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Abstract: With the aging of society, the number of fall accidents has increased in hospitals and care
facilities, and some accidents have happened around beds. To help prevent accidents, mats and
clip sensors have been used in these facilities but they can be invasive, and their purpose may be
misinterpreted. In recent years, research has been conducted using an infrared-image depth sensor as
a bed-monitoring system for detecting a patient getting up, exiting the bed, and/or falling; however,
some manual calibration was required initially to set up the sensor in each instance. We propose
a bed-monitoring system that retains the infrared-image depth sensors but uses semi-automatic
rather than manual calibration in each situation where it is applied. Our automated methods robustly
calculate the bed region, surrounding floor, sensor location, and attitude, and can recognize the spatial
position of the patient even when the sensor is attached but unconstrained. Also, we propose a means
to reconfigure the spatial position considering occlusion by parts of the bed and also accounting
for the gravity center of the patient’s body. Experimental results of multi-view calibration and
motion simulation showed that our methods were effective for recognition of the spatial position
of the patient.

Keywords: patient monitoring; bed-monitoring system; camera calibration; 3D point cloud; plane
detection; depth sensors; infrared-image sensors

1. Introduction

An aging population makes up a progressively larger proportion of society in developed countries
in recent years. With this trend, the number of accidents involving falls has increased in hospitals and
other care facilities [1–4]. Because possibly delayed discovery of such accidents is a life-threatening risk,
their early detection is important for these facilities. Some fall accidents happen during unmonitored
walking. For early detection of these accidents, fall-detection systems for use during walking have
been studied over the last few years [5–12]. The researchers used various devices, such as RGB cameras,
depth sensors, infrared sensors, and accelerometers.

Some fall accidents also have happened around beds, and fall-risk assessment tools have been used
to evaluate the risk of accidents involving falling from bed [13,14]. If a patient has been evaluated as
having a high risk of fall accidents, risk-mitigating measures are taken; these include attaching a sensor
to the patient to detect when they get up or when they get out of bed [15]. The main sensors in current
use to monitor patients are clip sensors that attaches to clothing, floor-mat sensors, and bed-mat
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sensors [16,17]. The clip sensor sounds an alarm when the clip is pulled. It is inexpensive but invasive.
The floor- and bed-mat sensors are noninvasive but occasionally do trigger false alarms, which are
burdens for medical staff [15]. Various sensors have been tested in recent years in an attempt to reduce
the false alarms. In some studies, multiple piezoelectric elements [18,19] or strain gauges [20] placed
on the bed recognized the position of the patient in the bed, while some other studies used ultrasonic
or infrared depth sensors [21–24] to recognize the position of the patient both in bed and out of bed.
In our study, we used an infrared depth sensor, which can obtain a wide range of depth information as
a depth image and can monitor patients day or night.

Some conventional methods using infrared depth sensors installed vertically from the ceiling
to the floor detect bed-exit and fall events by determining the position of the patient from the depth
image [22,25]. Although this simplifies the calculation of the position, installation work is required.
Although other conventional methods do not require ceiling installation of the sensors [23,24,26],
they have other drawbacks. The method proposed by Asano et al. [23] is limited to use under the
condition that only the bed and wall (not the floor) are imaged by the sensor. Methods by Ogura et al. [24]
and by Ni et al. [26] both require manual intervention to identify the part of the captured depth image
that includes the bed, and this laborious initial calibration is required every time the position of the
sensor or bed is changed.

Beyond simply detecting the bed region, other researchers have studied several alternative
methods that recognize spaces from a three-dimensional (3D) point cloud. Banerjee et al. [12] devised
a method that automatically detects the floor surface and recognizes floor-level falls by applying the
dense scale-invariant feature-transform (dense SIFT) method [27] and the random-sampling consensus
(RANSAC) algorithm [28] to the depth image. Nurunnabi et al., Limberger et al., and Vera et al. studied
methods for detecting planes from 3D point-cloud data [29–31]. In particular, Vera et al. [31] proposed
a specialized plane-detection method that combines range images with principal component analysis
(PCA) and 3D Hough transform. Although this method, known as the depth kernel-based Hough
transform (D-KHT) method, is fast and robust, because it was not designed for bed monitoring, it does
not calculate either the bed region or the sensor position and attitude (an angle of rotation).

We propose a bed-monitoring system that incorporates a semi-automatic initial-calibration
method using an infrared depth sensor attached in any position without installation on the ceiling.
This method automatically calculates the bed region, sensor position and attitude, and a spatial domain
for recognizing various behaviors such as sitting up in bed or getting out of bed. The floor and bed
surfaces are planar features in the space analyzed, therefore we extract them using PCA and k-means++

clustering [32]. There is also a difference in level between the floor and bed surfaces in the real space,
and the boundary appears as an edge on the depth image. We therefore distinguish between the floor
and bed regions using Canny’s edge-detection method [33,34]. Then, geometric calculation based on
principal component axes of the bed region automatically yield the sensor position and attitude and
the spatial position of the patient (see Section 2.2; we previously reported this approach in part at
a forum in 2017 [35]). Alternatively, the floor and bed regions can be extracted by the D-KHT method
(see Section 2.3). We compare the precision and calculation speeds of the D-KHT based depth sensor
calibration (DDC) and PCA based depth sensor calibration (PDC) methods in Section 3.

We also took into consideration error factors such as occlusion and gravity-center misalignment.
When the bed is not directly under the sensor, part of the bed region on the image is hidden by the head
of the bed, resulting in occlusion. Therefore, when the depth sensor measures the 3D position of the
surface of an object such as the patient, the person’s position as acquired by the sensor may be slightly
different from the actual gravity center of the patient. Because these occlusion and misalignment error
factors affect actual monitoring, we propose the following correction methods:

• Installation of the depth sensor in any position and attitude without installation on the ceiling,
such as on a tripod or on a bed fence. However, both the bed and floor need to be captured and
their total area needs to be larger than the wall area.

• Automatic calculation of the bed and floor regions, sensor position and attitude, and spatial domain.
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• Reconfiguration of the spatial domain considering occlusion by the head or foot of the bed.
• Reconfiguration of the spatial domain considering the gravity center of the patient.

Among these four, the automatic calculations of regions are incorporated into the PDC and DDC
methods. Our system automatically calculates a series of processes for the above initial calibration.
However, calibration may fail depending on the installation conditions; therefore, it is necessary
to visually check the calibration results and, in some cases, re-install.

2. Calibration Methods

2.1. System Configuration

The initial-calibration method of the bed-monitoring system uses an infrared depth sensor installed
in any position and attitude. As shown in Figure 1a, X, Y, and Z denote the length, width, and height
axes of the bed surface in the world coordinate system, respectively, and the X’, Y’, and Z’ axes denote
the horizontal, vertical, and optical axes in the sensor coordinate system, respectively. Both the origin
O and O’, which respectively indicate the world and sensor coordinate systems, were set as the focal
position of the sensor.
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Figure 1. System configuration and captured depth image.

The infrared depth sensor includes an infrared projector and an infrared camera. It can measure the
distance from the sensor to the object, i.e., the Z’ value of the object, by time of flight (TOF) or triangulation.
Figure 1b is a depth image drawn by converting linearly so as to become brighter as Z’ value increases
using an infrared depth sensor XTION PRO of ASUSTeK Computer Inc. Black regions with intensities
0 of Figure 1b are defective regions where we could not acquire depth data. The resolution of the XTION
PRO is 320 × 240 pixels, and 3D point cloud data (76,800 points) can be acquired simultaneously.
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Figure 1c is a schematic of the spatial domain; axes components Y and Z correspond to those
in Figure 1a. The space is divided into eight regions (I to VIII) with reference to the bed boundary and
preset threshold values d1 to d3. Threshold d1 is a height from the bed chosen to discern whether or not
the patient is in the bed, and threshold d2 is a height from the bed to discern whether the patient is
in a sitting or a sleeping position. The d3 is a height threshold from the floor to distinguish whether or
not the patient (or an object) is on the floor. If nobody is on the bed, the collected 3D points data do not
include region I or II. However, if the patient is asleep on the bed, the 3D points include region II, and if
the patient is sitting up on the bed, the 3D points also include region I. In addition, if the patient leaves
the bed, the 3D points include regions IV to VII, and if the patient falls on the floor, the 3D points also
include region VII and VIII. Previously, some conventional methods detected a patient’s getting up by
monitoring regions I and II and detected a patient’s getting out of bed or falling by monitoring regions
IV to VII [22,23].

In order to construct such a bed-monitoring system as we propose, it is necessary to recognize
the bed region on the captured image. If the sensor is installed in any position, it is also necessary
to recognize the position and attitude of the sensor. In practice, a simple method with an easy initial
setup is desirable. In the next two sections, we describe two initial-calibration methods, PDC and DDC,
for automatically calculating the bed region and the sensor position and attitude. We also describe how
to reconfigure the spatial domain while considering occlusion by the head of the bed and the gravity
center of the patient in the later Section 2.3.5, and finally, we describe the spatial-domain monitoring
method using these in Section 2.3.6.

2.2. PCA-Based Depth Sensor-Calibration (PDC) Method

The relationship between the captured-image coordinate (u, v) and sensor coordinates P′u,v is
expressed as

P′u,v = sIu,v


a(u−Cu)

−a(v−Cv)

1

, (1)

where Iu,v is an intensity of coordinate (u, v); s is a depth interval per unit intensity on Z’ axis, Cu and Cv

are the U and V axis coordinates of the optical center, in pixel; and a is a ratio between the focal length
and physical pixel size of the sensor. According to the sensor specifications, we used s = 1.6 cm/intensity,
(Cu, Cv) = (160, 120), and a = 0.003452.

Normally, the bed and floor surfaces are flat in real space, and both are the same gradient.
We therefore calculate the object gradient in the sensor coordinate system as N′u,v, the unit normal
vector of the surface of the object whose coordinate on the image are (u, v), by

N′u,v = fPCA3

{
P′i, j

∣∣∣u− b ≤ i ≤ u + b∩ v− b ≤ j ≤ v + b∩ Iu,v > 0
}
, (2)

where f PCA3 is a function to calculate the unit eigenvector of the third principal component (the third
largest eigenvalue of the covariance matrix); and b is the range of neighboring pixels used for the
gradient calculation (we used the empirical value b = 5 pixels). Because N′u,v appears as two vectors
with the point symmetry, we use a vector closer to P′u,v such that (N′u,v·P′u,v) > 0. The condition
Iu,v > 0 means that defective pixels are excluded.

N′u,v represents the gradient of the coordinates (u, v) in 3D space. We calculate N′u,v for the all
pixels on captured image using Equation (2) and make a gradient image using by

JRu,v

JGu,v

JBu,v

 = 254
2

(N′u,v + 1), (3)
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where JRu,v , JGu,v , and JBu,v are the red, green, and blue intensities in the coordinate (u, v), respectively,
and each of these three intensities is in the range of 0 to 254. Figure 2a shows the gradient image of the
captured depth image (Figure 1b) visualized by Equation (3). Equation (3) is an equation for linearly
rescaling N′u,v in which each element is in the range of −1 to 1 to a color image in which each element
is in the range of 0 to 254. It is used only for visualization in this paper and debugging of this system,
not directly for calibration.

Sensors 2019, 19, 4581 5 of 19 

 

for linearly rescaling 𝑵ᇱ௨,௩ in which each element is in the range of −1 to 1 to a color image in which 
each element is in the range of 0 to 254. It is used only for visualization in this paper and debugging 
of this system, not directly for calibration. 

As shown in Figure 2a, the bed and floor regions are the same color, indicating that these surfaces 
are the same gradient in real 3D space. In addition, these regions occupy a large area on the image. 
We therefore using k-means++ algorithm [32] to clustered 𝑵ᇱ௨,௩; we set the number of clusters k = 4 
and extracted the class with the largest area. The horizontal plane region Φ is defined by pixels 
belonging to this largest class. The result of extracting Φ from the captured depth image (Figure 1b) 
is shown in Figure 2b. 

 
(a) Gradient image 

 
(b) Region Φ 

 
(c) Edge image 

 
(d) Mask image 

 
(e) Bed region Ψ 

Figure 2. Extraction of bed region using the principal component analysis-based depth-sensor 
calibration (PDC) method. 

The region Φ includes the bed, floor, and other horizontal surfaces such as the upper surface of 
the shelf. These boundaries usually have steps, and in the case of depth images, the steps appear as 
edges with high-intensity gradients. To distinguish these regions, we extract the edges by applying 
the widely used Canny algorithm [33,34] and taking a mask (logically multiplying) of Φ and the edges. 
Figure 2c,d shows the results of detecting the edge of the captured depth image (Figure 1b) and the 
mask image, respectively. The Canny algorithm requires edge extraction thresholds T1 and T2 and a 
parameter σ. These will be examined in the pre-experiment in Chapter 3. Note that T1, T2, and σ in 
Figure 2c were calculated as 50, 100, and 3, respectively. Although the bed and floor surfaces are 
partially connected in the lower part of Figure 2b, they are separated in Figure 2d. 

Next, we extract only the bed region from the mask image. In this method, since the bed surface 
is the monitoring target, that surface area is normally the largest in the mask image. We therefore 
extract only the bed region by labeling the mask image and extracting the label with the maximum 
area. Figure 2e shows the result of extracting the bed region, Ψ, from the captured depth image 
(Figure 1b). 

Then, using the extracted horizontal-plane region Φ and the bed region Ψ, we automatically 
calculate the distance l between the sensor and the bed surface and the distance m between the sensor 
and the floor (Figure 1c). We also automatically calculate the sensor attitude (an angle of rotation of 
the sensor) R which is 3 × 3 matrix that relates the world coordinate system XYZ to the sensor 
coordinate system X’Y’Z’ as ሾ𝑿 𝒀 𝒁ሿ⊤ = 𝑹ሾ𝑿′ 𝒀′ 𝒁′ሿ⊤. (4)

When PCA is performed again on the sensor coordinate values 𝑷ᇱ௨,௩ of the pixels in the bed 
region Ψ, the eigenvectors of the first, second and third principal components respectively indicate 
the bed length (long axis), bed width (short axis), and the gradient of the bed surface in the sensor 
coordinate system. Because these directions are defined as X, Y, and Z axes in the world coordinate 
system, R can be obtained by 𝑹 = 𝑓௉஼஺൛𝑷′௨,௩ห(𝑢, 𝑣) ∈ 𝛹ൟ, (5)

where fPCA is a function to calculate the unit eigenvectors of the three principal components. 
From the calculated sensor attitude R, world coordinate value Pu,v of the image coordinates (𝑢, 𝑣) can be derived by 

Figure 2. Extraction of bed region using the principal component analysis-based depth-sensor calibration
(PDC) method.

As shown in Figure 2a, the bed and floor regions are the same color, indicating that these surfaces
are the same gradient in real 3D space. In addition, these regions occupy a large area on the image.
We therefore using k-means++ algorithm [32] to clustered N′u,v; we set the number of clusters k = 4 and
extracted the class with the largest area. The horizontal plane region Φ is defined by pixels belonging
to this largest class. The result of extracting Φ from the captured depth image (Figure 1b) is shown
in Figure 2b.

The region Φ includes the bed, floor, and other horizontal surfaces such as the upper surface
of the shelf. These boundaries usually have steps, and in the case of depth images, the steps appear as
edges with high-intensity gradients. To distinguish these regions, we extract the edges by applying the
widely used Canny algorithm [33,34] and taking a mask (logically multiplying) of Φ and the edges.
Figure 2c,d shows the results of detecting the edge of the captured depth image (Figure 1b) and the
mask image, respectively. The Canny algorithm requires edge extraction thresholds T1 and T2 and
a parameter σ. These will be examined in the pre-experiment in Chapter 3. Note that T1, T2, and σ

in Figure 2c were calculated as 50, 100, and 3, respectively. Although the bed and floor surfaces are
partially connected in the lower part of Figure 2b, they are separated in Figure 2d.

Next, we extract only the bed region from the mask image. In this method, since the bed surface
is the monitoring target, that surface area is normally the largest in the mask image. We therefore
extract only the bed region by labeling the mask image and extracting the label with the maximum area.
Figure 2e shows the result of extracting the bed region, Ψ, from the captured depth image (Figure 1b).

Then, using the extracted horizontal-plane region Φ and the bed region Ψ, we automatically
calculate the distance l between the sensor and the bed surface and the distance m between the sensor
and the floor (Figure 1c). We also automatically calculate the sensor attitude (an angle of rotation of the
sensor) R which is 3 × 3 matrix that relates the world coordinate system XYZ to the sensor coordinate
system X’Y’Z’ as [

X Y Z
]>

= R
[

X′ Y′ Z′
]>

. (4)

When PCA is performed again on the sensor coordinate values P′u,v of the pixels in the bed region
Ψ, the eigenvectors of the first, second and third principal components respectively indicate the bed
length (long axis), bed width (short axis), and the gradient of the bed surface in the sensor coordinate
system. Because these directions are defined as X, Y, and Z axes in the world coordinate system, R can
be obtained by

R = fPCA
{
P′u,v

∣∣∣(u, v) ∈ Ψ
}
, (5)

where fPCA is a function to calculate the unit eigenvectors of the three principal components.
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From the calculated sensor attitude R, world coordinate value Pu,v of the image coordinates (u, v)
can be derived by

Pu,v =


Xu,v

Yu,v

Zu,v

 = RP′u,v, (6)

where Xu,v, Yu,v, and Zu,v are respectively defined as X, Y, and Z components of Pu,v. Given that each
eigenvector in Equation (5) appears as two vectors with the point symmetry, we used the vector where
Zu,v > 0.

In the bed region Ψ, 
X̃
Ỹ
Z̃

 = {
Pu,v

∣∣∣(u, v) ∈ Ψ
}
, (7)

where X̃, Ỹ, and Z̃ correspond to the set of Xu,v, Yu,v, and Zu,v (lengths, widths, heights in the world
coordinate system of 3D points on the bed surface). We calculate a height from the bed surface to the
sensor (Figure 1c), l, by

l = fAve
(
Z̃
)
, (8)

where fAve is a function to obtain the average value.
In addition, many pixels in the horizontal surface region Φ excluding the bed surface region Ψ

represent the floor surface. However, since it does not represent only the floor surface, m is calculated by

m = fMode(Zu,v
∣∣∣(u, v) ∈ Φ ∩ (u, v) < Ψ), (9)

where fMode is a function to obtain the mode value. The mode is calculated by making a histogram
with interval width τ and extracting the value with the maximum frequency. We set τ = 0.1 cm
in consideration of the resolution of the sensor. Details of the spatial domain division (Figure 1c) using
these parameters are described in Section 2.3.6.

2.3. D-KHT Based Depth-Sensor Calibration (DDC) Method

We based our depth sensor initial-calibration method (DDC) on the D-KHT method proposed
by Vera et al. [31]. They also calculated the gradient of the depth image using Equation (1) and PCA.
However, they computed recursively and in block units using Quadtree instead of incorporating all
pixel calculations as we proposed in Section 2.2. Their method, using Quadtree, can calculate faster
than the method that uses all pixels. They used Quadtree’s recursive division criterion (st) as the square
root of the third eigenvalue of PCA (i.e., the standard deviation of the distance between the plane and
the point). Figure 3a shows the result of calculating the gradient of Qi as Ni = (Ni,x, Ni,y, Ni,z) of the
image (Figure 1b), where the ith Quadtree is Qi, st = 2 cm, and color coding is based on Equation (3).
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Vera et al. [31] then converted Ni to 3D polar coordinates µi = (µi,ρ, µi,ϕ, µi,θ) using Equation (10)
and voted the 3D voxel space Wρ,ϕ,θ in consideration of the area of Quadtree and the probability
density function (PDF) of the Gaussian distribution.

µi =


µi,ρ
µi,ϕ
µi,θ

 =


Ni·Mi
cos−1(Ni,z)

tan−1
(

Ni,y
Ni,x

)
, (10)

where Mi is the average value of P′u,v in the Quadtree; and Sρ, Sϕ, and Sθ are voxel sizes of ρ, ϕ, and θ
in the Wρ,ϕ,θ, respectively. Subsequently, they smoothed the Wρ,ϕ,θ with a low-pass filter and used the
polar coordinates (ρ, ϕ, θ) of the local maximum of the Wρ,ϕ,θ as planes.

Because Vera et al. [31] aimed at plane extraction, not bed-region extraction, we propose
a method to extract bed- and floor-region candidates by the following procedure of Sections 2.3.1–2.3.4
and Sections 2.3.4.3 and 2.3.4.4.

2.3.1. Step 1: Calculation of Horizontal-Plane Polar Coordinates ϕ′ and θ′

The bed and floor surfaces are the same gradient. That means the polar coordinates (ϕ,θ) of the
bed surface are equal to the polar coordinates (ϕ,θ) of the floor surface. They also occupy a large area
in the image. Therefore, we respectively set the mode values of ϕ and θ as the horizontal-plane polar
coordinates ϕ′ and θ′ which represent the bed or floor surfaces. Using the same voxel voting space
Wρ,ϕ,θ as Vera et al. [31], these are calculated by

(ϕ′,θ′) = argmax
(ϕ,θ)

(
∑
ρ Wρ,ϕ,θ). (11)

2.3.2. Step 2: Calculation of the Distance between the Sensor and Floor ρ′

We set the voxel space of coordinate (ϕ′,θ′) as a horizontal-plane space Wρ,ϕ′,θ′ and set the
distance between the sensor and the floor calculated in this procedure as ρ′. We set the local maximum
value of Wρ,ϕ′,θ′ farthest from the sensor as ρ′.

2.3.3. Step 3: Calculation of Distance ρ′′ between the Sensor and the Bed

We set the distance between the sensor and bed calculated in this procedure as ρ′′ . Assuming that
the bed surface is a large area between the floor surface and the sensor, ρ′′ is calculated by

ρ′′ = argmax
ρ

(
Wρ,ϕ′,θ′

∣∣∣0 < ρ < ρ′ − δ ), (12)

where δ, given as a constant in advance, is the lower limit of the height of the bed (to prevent erroneous
extraction). The polar coordinates (ρ′′ ,ϕ′,θ′) represent the bed surface.

2.3.4. Step 4: Calculation of the Floor Surface Φ and Bed-Region Candidate Ω

In this procedural step, we propose two alternatives for calculating the floor surface Φ and
bed-region candidate Ω. The first (DDC-D) calculates the bed region with high-density pixel units,
and the second (DDC-S) calculates the bed region at high speed in block units of the Quadtree. For both,
extraction thresholds ηρ, ηϕ, and ηθ are given as constants in advance.
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Alternative 1: DDC Method with High Density (DDC-D)

For all pixels in the image, gradients N′u,v =
(
N′u,v,x, N′u,v,y, N′u,v,z

)
are calculated by using

Equation (2) and polar coordinates νu,v are calculated by

νu,v =


νu,v,ρ

νu,v,ϕ

νu,v,θ

 =


N′u,v·P′u,v

cos−1(N′u,v,z)

tan−1
(

N′u,v,y
N′u,v,x

)
. (13)

If the pixel (u, v) is the floor surface, νu,v is approximately equal to (ρ′,ϕ′,θ′). We therefore
calculate Φ as follows:

Φ =


[

u
v

]∣∣∣∣∣∣∣∣∣
ρ′ − ηρ < νu,v,ρ < ρ′ + ηρ
∩ϕ′ − ηϕ < νu,v,ϕ < ϕ′ + ηϕ
∩θ′ − ηθ < νu,v,θ < θ

′ + ηθ

. (14)

Also, if the pixel (u, v) is the bed region, νu,v is approximately equal to (ρ′′ ,ϕ′,θ′) of Section 2.3.3.
We therefore calculate Ω as follows:

Ω =


[

u
v

]∣∣∣∣∣∣∣∣∣
ρ′′ − ηρ < νu,v,ρ < ρ′′ + ηρ
∩ϕ′ − ηϕ < νu,v,ϕ < ϕ′ + ηϕ
∩θ′ − ηθ < νu,v,θ < θ

′ + ηθ

. (15)

Red and blue in Figure 3b show the calculation results of Ω and Φ of the image (Figure 3a) using
Equation (15) and Step 2, respectively. We used the following constants: δ = 15 cm, ηρ = 10 cm,
ηϕ = 20◦, ηθ = 20◦, Sρ = 2 cm, Sϕ = 1◦, and Sθ = 1◦.

Alternative 2: DDC Method at High Speed (DDC-S)

Recalculation for each pixel is not performed, and horizontal plane Φ is considered the floor
surface if the Quadtree is used directly and following is satisfied:

Φ =

∀
[

u
v

]
∈ Qi

∣∣∣∣∣∣∣∣∣
ρ′ − ηρ < µi,ρ < ρ

′ + ηρ
∩ϕ′ − ηϕ < µi,ϕ < ϕ

′ + ηϕ
∩θ′ − ηθ < µi,θ < θ

′ + ηθ

. (16)

Similarly, Ω is considered a bed-region candidate if the Quadtree is used directly and following
is satisfied:

Ω =

∀
[

u
v

]
∈ Qi

∣∣∣∣∣∣∣∣∣
ρ′′ − ηρ < µi,ρ < ρ′′ + ηρ
∩ϕ′ − ηϕ < µi,ϕ < ϕ

′ + ηϕ
∩θ′ − ηθ < µi,θ < θ

′ + ηθ

. (17)

2.3.4.3. Step 5: Calculation of the Bed-Region Ψ

Although red in Figure 3b indicates the bed-region candidate, there are some small red areas
outside the bed because Ω is extracted not only for the bed surface but also for horizontal surfaces at
the same height as the bed. We therefore implement the labeling method for Ω as in Section 2.2 and
use a label with the largest area as the final bed region Ψ. Figure 3c shows the result of extracting Ψ
from Figure 3b.

2.3.4.4. Step 6: Automatic Calculation of the Sensor Attitude R and Distances l and m

Although it is possible to calculate the sensor attitude R and distances l and m directly using
(ρ,ϕ,θ), the Hough transform generates quantization errors [36]. Instead, we calculate R, l, and m by
the PDC method (see Section 2.2), using Equations (5) through (9).
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2.3.5. Reconfiguration of the Bed Region

Figures 4 and 5 show schematic views of the XZ and YZ axes cross sections (Figure 1a), respectively.
The bed regions as shown in Figures 2e and 3c seemed capable of being extracted, but part of the bed
region is hidden by the head of the bed; this “occlusion,” shown in Figure 4, does not occur at the foot
of the bed (in this case), as it happens where the obstruction is closer to the sensor end of the bed.
Therefore, we measure the bed length d4 beforehand, and if the automatically calculated result for bed
length is shorter than d4, the bed region is extended toward the sensor end. Also, in order to exclude
the head and foot of the bed from the bed region, we shorten the bed region by 2ε, as illustrated
in Figure 4.
Sensors 2019, 19, 4581 9 of 19 

 

 
Figure 4. Occlusion by head and foot of bed. 

 
Figure 5. Difference between body surface and gravity center. 

The values of 𝑋෨ and 𝑌෨  obtained by Equation (7) are used in Equation (18) to calculate bed edge 
coordinates Xmin, Xmax, Ymin, and Ymax, and the bed-edge coordinates (Xmin, Xmax, Ymin, and Ymax), and 
the bed region is expanded and contracted using Equations (19) and (20). 

൦𝑋୫୧୬𝑋୫ୟ୶𝑌୫୧୬𝑌୫ୟ୶ ൪ = ⎣⎢⎢
⎢⎡min൫𝑋෨ห𝐿௑୫୧୬ < 𝑋෨ < 𝐿௑୫ୟ୶൯max൫𝑋෨ห𝐿௑୫୧୬ < 𝑋෨ < 𝐿௑୫ୟ୶൯min൫𝑌෨ห𝐿௒୫୧୬ < 𝑌෨ < 𝐿௒୫ୟ୶൯max൫𝑌෨ห𝐿௒୫୧୬ < 𝑌෨ < 𝐿௒୫ୟ୶൯⎦⎥⎥

⎥⎤, (18)

𝑋୫న୬෣ = ൜ 𝑋୫ୟ୶ − 𝑑ସ + 𝜀  |𝑋୫୧୬ > 0 ∩ 𝑋୫ୟ୶ − 𝑋୫୧୬ < 𝑑ସ𝑋୫୧୬ + 𝜀            |𝑋୫୧୬ ≤ 0 ∪ 𝑋୫ୟ୶ − 𝑋୫୧୬ ൒ 𝑑ସ, (19)

𝑋୫ୟ୶෣ = ൜ 𝑋୫୧୬ + 𝑑ସ − 𝜀 |𝑋୫ୟ୶ < 0 ∩ 𝑋୫ୟ୶ − 𝑋୫୧୬ < 𝑑ସ𝑋୫ୟ୶ − 𝜀          |𝑋୫ୟ୶ ൒ 0 ∪ 𝑋୫ୟ୶ − 𝑋୫୧୬ ൒ 𝑑ସ, (20)

where, 𝑋୫న୬෣  and 𝑋୫ୟ୶෣  are bed-edge coordinates after expansion and contraction (Figure 4); and 𝐿௑୫୧୬, 𝐿௑୫ୟ୶, 𝐿௒୫୧୬, and 𝐿௒୫ୟ୶ are threshold values for excluding outliers. The latter (L values) are 
calculated using the interquartile method [37]. 

Ceiling
Depth image sensor

Bed

Floor 

X

Z
Foot of bedHead of bed

occlusion

Figure 4. Occlusion by head and foot of bed.

Sensors 2019, 19, 4581 9 of 19 

 

 
Figure 4. Occlusion by head and foot of bed. 

 
Figure 5. Difference between body surface and gravity center. 

The values of 𝑋෨ and 𝑌෨  obtained by Equation (7) are used in Equation (18) to calculate bed edge 
coordinates Xmin, Xmax, Ymin, and Ymax, and the bed-edge coordinates (Xmin, Xmax, Ymin, and Ymax), and 
the bed region is expanded and contracted using Equations (19) and (20). 

൦𝑋୫୧୬𝑋୫ୟ୶𝑌୫୧୬𝑌୫ୟ୶ ൪ = ⎣⎢⎢
⎢⎡min൫𝑋෨ห𝐿௑୫୧୬ < 𝑋෨ < 𝐿௑୫ୟ୶൯max൫𝑋෨ห𝐿௑୫୧୬ < 𝑋෨ < 𝐿௑୫ୟ୶൯min൫𝑌෨ห𝐿௒୫୧୬ < 𝑌෨ < 𝐿௒୫ୟ୶൯max൫𝑌෨ห𝐿௒୫୧୬ < 𝑌෨ < 𝐿௒୫ୟ୶൯⎦⎥⎥

⎥⎤, (18)

𝑋୫న୬෣ = ൜ 𝑋୫ୟ୶ − 𝑑ସ + 𝜀  |𝑋୫୧୬ > 0 ∩ 𝑋୫ୟ୶ − 𝑋୫୧୬ < 𝑑ସ𝑋୫୧୬ + 𝜀            |𝑋୫୧୬ ≤ 0 ∪ 𝑋୫ୟ୶ − 𝑋୫୧୬ ൒ 𝑑ସ, (19)

𝑋୫ୟ୶෣ = ൜ 𝑋୫୧୬ + 𝑑ସ − 𝜀 |𝑋୫ୟ୶ < 0 ∩ 𝑋୫ୟ୶ − 𝑋୫୧୬ < 𝑑ସ𝑋୫ୟ୶ − 𝜀          |𝑋୫ୟ୶ ൒ 0 ∪ 𝑋୫ୟ୶ − 𝑋୫୧୬ ൒ 𝑑ସ, (20)

where, 𝑋୫న୬෣  and 𝑋୫ୟ୶෣  are bed-edge coordinates after expansion and contraction (Figure 4); and 𝐿௑୫୧୬, 𝐿௑୫ୟ୶, 𝐿௒୫୧୬, and 𝐿௒୫ୟ୶ are threshold values for excluding outliers. The latter (L values) are 
calculated using the interquartile method [37]. 

Ceiling
Depth image sensor

Bed

Floor 

X

Z
Foot of bedHead of bed

occlusion

Figure 5. Difference between body surface and gravity center.

The values of X̃ and Ỹ obtained by Equation (7) are used in Equation (18) to calculate bed edge
coordinates Xmin, Xmax, Ymin, and Ymax, and the bed-edge coordinates (Xmin, Xmax, Ymin, and Ymax),
and the bed region is expanded and contracted using Equations (19) and (20).


Xmin

Xmax

Ymin

Ymax

 =


min
(
X̃
∣∣∣LXmin < X̃ < LXmax

)
max

(
X̃
∣∣∣LXmin < X̃ < LXmax

)
min

(
Ỹ
∣∣∣∣LYmin < Ỹ < LYmax

)
max

(
Ỹ
∣∣∣∣LYmin < Ỹ < LYmax

)


, (18)
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X̂min =

{
Xmax − d4 + ε |Xmin > 0∩Xmax −Xmin < d4

Xmin + ε |Xmin ≤ 0∪Xmax −Xmin ≥ d4
, (19)

X̂max =

{
Xmin + d4 − ε |Xmax < 0∩Xmax −Xmin < d4

Xmax − ε |Xmax ≥ 0∪Xmax −Xmin ≥ d4
, (20)

where, X̂min and X̂max are bed-edge coordinates after expansion and contraction (Figure 4); and LXmin,
LXmax, LYmin, and LYmax are threshold values for excluding outliers. The latter (L values) are calculated
using the interquartile method [37].


LXmin

LXmax

LYmin

LYmax

 =


fQ1
(
X̃
)
− 1.5

(
fQ3

(
X̃
)
− fQ1

(
X̃
))

fQ3
(
X̃
)
+ 1.5

(
fQ3

(
X̃
)
− fQ1

(
X̃
))

fQ1
(
Ỹ
)
− 1.5

(
fQ3

(
Ỹ
)
− fQ1

(
Ỹ
))

fQ3
(
Ỹ
)
+ 1.5

(
fQ3

(
Ỹ
)
− fQ1

(
Ỹ
))

, (21)

where, fq1 and fq3 are functions to calculate the first and third quartiles, respectively.
Furthermore, since the depth sensor acquires the surface shape, the patient position acquired

by the sensor may be slightly different from the actual gravity center of the patient. For example,
if the patient protrudes halfway from the end of the bed on the sensor side (e.g., “Human Model 1”
in Figure 5), the patient’s image is in the blue-arc position, mostly outside the bed. Conversely, if the
patient protrudes halfway from the end of the bed opposite the sensor side (e. g., “Human Model 2”
in Figure 5), the patient’s image is in the red-arc position, mostly inside the bed. As a result, if the patient
gets out of or falls off the bed on the opposite side of the sensor, the alarm sensitivity will be poor.

To address this problem, we consider human models with a radius r that protrude halfway from
the end of the bed as shown in Figure 5, where r is set in advance. Next, we calculate differences e1 and
e2 between surface center positions and gravity-center positions of the human models using

e1 = r sinϕ1 = r sin

sin−1 Ymin√
(l− r)2 + Ymin

2

 = rYmin√
(l− r)2 + Ymin

2
, (22)

and

e2 = r sinϕ2 = r sin

sin−1 Ymax√
(l− r)2 + Ymax2

 = rYmax√
(l− r)2 + Ymax2

. (23)

Finally, bed positions Ymin and Ymax are moved to Ŷmin and Ŷmax respectively using

Ŷmin = Ymin − e1, (24)

and
Ŷmax = Ymax − e2, (25)

where X̂min, X̂max, Ŷmin, and Ŷmax are initial calibration variables; and e1 and e2 are the surface- and
gravity-center differences, as calculated in Equations (22) and (23), respectively.
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2.3.6. Recognition of the Spatial Domain

In the actual monitoring process, using the previously calculated initial-calibration variables, we derive
the world coordinate values Pu,v = (Xu,v, Yu,v, Zu,v) by applying Equations (1) and (6) to each pixel (u, v)
on the monitoring image. Then the eight spatial domains Du,v (Figure 1c) are calculated by

Du,v =



I
∣∣∣Eu,v = 1∩Zu,v ≤ l− d2

II
∣∣∣Eu,v = 1∩ l− d2 < Zu,v ≤ l− d1

III
∣∣∣Eu,v = 1∩ l− d1 < Zu,v

IV
∣∣∣Eu,v = 0∩Zu,v ≤ l− d2

V
∣∣∣Eu,v = 0∩ l− d2 < Zu,v ≤ l− d1

VI
∣∣∣Eu,v = 0∩ l− d1 < Zu,v ≤ l

VII
∣∣∣Eu,v = 0∩ l < Zu,v ≤ m− d3

VIII
∣∣∣Eu,v = 0∩m− d3 < Zu,v



, (26)

where Eu,v is a variable indicating whether location is inside or outside the bed region (1 or 0,
respectively) as

Eu,v =

 1
∣∣∣∣X̂min ≤ Xu,v ≤ X̂max ∩ Ŷmin ≤ Yu,v ≤ Ŷmax

0
∣∣∣∣Xu,v

〈
X̂min ∪Xu,v

〉
X̂max ∪Yu,v

〈
Ŷmin ∪Yu,v

〉
Ŷmax

. (27)

Finally, the number of pixels (area) included in each domain is counted, and automatic detection
of action such as sitting up in bed or exiting the bed is performed by using the area variation
of each domain.

3. Experimental Results and Discussions

3.1. Experimental Methods

We devised experimental methods to verify the effectiveness of our proposed method for bed
monitoring. First, we set the ASUS XTION PRO depth sensor (resolution: 320× 240 pixel) at 18 viewpoints
H1,j to H6,j (six X–Y locations, at three heights from the floor: j = 1.5, j = 1.8, and j = 2.0 m) (Figure 6) and
take depth images with the bed fence down. (The height difference between the bed surface and the
bed fence is 4 cm) Next, we conducted the pre-experiments for examining the optimal parameters of the
Canny algorithm of the PDC method in Section 2.2. The results are described in Section 3.2. Afterwards,
we compare the calibration precision and time of the three methods (PDC, DDC-D, and DDC-S) described
earlier in Section 2, by running Experiments 1 through 4 below. We also verified the previously discussed
reconfiguration of the bed region and recognition of the spatial domain in Experiments 5 and 6 below.
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Since the PDC method recognizes a label having the maximum area as a bed area, the bed area
must be taken larger than the floor area. Also, our system requires is that both the bed and floor are
taken and this total area is larger than the wall area. Therefore, in the above Experiments 1 through
6, the sensor was installed so as to satisfy these conditions. On the other hand, in order to verify
these conditions themselves, we experimented without satisfying these conditions in Experiment 7.
These methods are shown in Section 3.1.7 and results are shown in Section 3.5.

The experiments in this section are accuracy verification experiments of the proposed method.
Although we should compare with some conventional methods, conventional methods listed in this
paper [23,24,26] did not have detailed designs sufficient to reproduce; therefore, we excluded the
comparison with the conventional method.

3.1.1. Experiment 1

The height of the bed as measured (46 cm) is compared to the value calculated, which is the
average of 18 viewpoints of (m − l). The standard deviation of (m − l) is also calculated and discussed.

3.1.2. Experiment 2

The width of the bed as measured (95 cm) is compared to the value calculated, which is the average
of the bed width |Ymax −Ymin| obtained during calibration. The standard deviation of |Ymax −Ymin| is
also calculated and discussed.

3.1.3. Experiment 3

The image coordinates set K of the four corners of the bed is calculated using

B =


Xmin Xmin Xmax Xmax

Ymin Ymax Ymin Ymax

l l l l

, (28)

and
B′ = R−1B, (29)

where, B and B’ are the coordinates set of the four bed corners in the world coordinate and sensor
coordinate systems, respectively, and

K =

[
1 0 0
0 −1 0

]
1

aZ̃B
′
B
′

+

[
Cu Cu Cu Cu

Cv Cv Cv Cv

]
. (30)

Next, we visually evaluate whether K properly indicates the bed corners, according to the
following criteria:

• 3 points when K correctly indicates the actual corner points using default parameters.
• 2 points when K correctly indicates the actual corner points after changing the parameters.
• 1 point when K deviates from the actual corner points even if any parameter is used.
• 0 point when K does not indicate the actual corner points.

The default parameters are results of empirical calculations for the highest precision and are
the same as in the “Calibration Method” section. Specifically, we used the range of neighboring
pixels b = 5 in Equation (2), the number of clusters k = 4 in the k-means++ algorithm, the Quadtree’s
recursive-division criterion st = 2 cm, the lower limit of the height of the bed δ = 15 cm in Equation
(12), the extraction thresholds of the horizontal plane ηρ = 10 cm, ηϕ = 20◦, and ηθ = 20◦, and voxel
sizes Sρ = 2 cm, Sϕ = 1◦, and Sθ = 1◦. The Canny parameters T1, T2, and σ will be examined in the
pre-experiment in Section 3.2.
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3.1.4. Experiment 4

Programs are built using only single-thread CPU in the following environment, and then the
processing times of the three methods (PDC, DDC-D, DDC-S) are compared:

• PC: Desktop computer, MDV-GX9200B made by Mouse Computer Co., LTD. equipped with
Windows 8.1.

• CPU: Intel Core i7-4820K 3.70 GHz
• RAM: 32.0 GB
• Development environment: Microsoft Visual C++ 2010
• Library: OpenCV 2.4.2 and OpenNI

3.1.5. Experiment 5

K is recalculated by replacing Xmin, Xmax, Ymin, and Ymax in Equations (28)–(30) with X̂min, X̂max,
Ŷmin, and Ŷmax respectively; the parameters r and ε are set to 20 and 10 cm, respectively; and the bed
length d4 is set to 198 cm from actual measurement. Whether the method described in the section
“Reconfiguration of the Bed Region” yields the expected result is verified visually.

3.1.6. Experiment 6

The motion of a patient’s getting out of bed is simulated, and we take the depth images of the
motion at 5 frames per second using the sensor installed at the viewpoint H4,2 (Figure 6). Thresholds
d1, d2, and d3 are set to 15, 50, and 30 cm, respectively, and then the spatial domain Du,v is calculated
for all images. Whether the method described in the section “Recognition of the Spatial Domain” is
correct is verified visually.

In this paper, given that we focus on initial calibration, verifications of r, d1, d2, and d3 are excluded.

3.1.7. Experiment 7

In order to confirm the limitations of our method, we experiment whether initial calibrations are
possible under the following two specific conditions.

• Install and take an image so that the floor area is larger than the bed area.
• Install and take an image so that the wall area is larger than the sum of the bed and floor areas.

In both cases, we installed the depth sensor at the position H4,1.5 in Figure 6 and took depth
images with the sensor tilted.

3.2. Results of Pre-Experiment

In order to investigate the optimal parameters of the Canny algorithm of the PDC method
in Section 2.2, we tried edge extractions under the following conditions for depth images (value range
0–255) taken from 18 viewpoints in Figure 6.

• T1 = {0, 50, 100}.
• T2 = {50, 100, 150, 200}, where T2 > T1.
• σ = {3, 5}.

Figure 7 shows processing results of captured images at the viewpoint of H2,1.5. In all cases
where σ = 5, too many lines were extracted (noisy). When σ = 3 and T1 = 0, the results were slightly
noisy. When σ = 3 and T1 = 100, the bed heads were lacking (arrow parts). When σ = 3, T1 = 50,
and T2 = {150, 200}, although they did not affect the calibration, the bed heads were slightly lacking
(arrow parts). Therefore, when σ = 3, T1 = 50, and T2 = 100, the edge could be extracted most
clearly. Since the same results were obtained from the other 17 viewpoints, we used the above values
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in Experiments 1 to 7. Note that the optimum parameters for the Canny algorithm may vary slightly
depending on the type of depth sensor used.
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3.3. Results and Discussion of Calibration Experiments (Experiments 1–4)

The results of the calibration experiments (1 through 4) are shown in Table 1 and Figure 8.
Across all three calibration methods (PDC, DDC-D, and DDC-S), the average values for Experiments
1 and 2 were close to the measured values 46 and 95 cm, respectively, and there were no significant
differences among the three methods. Also, the standard deviations for Results 1 and 2 were about
1 and 5 cm, respectively, and there were no significant differences among the three methods. Since the
resolution of the sensor used in the experiment is about 2 cm, all three methods were able to acquire
the bed height and width with accuracy close to sensor resolution.

Table 1. Results of calibration Experiments 1 through 4.

PDC DDC-D DDC-S

1. Height of bed (cm) Average 46.09 45.94 45.96
Standard deviation 0.93 0.92 1.05

2. Width of bed (cm) Average 94.25 96.29 93.72
Standard deviation 4.64 5.15 5.39

3. Visual observation (point) Average 3.00 2.94 2.06

4. Calibration time (ms) Average 1400 964 243
Standard deviation 110 71 65

In Result 3, only DDC-S yielded a low point score. To investigate this, we examined the data
progression during the calibration process. Figure 8 shows an example of the process of calibration
of the image acquired at viewpoint H2,2, and Figure 8a–c show the results of the three methods
of drawing the bed region as rectangles made by calculating K, using Equation (30). Figure 8d shows
the result of drawing Ω and Φ regions by the PDC method, and Figure 8e,f respectively show the
drawing results of Ψ and Φ regions by the DDC-D and DDC-S methods. The red color in each image
represents the bed surface Φ. However, note that the blue color in Figure 8e,f represents only the
floor surface Ψ, whereas that in Figure 8d represents all the Ω horizontal planes, including the floor,
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shelf, and other surfaces. Figures 1b, 2 and 3 also show progressive data for images acquired at
viewpoint H2,2. In Figure 8d,e, the bed regions were extracted appropriately at the pixel level. However,
in Figure 8f, because DDC-S is an algorithm to extract the regions at the block level, the bed region was
not extracted at the pixel level. We assume that this adversely affected the bed position calculation,
as shown in Figure 8c, and lowered the visual-observation score for Result 3 in Table 1.
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For the three methods, calibration time (Result 4 in Table 1) was the fastest for DDC-S and slowest
for PDC. Initial calibration is performed only once after installing the sensor, and robustness is more
important than calculation speed in many cases. Therefore, DDC-D and PDC are usually more effective
than DDC-S.

In this paper, we experimented with a depth sensor with a resolution of 320 × 240 pixels and
obtained calibration accuracy of several centimeters. In bed monitoring, it will be possible to operate
with this accuracy. On the other hand, depth sensors with higher resolution have been developed
in recent years and we can be expected to improve accuracy by using them although processing time
will increase.

3.4. Results and Discussion of Bed-Region and Spatial-Domain Experiments (Experiments 5–6)

The results of bed-region-reconfiguration and spatial-domain-recognition experiments (5 and 6)
are shown in Figures 9 and 10. The result of reconfiguration of the bed region imaged in Figure 8b and
calculated using the method described in the section “Reconfiguration of the Bed Region” is shown
in Figure 9a. In this reconfiguration, the bed region spread to include more of the lower sides than
in Figure 8b and included the region at the foot of the bed. Figure 9b,c show the results of calculation
of the bed region before and after reconfiguration for images acquired at another viewpoint, H4,2.
As expected, the bed region shown in Figure 9c is extended more to the lower right (toward the sensor)
than the one of Figure 9b. All the other viewpoints also produced the expected results. These outcomes
suggest that the calculations in Equations (18) through (21) are effective for solving the problem
of occlusion by the head of the bed.



Sensors 2019, 19, 4581 16 of 20

Sensors 2019, 19, 4581 15 of 19 

 

is more important than calculation speed in many cases. Therefore, DDC-D and PDC are usually 
more effective than DDC-S. 

In this paper, we experimented with a depth sensor with a resolution of 320 × 240 pixels and 
obtained calibration accuracy of several centimeters. In bed monitoring, it will be possible to operate 
with this accuracy. On the other hand, depth sensors with higher resolution have been developed in 
recent years and we can be expected to improve accuracy by using them although processing time 
will increase. 

3.4. Results and Discussion of Bed-Region and Spatial-Domain Experiments (Experiments 5–6) 

The results of bed-region-reconfiguration and spatial-domain-recognition experiments (5 and 6) 
are shown in Figures 9 and 10. The result of reconfiguration of the bed region imaged in Figure 8b 
and calculated using the method described in the section “Reconfiguration of the Bed Region” is 
shown in Figure 9a. In this reconfiguration, the bed region spread to include more of the lower sides 
than in Figure 8b and included the region at the foot of the bed. Figure 9b,c show the results of 
calculation of the bed region before and after reconfiguration for images acquired at another 
viewpoint, H4,2. As expected, the bed region shown in Figure 9c is extended more to the lower right 
(toward the sensor) than the one of Figure 9b. All the other viewpoints also produced the expected 
results. These outcomes suggest that the calculations in Equations (18) through (21) are effective for 
solving the problem of occlusion by the head of the bed. 

 
(a) After reconfiguration 

 
(b) Before reconfiguration 

 
(c) After reconfiguration 

Figure 9. Bed regions calculated by DDC-D method. (a) was acquired at viewpoint H2,2, and (b) and 
(c) at viewpoint H4,2. 

 
(a) Captured depth image 

 
(b) Before reconfiguration 

 
(c) After reconfiguration 

Figure 10. Experimental result of motion simulation. 

Subsequently, we simulated a state of being in the lateral decubitus position on the edge of the 
bed, acquired the depth image at the viewpoint H4,2, and carried out the verification experiment by 
applying the spatial-domain calculation Equation (26). Figure 10a shows the captured depth image, 
and Figure 10b,c respectively show segmentation images before and after reconfiguration of the bed 
by applying calculations in Equations (19), (20), (24), and (25). For each pixel in Figure 10b,c, regions 
I to VIII were colored with light blue, blue, purple, yellow, red, light pink, dark gray, and light gray, 
respectively. Note that black indicates defective pixels and white indicates saturated pixels which are 
located farther than the photographable region and the exact position cannot be calculate. 

In Figure 10b, most of the body was determined to be in the bed (blue) despite simulating the 
state in which part of the body protruded outside the bed. In contrast, in Figure 10c, about half of the 
body was determined as outside the bed (red). These results suggest that the calculations in Equations 
(22) through (25) are effective for reconfiguration of the spatial domain considering the gravity center 
of the patient. In addition, whereas the head of the bed in Figure 10b is mostly region II (blue), it is 

Figure 9. Bed regions calculated by DDC-D method. (a) was acquired at viewpoint H2,2, and (b) and
(c) at viewpoint H4,2.

Sensors 2019, 19, 4581 15 of 19 

 

is more important than calculation speed in many cases. Therefore, DDC-D and PDC are usually 
more effective than DDC-S. 

In this paper, we experimented with a depth sensor with a resolution of 320 × 240 pixels and 
obtained calibration accuracy of several centimeters. In bed monitoring, it will be possible to operate 
with this accuracy. On the other hand, depth sensors with higher resolution have been developed in 
recent years and we can be expected to improve accuracy by using them although processing time 
will increase. 

3.4. Results and Discussion of Bed-Region and Spatial-Domain Experiments (Experiments 5–6) 

The results of bed-region-reconfiguration and spatial-domain-recognition experiments (5 and 6) 
are shown in Figures 9 and 10. The result of reconfiguration of the bed region imaged in Figure 8b 
and calculated using the method described in the section “Reconfiguration of the Bed Region” is 
shown in Figure 9a. In this reconfiguration, the bed region spread to include more of the lower sides 
than in Figure 8b and included the region at the foot of the bed. Figure 9b,c show the results of 
calculation of the bed region before and after reconfiguration for images acquired at another 
viewpoint, H4,2. As expected, the bed region shown in Figure 9c is extended more to the lower right 
(toward the sensor) than the one of Figure 9b. All the other viewpoints also produced the expected 
results. These outcomes suggest that the calculations in Equations (18) through (21) are effective for 
solving the problem of occlusion by the head of the bed. 

 
(a) After reconfiguration 

 
(b) Before reconfiguration 

 
(c) After reconfiguration 

Figure 9. Bed regions calculated by DDC-D method. (a) was acquired at viewpoint H2,2, and (b) and 
(c) at viewpoint H4,2. 

 
(a) Captured depth image 

 
(b) Before reconfiguration 

 
(c) After reconfiguration 

Figure 10. Experimental result of motion simulation. 

Subsequently, we simulated a state of being in the lateral decubitus position on the edge of the 
bed, acquired the depth image at the viewpoint H4,2, and carried out the verification experiment by 
applying the spatial-domain calculation Equation (26). Figure 10a shows the captured depth image, 
and Figure 10b,c respectively show segmentation images before and after reconfiguration of the bed 
by applying calculations in Equations (19), (20), (24), and (25). For each pixel in Figure 10b,c, regions 
I to VIII were colored with light blue, blue, purple, yellow, red, light pink, dark gray, and light gray, 
respectively. Note that black indicates defective pixels and white indicates saturated pixels which are 
located farther than the photographable region and the exact position cannot be calculate. 

In Figure 10b, most of the body was determined to be in the bed (blue) despite simulating the 
state in which part of the body protruded outside the bed. In contrast, in Figure 10c, about half of the 
body was determined as outside the bed (red). These results suggest that the calculations in Equations 
(22) through (25) are effective for reconfiguration of the spatial domain considering the gravity center 
of the patient. In addition, whereas the head of the bed in Figure 10b is mostly region II (blue), it is 

Figure 10. Experimental result of motion simulation.

Subsequently, we simulated a state of being in the lateral decubitus position on the edge of the
bed, acquired the depth image at the viewpoint H4,2, and carried out the verification experiment by
applying the spatial-domain calculation Equation (26). Figure 10a shows the captured depth image,
and Figure 10b,c respectively show segmentation images before and after reconfiguration of the bed by
applying calculations in Equations (19), (20), (24), and (25). For each pixel in Figure 10b,c, regions I
to VIII were colored with light blue, blue, purple, yellow, red, light pink, dark gray, and light gray,
respectively. Note that black indicates defective pixels and white indicates saturated pixels which are
located farther than the photographable region and the exact position cannot be calculate.

In Figure 10b, most of the body was determined to be in the bed (blue) despite simulating the state
in which part of the body protruded outside the bed. In contrast, in Figure 10c, about half of the body
was determined as outside the bed (red). These results suggest that the calculations in Equations (22)
through (25) are effective for reconfiguration of the spatial domain considering the gravity center of the
patient. In addition, whereas the head of the bed in Figure 10b is mostly region II (blue), it is shown as
mostly region V (red) in Figure 10c. The effect of ε (see Figure 4), this makes it possible to limit region
II to only the identification of the presence or absence of a patient.

3.5. Results and Discussion of Two Specific Condition Experiments (Experiment 7)

This section describes the calibration results of depth images taken under the two specific
conditions. Figure 11a shows a depth image taken by setting up so that the floor area is larger than
the bed area. Figure 11b–d respectively shows the initial calibration results of Figure 11a using the
PDC, DDC-D, and DDC-S, and their red and blue colors respectively represent regions extracted as
the bed surface Φ and the floor surface Ψ. Figure 11c,d succeeded in extraction because they were
colored as expected, however Figure 11b failed because red and blue were opposite. Figure 11e–g
respectively represents bed regions before the correction calculated based on Figure 11b–d. These
results also showed that DDC-D and DDC-S succeeded but PDC failed. The calculated bed heights
of DDC-D and DDC-S were 44.9 and 45.8 cm, respectively, which were close to the true value (46 cm).
Similarly, the calculated bed widths of them were 99.3 and 98.3 cm, respectively, which were also close
to the true value (95 cm). These results show that the bed area must be larger than the floor area in the
PDC as described in Section 2.2, however DDC-D and DDC-S can be calibrated under these conditions.
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Figure 11. Experimental results when the floor area is larger than the bed area. The red and blue colors 
in (b) to (d) represent regions extracted as the bed surface Φ and the floor surface Ψ, respectively. The 
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Section 3.4. 
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Figure 11. Experimental results (a) when the floor area is larger than the bed area. The red and blue
colors in (b) to (d) represent regions extracted as the bed surface Φ and the floor surface Ψ, respectively.
The red colors in (e) to (g) represent the bed regions before correction calculated in the same way
as in Section 3.4.

Next, we installed and took an image so that the wall area was larger than the sum of the bed
and floor areas. Figure 12a shows the captured depth image, and Figure 12b–d shows the results
of calibration with the PDC, DDC-D, and DDC-S, respectively. Similar to Figure 11, their red and
blue colors respectively represent regions extracted as the bed surface Φ and the floor surface Ψ.
In Figure 12b, the back wall was recognized as a bed region. Also, in Figure 12c,d, the back walls were
recognized as floor regions. Therefore, as expected, both our methods do not work under this condition.
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respectively represents bed regions before the correction calculated based on Figure 11b–d. These 
results also showed that DDC-D and DDC-S succeeded but PDC failed. The calculated bed heights 
of DDC-D and DDC-S were 44.9 and 45.8 cm, respectively, which were close to the true value (46 cm). 
Similarly, the calculated bed widths of them were 99.3 and 98.3 cm, respectively, which were also 
close to the true value (95 cm). These results show that the bed area must be larger than the floor area 
in the PDC as described in Section 2.2, however DDC-D and DDC-S can be calibrated under these 
conditions. 

Next, we installed and took an image so that the wall area was larger than the sum of the bed 
and floor areas. Figure 12a shows the captured depth image, and Figure 12b–d shows the results of 
calibration with the PDC, DDC-D, and DDC-S, respectively. Similar to Figure 11, their red and blue 
colors respectively represent regions extracted as the bed surface Φ and the floor surface Ψ. In Figure 
12b, the back wall was recognized as a bed region. Also, in Figure 12c,d, the back walls were 
recognized as floor regions. Therefore, as expected, both our methods do not work under this 
condition. 
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Figure 11. Experimental results when the floor area is larger than the bed area. The red and blue colors 
in (b) to (d) represent regions extracted as the bed surface Φ and the floor surface Ψ, respectively. The 
red colors in (e) to (g) represent the bed regions before correction calculated in the same way as in 
Section 3.4. 
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Figure 12. Experimental results (a) when the wall area is larger than the sum of the bed and floor areas.
The red and blue colors in (b) to (d) represent regions extracted as the bed surface Φ and the floor
surface Ψ, respectively.

4. Conclusions

We proposed a calibration method for a bed-monitoring system using an infrared-image depth
sensor. This method can calculate the bed region, floor region, and sensor position and attitude
automatically and robustly. The system using our method can recognize how elevated a patient is
and whether the patient is in or out of the bed, even when the sensor is attached in any position and
attitude without installation on the ceiling, such as on a tripod or on a bed fence.

For the recognition of the bed and floor regions, we propose three methods—the PCA-based
depth-sensor calibration (PDC) method and the two D-KHT-based depth-sensor calibration methods
characterized by either high density (DDC-D) or high speed (DDC-S). The PDC method is based on PCA,
k-means++ clustering, and the Canny edge-detection method. Both the DDC-D and DDC-S methods
are based on the D-KHT plane-detection method. The DDC-S method estimates the bed and floor
regions directly using the plane-detection results, whereas the DDC-D method repeatedly calculates
both regions for each pixel after applying D-KHT. Experimental results show that DDC-S calibrates at
high speed but with low robustness, and although PDC and DDC-D require more calibration time than
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DDC-S, their robustness is higher. In many cases, since initial calibration does not require real-time
processing, PDC or DDC-D are more useful than DDC-S.

However, the PDC method must be taken so that the bed area is larger than the floor area. Also,
our system requires that both the bed and floor are taken and these total area is larger than the wall
area. We also experimented with these specific conditions and confirmed that the calibration failed.
If the calibration fails during actual use, it is necessary to change the orientation of the sensor or change
the installation position.

Furthermore, we proposed a method of reconfiguration of the spatial domain that considers
both occlusion by the head (or foot) of the bed and the gravity center of the patient. Experimental
results of multi-view calibration and motion simulation show that this method is effective for
spatial-domain recognition.

Future work will include improved timing of detection of a patient’s rising or sitting up, getting
out of bed, falling, and other potentially dangerous movements as well as verification of effectiveness
in actual hospital and other care facilities.
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