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Abstract: Airborne laser scanning (ALS) can acquire both geometry and intensity information of
geo-objects, which is important in mapping a large-scale three-dimensional (3D) urban environment.
However, the intensity information recorded by ALS will be changed due to the flight height
and atmospheric attenuation, which decreases the robustness of the trained supervised classifier.
This paper proposes a hierarchical classification method by separately using geometry and intensity
information of urban ALS data. The method uses supervised learning for stable geometry information
and unsupervised learning for fluctuating intensity information. The experiment results show that
the proposed method can utilize the intensity information effectively, based on three aspects, as below.
(1) The proposed method improves the accuracy of classification result by using intensity. (2) When the
ALS data to be classified are acquired under the same conditions as the training data, the performance
of the proposed method is as good as the supervised learning method. (3) When the ALS data
to be classified are acquired under different conditions from the training data, the performance of
the proposed method is better than the supervised learning method. Therefore, the classification
model derived from the proposed method can be transferred to other ALS data whose intensity
is inconsistent with the training data. Furthermore, the proposed method can contribute to the
hierarchical use of some other ALS information, such as multi-spectral information.

Keywords: airborne laser scanning; hierarchical classification; intensity; geometry; supervised
learning; unsupervised learning

1. Introduction

By the year 2050, 68% of the world population is expected to live in urban areas [1], thus increasing
the importance of urban morphology and ecology research, in which two-dimensional land cover
products are commonly used [2,3]. However, two-dimensional land cover products cannot represent
the vertical differentiation of geo-objects. Thus, airborne laser scanning (ALS), which can directly
acquire three-dimensional geometry information of geo-objects, has been introduced into urban
morphology and ecology research [4,5], such as change detection [6,7] and carbon storage mapping [8,9],
Unfortunately, a lot of different types of geo-objects, such as buildings, vegetation, and cars, may appear
in a small urban local neighborhood [10,11], and it is difficult to automatically extract all geo-objects
in the urban environment from raw ALS geometry information. Consequently, many researchers
only extracted the ground [12,13], the buildings [14,15], or the powerlines [16,17]. On the other hand,
geometry information acquired by ALS was often integrated with passive multi- or hyper-spectral
remote sensing image for land cover classification [18–21]. Nevertheless, the automatic fusion of ALS
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and passive remote sensing image faces its own challenges, owing to the ALS data and the optical
images having different characteristics [22–24].

Besides recording points some ALS devices also record spectral information called “intensity”,
which can enable the separation of man-made and natural geo-objects [25,26]. With the development of
full-waveform and multi-spectral laser scanning, the intensity information will become an important
part of the ALS data [4,27]. As compared to the fusion spectral from passive remote sensing image,
the intensity recorded by ALS has several advantages: (1) it is independent of illumination conditions
such as shading since LiDAR instruments provide their own light source; (2) ALS allows a vertical
differential of the intensity; and, (3) spectral mixing within the measured intensity is minimized [4].

Many researchers utilized the supervised learning method with both geometry and intensity
information to classify the ALS data [28–30]. However, the intensity recorded by ALS is fluctuating
due to airborne flight height, atmospheric transmittance, detector responsivity, in-situ calibration,
time conditions, and others [31], which resulted in the supervised classifier, directly trained using both
geometry and intensity information, not being robust, and being hard to transfer to other ALS data.
On the other hand, intensity information is more important to distinguish ground-level geo-objects,
such as roads and low vegetation [32,33], and it is not elegant to ignore this once this is available.

This paper proposes a method using supervised learning for the stable geometry information and
unsupervised learning for the fluctuating intensity information of the ground-level points to reasonably
utilize the intensity information recorded by ALS. The proposed method includes three core parts.
First, it uses the training data with the geometry feature to train the supervised classifier, and then the
trained supervised classifier is used to classify the ALS data. Second, it extracts ground-level points
from the classified ALS data and utilizes unsupervised learning with intensity information to reclassify
these ground-level points. Finally, it combines the results of the supervised and unsupervised learning
by the heuristic rule.

The main contributions of our proposed method are as follows. (1) In the first part, the geometry
feature used in the proposed method contains “absolute feature” (e.g., height, normal) varied depending
on transformation and rotation, and “relative feature” (e.g., distribution of points), which is invariant
to transformation and rotation. This concatenated geometry feature represents the distribution of point
neighborhood and the intuition of geo-objects with special direction and height. (2) In the second
part, unsupervised learning does not need to be trained and its parameters can be re-estimated in ALS
data to be classified. Thus, the classification model that is derived from the proposed method is more
robust to fluctuating intensity. (3) In the third part, a heuristic rule is designed to integrate the urban
ALS classification results of the supervised and unsupervised learning, which is based on our defined
confidence of supervised and unsupervised learning classification results.

After providing a brief summary of related work in Section 2, we clearly explain the proposed
method in Section 3. Subsequently, the results are shown in Section 4 and they are discussed in
Section 5. Finally, we provide concluding remarks as well as suggestions for future work in Section 6.

2. Related Work

ALS data classification belongs to point clouds classification and can be categorized into point-wise
and segment-wise method according to the classification primitive. The point-wise method individually
classifies each point of the ALS data by using the respective features as the inputs for a standard
supervised classifier [10,34]. The segment-wise method first divides the ALS data into segments and
then assigns class labels to the segments so that all points within a segment obtain the same class
label [35]. The segment-wise method uses more features, like segment size and shape, and therefore
obtains a smoother classification result than the point-wise method. However, the performance of
the segment-wise method is negatively affected by under- and over-segmentation errors [35]. On the
contrary, the point-wise method directly classifies the ALS data point by point without segmenting
and extracting features from the segmented object; hence, its result reveals a “pepper and salt noise”
behavior, because it ignores the correlation between the labels of the nearby pixels [11,34,36].



Sensors 2019, 19, 4583 3 of 22

Context information, which is the semantical label of a point similar to its nearby points, is usually
introduced to smooth the point-wise classification. Schindler gave an overview and comparison of
some commonly used filter methods, such as the majority filter, the Gaussian filter, the bilateral filter,
and the edge-aware filter for remote sensing image [36], and these methods can be easily adapted
to point clouds. Unlike these filter methods, which only handle local information, in the global
smoothing method the entire classification of point clouds uses a graph structure, where the contextual
information is contained in the adjacent edge of the graph. Conditional random field (CRF) is a
commonly used graph model and it adds pairwise potential alongside the unary potential to model
the contextual information. Schindler adopted the Potts model (or the contrast-sensitive Potts model)
to calculate the pairwise potential and then inferenced the final classification by the approximating
method, such as using the α-expansion graph cut and semiglobal labeling [36]. Niemeyer et al. used
the random forest (or linear model) with feature concatenating two neighboring points to learn the
pairwise potential [10]. This method of learning the pairwise potential is also the called contextual
learning method. The contextual learning method considers the smooth in the training time and
obtains more contextual information; for instance, it is more probable that cars are situated on a
street than on grassland [10]. Secondly, the contextual learning method based on segments can obtain
long-range interactions [30,35]. However, it requires the extensive computation of contextual classifiers
and the extraction of useful interaction features. The post-processing smoothing technique, such as
global smoothing method in [36], is time efficient and flexible enough to be conducted on point clouds
without training an additional supervised classifier as compared to the contextual learning method.

Another post-processing smoothing technique is regularization. Landrieu et al. considered the
problem of spatially smoothing semantic classification of point clouds from a structured regularization
perspective, whose goal is to find an improved labeling with increased spatial smoothness while
remaining as close as possible to the initial classification [34]. Under the framework that was proposed
in [34], Li et al. utilized optimal graph and probabilistic label relaxation to handle large wrongly
labeled regions [28].

The unary potential of CRF and the regularization method both used initial labeling derived
with the standard classification. Hence, this study focuses on the standard classification rather
than these smooth methods considering contextual information, because the better its result is,
the better further processing will perform [37]. A variety of supervised learning methods have been
applied for ALS classification, including support vector machine [38,39], boosting [40,41], and random
forest [10,42]. In these classification methods, the generation of good features is a vital part of obtaining
a good performance.

There have been three major geometry features: covariance-based features, histogram-based
features, and deep features. The covariance-based feature is derived from a three-dimensional
covariance matrix of a point and its neighbors [43]. Dittrich et al. investigated the accuracy and
robustness of the covariance feature [44]. The histogram-based feature accumulates information
regarding the spatial interconnection between a point and its neighborhood into a histogram [45–48].
Point feature histograms and its improved versions, denoted as fast point feature histograms (FPFH),
were typical histogram-based features. The deep feature is learned from training data by using deep
neural networks, which have been rapidly growing in recent years. However, the interpretability has
been identified as a potential weakness of deep neural networks [49,50]. The covariance feature is
usually used in the ALS classification, whereas the histogram-based feature is more rare. Therefore,
this study tests the feasibility of the histogram-based feature in large scale ALS point clouds.

Except for the geometry feature, the intensity was usually used to extract some feature [29,30,51],
but it is fluctuating, owing to the system and environmental induced distortions. [52,53] improved the
classification accuracy of the airborne LiDAR intensity data by calibrating the intensity. A few factors,
such as incidence of angle, range calculated with GPS assistant, and atmospheric effect derived from
simulating or insite measurement, should be considered while calibrating the intensity, as reasonably
utilizing the intensity recorded by ALS is difficult. Apart from these classifications that are needed to
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calibrate intensity, this study attempts to use unsupervised learning to handle intensity, which does
not require calibration of intensity and can be transferred to other ALS data whose acquired condition
differs from the training data.

3. Materials and Methods

3.1. Data Used in This Study

This study used the benchmark data (as shown in Figure 1) provided by the International Society
for Photogrammetry and Remote Sensing (ISPRS) [54] to evaluate the performance of the proposed
method. This ALS data was acquired by Leica Geosystems using a Leica ALS50 system with a 45◦

field of view and a mean flying height of 500 m above the ground. The average strip overlap was 30%,
and the mean point density was eight points · m−2. Multiple echoes and intensities were recorded.
The number of points with multiple echoes was relatively low, owing to the leave-on-condition at
the time of the data acquisition. From the scanned data, the ISPRS 3D Semantic Labeling Contest
selected two data subsets for the three-dimensional labeling challenge. In total, 9 classes have been
defined, namely power line (PL), low vegetation (LV), impervious surface (IS), car (Car), fence/hedge
(Fence), roof (Roof), façade (Façade), shrub (Shrub), and tree (Tree). The training and testing areas
are from Vaihingen city. The training area consists of a few high-rising buildings surrounded by trees
and a purely residential neighborhood with small, detached houses (as shown in Figure 1a). It covers
an area of 399 m × 421 m and contains 753,876 points. Dense, complex buildings and some trees
characterize the testing area (as shown in Figure 1b), which covers an area of 389 m × 419 m and
contains 411,722 points.
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Figure 1. International Society for Photogrammetry and Remote Sensing (ISPRS) benchmark data:
(a) training data, (b) testing data.

3.2. Graphical Overview of the Proposed Method

Figure 2 gives a graphical overview of the proposed method, and it consists of three
major components:

• Supervised learning for geometry information: extract geometry feature from the ALS data and
then classify the ALS data by using the trained supervised classifier. The geometry feature in
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this study included FPFH, normal, and height. Four common supervised learning methods,
namely decision tree (DT), random forest (RF), support vector classification (SVC), and extreme
gradient boost (XGBoost) were used alone to test the performance of the proposed method.

• Unsupervised learning for intensity information: after applying the supervised classifier on the
ALS data, the ground-level points and the elevated points (such as building and tree) can be
split from the ALS data. The ground-level points were reclassified while using an unsupervised
learning method based on intensity information. The Gaussian mixture model (GMM) was the
selected unsupervised classifier, because the probability distribution of the intensity of some
geo-objects is approximately Gaussian distribution [31].

• Join the classification results of the supervised and unsupervised classifier: for the elevated points,
the label was the result of the supervised classifier, whereas, for the ground-level points, the label
was the selection from the supervised classification result and the unsupervised classification
result based on the heuristic rule. Section 3.3 describes this heuristic rule.

The classifiers derived from the supervised and unsupervised learning should be soft, that is,
their outputs should be probabilities for all classes. These probabilities help to construct the
heuristic rule.
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geometry information; the bottom row shows unsupervised learning for intensity information, and the
final col joint the supervised and unsupervised classification results.

3.3. Supervised Learning for Geometry Information

3.3.1. Geometry Feature Description

The feature in this study was the combination of a relative feature (i.e., FPFH (fpfh)), and two
absolute features (i.e., normal (n) and height (h)). Hence, the feature vector was (fpfh, n, h), in which
fpfh is a 33-dimensional vector, and n is a three-dimensional vector. FPFH was proposed in [46].
For each point q of the ALS data, all of q’s neighbors enclosed in the sphere with a given radius r are
selected (r-neighborhood). Given every pair of points, q and q′, in the r-neighborhood, and assuming



Sensors 2019, 19, 4583 6 of 22

q is the point with a smaller angle between its associated normal and the line connecting the point
(that is, n · (q′ − q) ≥ n′ · (q− q′), a Darboux uvw frame can be defined while using

u = n

v =
(q′−q)
‖q′−q‖2

× u

w = u× v

(1)

Subsequently, the normal n′ can be represented as an angle tuple (α,θ,ϕ) in the uvw frame
(as shown in Figure 3a): 

α = v · n′

ϕ = u · (q
′
−q)

‖q′−q‖2
θ = arctan(w·n′, u·n)

(2)

A set of the angle tuples for q and each point in its r-neighborhood can be obtained. Thus, α (θ,φ)
in the angular tuples can be binned into a histogram 11 bins and then these three histograms are
concatenated to form a simple point feature histogram (SPFH). FPFH (as shown in Figure 3b) is the
weighted sum of SPFH in the r-neighborhood of q.

FPFH(q) = SPFH(q) +
1∣∣∣N(q)

∣∣∣ ∑
q′∈N(q)

SPFH(q′)
‖q′ − q‖2

(3)

where N(q) represents the neighborhood of q and
∣∣∣N(q)

∣∣∣ represents the number of points in the
r-neighborhood. More details about FPFH can be found in [55].
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FPFH describes the inertial property of the point distribution and is invariant to the transformation
and rotation. However, the façade, roof, tree, and other geo-objects have their own direction, and the
designed feature for the ALS data classification should represent this fact. Therefore, the point normal
was locally estimated by fitting a plane using the neighborhood points [56]. On the other hand, the raw
geometry information that was acquired by the ALS system is under the World Geodetic System 1984
coordinate system. It is necessary to obtain the height based on the ground. In this study, a progressive
morphological filter that was accomplished in the point cloud library was used to extract the ground
due to its good performance and high efficiency in urban environment [57].

3.3.2. A Brief Introduction to Supervised Learning Methods

In this study, four common supervised learning methods, decision tree (DT), random forest
(RF), support vector classification (SVC), and extreme gradient boost (XGBoost), are used to process
geometry feature. The following is a brief introduction to these methods.
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Decision Tree

Decision tree predicts the label of a target by learning simple decision rules that are represented
using a tree structure. The nodes in DT are split using a best feature and a rational value. Gini index or
entropy index is used to calculate the best feature and its divided value. The prediction of an unseen
point L̂DT is the fraction of samples of the same class in a leaf that the unseen point falls into:

L̂DT =
M

sum(M)
(4)

where M is a vector containing the count of samples per class. The predicted class l̂DT is the one with
highest probability:

l̂DT = argmax
c∈L

L̂DT(c) (5)

where L is the label space.

Support Vector Classification

For binary classification, the data can be separated by a hyperplane:

f (x) = ωTφ(x) + b (6)

where ω and b are the parameters in a hyperplane, φ(x) maps x into a higher-dimensional space.
Many hyperplanes might classify the data. SVC aims to find the best hyperplane, so that the distance
from it to the nearest data point on each side is maximized, which is written as:

min
ω,b,ζ

1
2ω

Tω+ C
n∑

i=1
ζi

subject to yi
(
ωTφ(xi) + b

)
≥ 1− ζi,

ζi ≥ 0, i = 1, . . . , n

(7)

where C > 0 is regularization parameter, ζi is slack variables. This object function can be solved using
Lagrange multipliers and sequential minimal optimization [58], and ω =

∑n
i=1 yiαiφ(xi)

T. For an
unseen point, the binary label can be derived while using:

l̂SVC = sgn
(∑n

i=1 yiαiφ(xi)
Tφ(x) + b

)
= sgn

(∑n
i=1 yiαiκ(xi, x) + b

) (8)

where κ(·, ·) is a kernel that is introduced because of the dimension of φ(x) too high to calculate
φ(xi)

Tφ(x). Radial basis function (RBF) is a popular kernel in remote sensing data processing and it is
also used in this study.

SVC can be easily adapted to a multi-class task by using the one-vs-one strategy. In addition,
SVC does not provide the probability output. Scikit-learn uses Platt scaling to calibrate the probability
of SVC in the binary case [59]. In the multiclass case, probabilities are extended as per [60].

Random Forest

Random forest for classification is an ensemble of unpruned classification decision trees [61,62].
Each decision tree in random forest is built from a sample drawn with the bootstrap sample from all of
the training data. When splitting a node during the construction of the decision tree, the split that is
the best divided among a random subset of the features rather than among all features. The prediction
of an unseen point can be the probability vector L̂RF of all classes or a single class l̂RF. The predicted
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probability vector L̂RF of the unseen point is a vote by decision trees L̂DT in the RF, weighted by their
probability estimates:

L̂RF =
1
n

n∑
i=1

L̂DTi (9)

where, L̂DTi is the probability vector of a decision tree output and n is the number of decision trees in
the RF. The predicted class l̂RF is the one with highest probability:

l̂RF = argmax
c∈L

L̂RF(c) (10)

where L is the label space.

Extreme Gradient Boost

Extreme gradient boost is tree-boosting ensemble method, its fundamental function predicts
a new classification membership after each iteration. XGBoost is built using an additive way that
continuously makes new weak classifiers to improve the performance of the previous classifiers.
Incorrectly classified samples receive higher weights at the next step, which forcs the classifier to focus
on their error in the following iterations [63,64]. The final classification of XGBoost combines the
improvement of all the previous modeled trees:

L̂XGB= softmax(
n∑

i=1

fi(x)), fi ∈ F (11)

where, f is a function in the functional space and F is the set of all possible DTs. The predicted class
l̂XGB is the one with highest probability:

l̂XGB = argmax
c∈L

L̂XGB(c) (12)

where L is the label space.

3.4. Unsupervised Learning for Intensity Information

The GMM is one of the prototype-based clusterings that describe the dataset by a (usually small)
set of prototypes [65]. The GMM uses the Gaussian probability model as a prototype to model the
dataset and it assumes that the dataset is sampled from the Gaussian mixture distribution

pM(x) =
m∑

k=1

ωkg (x|µk, Σk) (13)

where, x is a D-dimensional continuous-value data (i.e., intensity in this study); ωk are the mixture
weights; and, m is the number of components. Each component is a Gaussian probability density
function with mean vector µk and covariance matrix Σk

g
(
x
∣∣∣µ k, Σk

)
=

1

(2π)
D
2 |Σk|

1
2

e−
1
2 (x−µk)

TΣk
−1(x−µk) (14)

The mixture weights ωk satisfy the constraint
∑m

k=1 ωk= 1. ωk, µk, and Σk are the three parameters
that need to be estimated. The iterative Expectation-Maximization algorithm or the Maximum A
Posteriori estimation is often used to estimate these parameters; more details regarding the estimation
method and the implementation can be found in [66] and the Scikit-learn package.
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Given each point with intensity x, the output L̂′ of GMM for cluster λk is

L̂′(λ k|x) =
ωk g(x|µk, Σk

)
∑m

k=1 ωk g(x|µk, Σk)
(15)

and the cluster l̂′ is determined by
l̂′ = argmax

k∈{1,2, ···,m}
L̂′(λ k|x) (16)

It is noted that: (1) the smoothing intensity before feeding to GMM made these parameters ωk,
µk, and Σk more reliable; (2) the result of GMM is the cluster, which has no semantic information.
The semantic information can be manually set according to the knowledge or automatically determined
by the dominant value of the supervised learning result.

3.5. Joint Classification Results of the Supervised and Unsupervised Classifier

The outputs of the supervised and unsupervised learning have different meanings. The output
of the supervised learning was the probability vector of both ground-level and elevated geo-objects,
whereas the output probability vector of the unsupervised learning was only for ground-level
geo-objects. Therefore, directly comparing the probability outputs of supervised and unsupervised
learning cannot obtain a rational classification result, which is why this study used the ratios rs and ru

to represent the confidence of supervised and unsupervised learning classification results.
Without any loss of generality, we assume there were two types of ground-level points, glo1 and

glo2. rs and ru were defined as Equations (17) and (18). In order to make rs ≥ 1, ru ≥ 1, we utilized
max and min operation. If L̂(glo 1) ≥ L̂(glo 2), the probability that the supervised learning classifies an
unseen point as glo1 was rs times the probability of classifying the unseen point as glo2. ru had the
same meaning. Thus, we can compare rs and ru to the joint classification results of the supervised and
unsupervised classifier. In addition, the joint coefficient (a in Equation (19)) was introduced to represent
the tradeoff between the supervised classification result and the unsupervised classification result.

rs =
max (L̂(glo 1),L̂(glo 2))

min (L̂(glo 1),L̂(glo 2))
(17)

ru =
max (L̂′(glo 1),L̂

′
(glo 2))

min (L̂′(glo 1),L̂
′
(glo 2))

(18)

y =

{
l̂ ; ars ≥ ru

l̂′ ; ars < ru
(19)

A set of combinations of two types would be obtained if there were three or more types of
ground-level points. For every combination, the above rule would be used, and then the selection
would be determined by voting. The combined result is smoothed using the majority filter to obtain a
more homogeneous classification result.

The proposed method was implemented by using python 3.6 in Jupyter Notebook. The code can
be found from: https://github.com/LidarLiu/ALS_Classification_Hierarchically_Geometry_Intensity.

4. Results

Here, precision and recall were used to measure the performance of the proposed method and
they are shown in Figures 4 and 5. The precision and recall of the proposed method are higher than
supervised learning method without intensity, especially for the low vegetation and the impervious
surface, which can also be found in Figures 6 and 7. A comparison of the bottom row and the upper row
in Figure 6 (or Figure 7) depicts that: 1) some misclassified low vegetation points were revised to the
impervious surface (as shown in lower left inset); 2) some misclassified impervious surface points were

https://github.com/LidarLiu/ALS_Classification_Hierarchically_Geometry_Intensity
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revised to low vegetation (as shown in upper right inset). These two revisions increased the precision
and recall of the low vegetation and the impervious surface. For all of the selected supervised learning
methods, the precision of low vegetation was greatly increased: DT increased by 4.47%, SVC increased
by 7.22%, RF increased by 10.20%, XGBoost increased by 9.85% (as shown in Figure 4); and, the recall
of impervious surface was significantly increased: DT increased by 8.97%, SVC increased by 8.2%,
RF increased by 13.38%, and XGBoost increased by 12.56% (as shown in Figure 5). These improvements
on ground-level points classification also improved the overall performance measured using the
weighted average, which reveals that the proposed method can improve the urban ALS classification
accuracy by using intensity.
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Figure 5. Recall of the supervised learning method without intensity and the proposed method.

Secondly, the fence, the car, and the façade were underestimated (as shown in Table 1), whereas four
dominant geo-objects, namely the low vegetation, the impervious surface, the roof, and the tree, had a
higher F1 score that is the harmonic mean of precision and recall, which reveals that the imbalance in
the environment in the real world influences the classification. The confusion matrix (Table 2) and
the visualization of the FPFH of all the geo-objects (Figure 8) were used to analyze the influence.
Each geo-object has its own histogram, which helps the supervised learning method to distinguish
different geo-objects; however, some geo-object’s FPFH might be confused with others. The powerline
is located above the roof and its point density is low, so the powerline points were typically misclassified
as the roof. Car points and fence points were mainly misclassified as the shrub, whereas the shrub
points misclassified as car or fence were rare, which might be because their height and FPFH are
similar and the number of shrub points is much larger than car and fence points (as shown in Table 2).
Some roof points and façade points were confused because the edge of the building (i.e., the interaction
of roof and façade) is hard to distinguish.
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Table 1. F1 score of the proposed method (%).

Geo-objects→
Method↓ PL LV IS Car Fence Roof Façade Shrub Tree WA

DT + GMM 1.83 65.27 74.62 33.26 14.43 81.84 28.67 34.76 73.23 68.89
SVM + GMM 5.46 76.74 88.29 40.97 19.19 83.15 35.12 34.81 72.16 75.57
RF + GMM N/A 78.18 88.96 44.76 10.00 86.56 40.18 39.71 76.18 77.80

XGBoost + GMM 7.44 78.76 89.60 53.52 17.93 88.30 45.51 40.10 76.51 79.01

Table 2. Confusion matrix between the reference and the predict of the proposed method (RF+GMM
as an example). UA is user accuracy and PA is producer accuracy.

Reference→
Predicted↓ PL LV IS Car Fence Roof Façade Shrub Tree Total UA

PL 0 0 0 0 0 0 0 0 0 0 -
LV 3 77,853 11,558 569 1442 1732 992 5396 929 100,474 77%
IS 0 8811 89,820 417 95 158 244 288 123 99,956 90%

Car 0 17 6 1125 24 13 15 81 38 1319 85%
Fence 0 85 8 342 434 117 5 203 63 1257 35%
Roof 383 3605 218 167 623 90,211 1453 1096 1637 99,393 91%

Façade 84 195 39 5 321 5700 4646 230 678 11,898 39%
Shrub 8 6430 231 1064 3298 2330 1208 10,821 4301 29,691 36%
Tree 122 1694 106 19 1185 8787 2661 6703 46,457 67,734 69%
Total 600 98,690 101,986 3708 7422 10,9048 11,224 24,818 54,226 411,722
PA 0% 79% 88% 30% 6% 83% 41% 44% 86% 78%
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5. Discussion

5.1. Compare the Proposed Method with the Supervised Learning Method Considering Intensity

5.1.1. Comparison Conditions Setting

One way of utilizing the intensity is to concatenate it with the geometry feature. This study
compared the proposed method with the supervised learning method by using the feature (fpfh, n, h, i),
in which i is the intensity of a point. The intensity information was considered under certain conditions;
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one condition was the same as that of the training data and another was different from the training
data. The ISPRS benchmark testing data is acquired under the same conditions as the training data.
The following method was used to simulate the intensity of the testing data under different conditions.

A simplified form of the ALS range equation can be obtained under the assumptions of an
extended target (i.e., one that intercepts the entire laser beam) and Lambertian reflectance [31]:

Pr =
cosα

4R2 PtD2
rηatmηsysρ (20)

where Pr is the received optical power (which is directly proportional to the intensity i), α is the angle
of incidence, R is the range between the scanner and the target, Pt is the transmitted power, Dr is the
received aperture diameter, ηatm is the atmospheric transmission factor, ηsys is the system transmission
factor, and ρ is the target reflectance at the laser wavelength.

The ISPRS benchmark data was acquired at a height of 500 m. This study modified the intensity
by simulating its acquisition above a height of 700 m, for which the effect of α on the intensity is
negligible when compared to the range. Thus, this study simply modified intensity by using

imodi f ied =
Roriginal

Rmodi f ied
× ioriginal ≈

(
500− h
700− h

)2

×ioriginal (21)

Another reason to use this simplified equation was that the emission angle of the laser is not
recorded in this data. Figure 9 shows the original and modified intensity distribution, in which the
result of the GMM is also shown.
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The study has also introduced a consistency coefficient to compare the proposed method and
supervised learning methods with intensity (i.e., DT_i, SVC_i, RF_i, and XGBoost_i). The consistency
coefficient was defined as the ratio of the number of points for which the supervised learning method
considering intensity and the proposed method have the same label to the total number of points.

5.1.2. Comparison under the Same Conditions

The comparison result can be seen from Figure 10, where the metrics are the F1 score.
The supervised learning methods considering intensity and the proposed method can both obtain better
performances than the supervised learning methods without intensity and this improved performance
was mainly reflected on the low vegetation and the impervious surface. There was no significant
improvement on elevated geo-objects, such as roof, tree, and shrub. This improvement in ground-level
geo-objects and the absence of elevated geo-objects indicated that the intensity information is more
important for distinguishing ground-level geo-objects.

In addition to DT_i, the performance of the proposed method is similar to the supervised learning
method with intensity (as shown in Figure 10). The consistency coefficient between the proposed
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method and SVC_i, RF_i, XGBoost_i were 91.30%, 93.07%, 94.24%, respectively, which indicates that
the classification result of the proposed method is consistent with supervised learning method with
intensity. Although DT_i obtained better performance than the proposed method, the performance of
DT_i did not exceed RF and XGBoost, which means that DT cannot make full use of the geometry
feature and its classification ability is slightly worse. This phenomenon is also shown in Figure 7,
where (a) has more red areas than (b), (c), and (d)
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Figure 10. Comparison between supervised learning methods considering intensity and the proposed
method under two conditions: same condition was filled with colored slashes, and different condition
was filled with solid colors. WA is an abbreviation for weighted average of all classes. The supervised
method in (a), (b), (c), (d) is DT, SVC, RF and XGboost, respectively.

5.1.3. Comparison under Different Conditions

Figure 10 also compares the supervised learning methods while considering intensity and the
proposed methods under two conditions. It can be concluded that supervised learning method
with intensity is sensitive to intensity whereas the proposed method is more robust. For supervised
learning method, after modifying the intensity, the F1 score of low vegetation was significantly reduced,
which implies that supervised learning, which directly uses the intensity, has some problem. Apart from
low vegetation, the impervious surface was slightly decreased because the average intensity of the
impervious surface is lower than low vegetation (i.e., the mean of the orange line is smaller than the
green line in Figure 9a). The modified intensity was decreased overall. Therefore, the modified intensity
of low vegetation is more similar to the original intensity of the impervious surface, which results in a
higher recall of the impervious surface and, correspondingly, a higher F1 score.

This study only controlled one factor (i.e., flight height), and some uncertainty appeared in the
supervised learning method with intensity. The F1 score of the car significantly increased whereas the
F1 score of the fence reduced. Therefore, the intensity of ALS should be carefully used instead of using
it directly in supervised learning. In addition, the F1 score of the roof, the tree, the façade, and the
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shrub were a little varied after modifying intensity, which also evaluated the basic of our method:
geometry feature is enough for elevated geo-objects.

5.2. The Effect of Joint Parameter on the Performance of the Proposed Method

The joint coefficient, a, was the key parameter that was used to trade off the result of the
supervised learning method and unsupervised learning method. If the joint result was more dependent
on unsupervised classification (i.e., a < 1 in Figure 11), the performance will decrease. On the
contrary, if the supervised classification was considered to be more reliable (i.e., a > 1 in Figure 11),
the performance would be improved. However, if a was very large, it would ignore the result of the
unsupervised classification, resulting in the performance decrease. In addition, the value of a is changed
as the supervised learning methods changes: 1 for DT + GMM, 3 for SVC + GMM, 8 for RF + GMM,
and 2 for XGBoost + GMM. Other important parameters can be found in the Appendix A.
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5.3. The Limitation of the Proposed Method

The classification of façades, fences, and shrubs is relatively poor because of two facts in the
ALS data: (1) the geo-objects in the real world are imbalanced (that can be seen from Table 2); (2) the
volume density of the fences (0.22 points · m−3), the façades (0.26 points · m−3), and the shrubs
(1.29 points ·m−3) are lower than the trees (2.26 points · m−3), the roofs (4.03 points · m−3), the low
vegetations (4.05 points ·m−3), and the impervious surfaces (5.87 points · m−3). In future work,
the rebalance machine learning method should be considered and the optimal or multi-scale radius
should be used in the ALS classification, as [43,48]. This study focuses on the intensity information of
ALS, so the majority filter is used for small wrongly labeled regions. A graph-structured regularization
framework will be considered for large wrongly labeled regions [28,34].

In addition, the type of land cover should be clearly defined to obtain a more generalized ALS
classification model and transfer it to other ALS data. This study simply uses the benchmark label.
Our further studies will rely on other more complex environments than those found in benchmark data.

6. Conclusions

This paper has proposed a novel method that uses the ALS information hierarchically to reasonably
utilize fluctuating ALS intensity in a classification method and improve the generalization ability
of the classifier. After applying a supervised classifier on the ALS data with the geometry feature,
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the intensity information is used to reclassify ground-level points by an unsupervised classifier.
The final classification result is the integration of the supervised and unsupervised classification results.
The proposed method has higher classification accuracy than supervised learning without intensity:
in the ISPRS benchmark data, a 5.68 % improvement for low vegetation and a 7.77% improvement for
impervious surfaces were achieved.

Unlike supervised learning using intensity, the proposed method handled intensity through
unsupervised learning, whose parameters could be re-estimated in the ALS data to be classified,
which resulted in the classifier derived from the proposed method being adaptive to the fluctuating
intensity and transferrable to other ALS data. Although this study did not prove that a supervised
classifier trained both using geometry and intensity information is not useful in principle, it points to
the conclusion that one should be cautious about directly using intensity in supervised learning for
ALS data classification on a larger scale.

Furthermore, this study utilized the geometry information and intensity information of ALS
hierarchically without calibrating intensity, which paves a novel way to use the ALS information and it
can exhibit great potential for ALS data processing. However, the type of land cover should be clearly
defined, and the imbalance in the real world should be considered in future work to obtain a more
generalized classifier and apply it to a three-dimensional urban environment.
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Appendix A.

Appendix A.1. The Parameters in RF and FPFH Radius

We used a 5-fold cross validation method to evaluate the effect of the FPFH radius and the number
of decision trees in RF, and the result was shown in Figure A1. The accuracy of RF grows with the
number of decision trees and when it exceeds 60, the accuracy of the classifier becomes more stable
and cannot significantly improve. Hence, this study set the number of decision trees to 60. On the
other hand, the overall accuracy of RF to the FPFH radius is more complex; it first increases and then
decreases as the FPFH radius increases. This is caused by the fact that a larger radius contains more
geo-objects, so the distinction between different geo-objects becomes smaller. On the other hand,
a smaller radius contains fewer points resulting in the neighborhood not containing enough points to
represent the geo-object. Hence, this study set the FPFH radius to 5 m.

http://www.ifp.uni-stuttgart.de/dgpf/DKEPAllg.html
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Appendix A.2. The Parameter in SVC

We used a 5-fold cross validation method to evaluate the effect of regularization parameter C in
the SVC, and the result was shown in Figure A2. The accuracy of SVC grows with the C and when it
exceeds 40, the test accuracy of the classifier becomes more stable and cannot significantly improve.
Hence, this study set the regularization parameter to 40.
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Appendix A.3. The Parameters in XGBoost

We used a 5-fold cross validation method to evaluate the effect of the number of decision trees and
its max depth in the XGBoost, and the result was shown in Figures A3 and A4. The loss of XGBoost
decrease with the number of decision trees and when it exceeds 500, the loss of the classifier becomes
more stable and cannot significantly reduce. Hence, this study set the number of decision trees to 500.
Accordingly, the max depth of decision trees is set to 11.
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