analytic tools on data or decision-making procedures depending on resource
conditions, for example, recommending the most suitable (or currently available) one among
multiple IoT devices offering the same service, which is one area of our future work.

• Adaptability and flexibility:
Similar to the above requirement of multiplicity, we have not yet realized capabilities related
to adaptability and flexibility, which allows platform-equipped devices to adapt themselves
according to short-term or long-term changes in resource conditions, application scenarios,
and surrounding environments, remaining our future work.

7. Conclusions

With the advent of IoT-enabling technologies, it is reasonable to expect that our environment such
as home and workplace will be instrumented with a wide variety of IoT devices that probably rely
on heterogeneous hardware systems and different underlying networks. In the highly fragmented
IoT landscape, a software glue called IoT middleware plays a pivotal role in bridging the gap
between different IoT systems, helping them talk to each other and work together in a collaborative
manner. In particular, an IoT middleware solution should provide IoT devices with a translation
function with which the measured data from sensors and control commands to actuators can be
converted to the resources available in the Internet. Accordingly, we have proposed an oneM2M
standard-based middleware platform for IoT devices, called nCube having sensing and actuation
capabilities. The nCube enables sensing values and actuation commands to be translated into oneM2M
resources accessible via REST APIs in oneM2M-defined standardized ways. All the source codes
for the nCube, TAS (i.e., tiny middleware program for sensors and actuators), and Android application
we have developed are available in the GitHub repositories. We hope our contribution will help
other developers create new IoT products and applications that will enable to accessing each other
in a standardized manner.
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