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Abstract: Upper limb amputation is a condition that significantly restricts the amputees from
performing their daily activities. The myoelectric prosthesis, using signals from residual stump
muscles, is aimed at restoring the function of such lost limbs seamlessly. Unfortunately, the acquisition
and use of such myosignals are cumbersome and complicated. Furthermore, once acquired, it usually
requires heavy computational power to turn it into a user control signal. Its transition to a practical
prosthesis solution is still being challenged by various factors particularly those related to the fact that
each amputee has different mobility, muscle contraction forces, limb positional variations and electrode
placements. Thus, a solution that can adapt or otherwise tailor itself to each individual is required for
maximum utility across amputees. Modified machine learning schemes for pattern recognition have
the potential to significantly reduce the factors (movement of users and contraction of the muscle)
affecting the traditional electromyography (EMG)-pattern recognition methods. Although recent
developments of intelligent pattern recognition techniques could discriminate multiple degrees of
freedom with high-level accuracy, their efficiency level was less accessible and revealed in real-world
(amputee) applications. This review paper examined the suitability of upper limb prosthesis (ULP)
inventions in the healthcare sector from their technical control perspective. More focus was given to
the review of real-world applications and the use of pattern recognition control on amputees. We first
reviewed the overall structure of pattern recognition schemes for myo-control prosthetic systems and
then discussed their real-time use on amputee upper limbs. Finally, we concluded the paper with a
discussion of the existing challenges and future research recommendations.

Keywords: Myo-prosthesis; EMG; Pattern recognition; myosignals

1. Introduction

The human upper limb is a significant part of the body, the partial or complete loss of which can
have a significant effect on a person’s ability on the day to day activities. The human upper limb has
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three sections the hand, forearm and arm. For the movement of each section, coordinating the relation
of the nervous system, musculoskeletal systems and its surroundings are necessary. To perform various
daily activities, coordination of different joints (shoulder, elbow, wrist and finger joint) is essential,
including a broad range of motions with several degrees of freedom. These coordinated movements
are always redundant and can be beneficial to perform complex tasks. When it comes to an artificial
hand, all such control features of the normal hand should extensively match, so that the user can
perform their daily needs in a modified and effective way. The coordinated control of the biological
hand is quite complex, making it highly difficult to replicate it exactly in any prosthetic hand.

A typical prosthetic hand involves three main connected parts: an input signal acquisition unit,
processing and control unit and an end effector. Nowadays, almost all high performing artificial
hands (or prosthesis) use surface electromyography signals (sEMG or myosignals) for controlling
their end effectors. Surface electromyography records the muscle movements electrically from the
surface of muscle cells when they are electrically or neurologically activated [1]. The amplitude of
sEMG signals ranges from 0 to 10 mV (peak to peak)/0 to 1.5 mV (RMS) with dominant energy in the
20–450 Hz band [2]. Moreover, the acquisition of the sEMG signal requires proper skin preparation,
and EMG electrodes should be placed after confirming the target muscles (from which the EMG
signal comparable to predefined limb movement can be produced). With the technological and
miniaturization of sensors, dry electrodes that work as transducers for muscular inputs have replaced
traditional gel EMG electrodes and have improved performance [3]. On a usability level, sometimes,
muscle fatigue can happen due to the positioning of these dry electrodes on a single target muscle [4].
Recently, a modular scheme was developed as a solution, which uses the combination of several
electrodes and channels for accurate quantification [5,6]. An extension to this is that these electrodes
are replaced with transducers, such as force and resistive sensors, which use only a single channel
acquisition method with fewer disturbances [7,8].

In general, myoelectric hands have evolved a lot to overcome the traditional disadvantages of
acquiring myosignals to satisfy the needs of all levels of amputees. However, the basic control of the
majority of those myo-activated limbs has followed the same operating principles (muscle contractions)
for more than half of a century [9,10]. These devices use two types of technical control: pattern
recognition (PR)-based control and non-pattern recognition-based control [11]. The conventional
non-pattern recognition method is commonly used and limited to the proportional control (on/off

control). EMG-PR techniques have been developed to increase the dexterity of myoelectric prosthetic
devices, and to overcome the limitations of conventional proportional control. EMG-PR operates by
extracting multiple features from EMG signals rather than entirely relying on EMG amplitude [12] (as
EMG amplitude is slow, cumbersome and difficult for users to control their residual muscles movement).
A well-developed artificial upper limb design comprises of trajectories of a limb and their associated
movement patterns. To delineate this, a control algorithm requires parameters such as kinematics
and models of joints [13], motion and activities range [11]. Through EMG-based pattern recognition,
researchers are working on the hypothesis that EMG patterns contain much information on intended
movements. Once the EMG patterns are identified for intended movements using pattern classification,
the prosthesis controller will receive the command to implement the movement. Thus, EMG-PR
approach may allow users to control their myoelectric prosthesis more effortlessly with a broad range
of control.

The use of artificial hands instead of biological hands with the same degree of dexterity [14]
and complexity is a challenging task. However, pattern recognition (PR) technology has played an
important role in controlling myoelectric prosthetic devices for over 20 years [15–17]. Pattern recognition
technology provides more natural control, which is easier to learn by user and machine. It also provides
independent control of multiple DOFs using simultaneous, sequential or semi-sequential control, as well
as bringing the prosthesis closer to natural arm functions [18]. By applying proper PR-based methods
and signal processing techniques in combination with machine learning algorithms, an amputee’s limb
movement can be accurately decoded and used to control a prosthetic device [11,19]. EMG-based PR
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methods involve various approaches such as pre-processing, segmentation of data, feature extraction,
feature classification and post-processing [20].

All these approaches related to myoelectric pattern recognition in one way or another can be helpful,
but these methods still need further real-time evaluations for their validity [6]. Much research has been
done on the myoelectric prosthesis; nevertheless, some of the areas in the field need to be improved:
(i) control of multiple degrees of freedoms (DOFs) naturally and intuitively, (ii) two-way communication
with the brain (peripheral nervous system (PNS)) and iii) fast learning. Moreover, several advanced
pattern recognition techniques have been proposed without any real-world user applications [21,22].
A large portion of pattern recognition techniques described in the literature is still being applied in
clinical settings. Moreover, the performance of these algorithms is affected greatly by several factors,
including the positioning of electrodes, the fatigue of the muscle, arm position, surface EMG cross-talk
and muscle contraction. This paper is mainly focused on a review of the major pattern recognition
control approaches for myo-activated prostheses and their real-time amputee applications, and then
suggests some critical directions to follow to improve their performance level while maintaining
quantifiable viability.

The research methodology is discussed in Section 2. Section 3 describes the pattern recognition
techniques and systems used today, their merits and demerits if these are hands-on and what extents
need to be innovative for these technologies to be accomplished. Section 4 describes the methods
and analysis of the real-time application of myo-prosthesis. The results are discussed in Section 5.
The issues and advances made concerning this research area are discussed in Section 6. Section 7
concludes and provides an overall analysis of the article.

2. Research Methodology

This paper is a review article that summarises the current state of real-time EMG-PR control of
hand prosthesis. Many classification approaches have been proposed to obtain better performance of
the real-time application of myoelectric prosthesis. Despite the fact that the classification accuracy
is high (nearly >95%) on offline measurements, the implementation of classification techniques on
prosthetics does not give the same accuracy. The main reason behind preparing this review paper
is to show existing development achieved over the years on real-time usability of hand prosthesis.
More focus is given on PR classification techniques, feature extraction technique, embedded processor,
virtual reality and other factors (sampling frequency, window length). Many review paper has been
published on EMG-PR, but in our understanding, this is one of a few review papers on real-time
EMG-PR control of hand prosthesis.

Firstly, the key ideas related to the EMG characteristics are discussed in brief on the introduction.
The process of pattern recognition techniques is presented in Figure 1 and then discussed. Following this,
we will explore the key techniques and research ideas related to the real-time myoelectric pattern
recognition and control. These key ideas were established through a literature survey that attempted
to capture the major achievement in the field of classification to obtain real-time control of prosthesis,
real-time with embedded PR based prosthetics and real-time using virtual reality. In the final sections
of the paper, we speculate on future research directions in this field based on our critical analysis of the
current state of the art.

3. Pattern Recognition-Based Myoelectric Control

Myoelectric control systems can be classified as a pattern recognition control system and
a non-pattern recognition control system. The non-pattern recognition control includes onset
analysis, proportional level control and threshold level control. All of them are easy to implement
in a real system but are limited in their degrees of freedom. From the early 1960s onwards,
pattern recognition-classification techniques attracted the attention of the research community working
on controlling artificial limbs. This approach consists of segmentation of data, feature extraction,
and classification of a set of features or patterns for the various mode of myo-activations [23,24]. Figure 1
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shows some of the existing pattern recognition techniques used for myoelectric controls. Feature
extraction and windowing are two different parts of the [25] segmentation of data. Several studies
use a pre-processing stage before the feature extraction to avoid the preliminary level of inherent
disturbances and electromagnetic interferences. The output of pattern recognition is categorised into
different classes or labels based on the input feature extracted. The classes define the control of the
actuator with a specific command. In the next (sub) sections, we explain the detailed steps involved in
real-time pattern classification of EMG based prosthetic hands. For simplicity, we summarised all the
results (processing steps) as (a) real-time collected data from amputee (Table 1), (b) real-time using
embedded packages (Table 2) and (c) real-time with virtual reality (Table 3), respectively.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 27 

 

use a pre-processing stage before the feature extraction to avoid the preliminary level of inherent 
disturbances and electromagnetic interferences. The output of pattern recognition is categorised into 
different classes or labels based on the input feature extracted. The classes define the control of the 
actuator with a specific command. In the next (sub) sections, we explain the detailed steps involved 
in real-time pattern classification of EMG based prosthetic hands. For simplicity, we summarised all 
the results (processing steps) as (a) real-time collected data from amputee (Table 1), (b) real-time 
using embedded packages (Table 2) and (c) real-time with virtual reality (Table 3), respectively. 

 

Figure 1. General pattern recognition schemes [11,26,27]. EMG: electromyography. 

3.1. Pre Processing of EMG Recorded Signal 

Figure 1. General pattern recognition schemes [11,26,27]. EMG: electromyography.



Sensors 2019, 19, 4596 5 of 30

3.1. Pre Processing of EMG Recorded Signal

Recorded EMG signal is characterised by many interferences, such as signal acquisition noise,
electromagnetic disturbances, signal instability and motion artefact due to electrodes and cables.
Pre-processing is the very first step of pattern recognition techniques regarding proper signal analysis
and minimizing the inherent interferences [28]. It should be noted that Independent component analysis
(ICA) and Common spatial pattern (CSP) are used as a Pre-processing (filtering) and dimensionality
reduction (after feature extraction).

3.2. Segmentation of Data

The results obtained from the Pre-processed EMG signal (random nature) is not regarded as a
useful input in the pattern recognition technique. Thus, to extract the descriptive features, the window
(segmentation) of the Pre-processed data is required. There are mainly two different types of windowing
techniques proposed: overlapping window and non-overlapping (adjacent) window. In overlapped
windowing technique, the former window overlaps over the current window with increment timeless
than the window length itself [11]. The window length should be selected properly in real-time,
which could deliver an acceptable delay. Larger window length would provide high classification
accuracy but delay in the classifier’s decision. The different optimal length used in various works of
literature has been reported in Tables 1–3.

Segmentation of EMG data (using windowing) helps in estimating the intended motion for the
myoelectric classifier. It helps in the decision making of intended motion while new data are being
acquired. Englehart and Hudgins [29] used an adjacent, disjoint analysis window length equivalent to
0.25 × Sample frequency (SF) (256 ms for SF of 1000 Hz) for continuous myoelectric classification [30].
They also demonstrated that the data segment length of 0.125 × SF (128 ms for SF of 1000 Hz) or
even less as 0.03125 × SF (32 ms) could be considered, without much reduction in accuracy for the
continuous segmentation of steady-state signal. As with the advanced real-time computation facility
and high-speed processors, data processing could take less than 5 ms, thereby classifying data segment
length could vary from 32 to 25 ms. In this approach, with the time increment less than segment length,
the new segment could slide over the current segment. The segment length must be higher than the
processing period because the mainframe feature set had been calculated and must take a choice earlier
to the next segment. Thus, normally, the denser yet semi-class decisions are made through small
segment increments that help to improve response time and accuracy [31].

3.3. Feature Extraction

Generally, EMG features are extracted in the form of time-domain (TD), frequency domain (FD)
and time-frequency domain (TFD). In the TD, the features are extracted from the variations of signal
amplitude with time [32] as per the muscular conditions. Unlike time features, the frequency domain
uses the power spectrum density of the myosignals for extraction [33]. On the other hand, the combined
features of time and frequency domain are used for time-frequency extraction (examples such as
short Fourier transform and wavelets). The studies based on feature extractions proposed across
TD, FD and TFD shows the best results using the TD EMG feature. Hudgins [34] proposed the four
different time-domain features (MAV, WL, ZC, SSC) [35] for feature extraction from EMG, and it is
the most adopted one to date in the field of myoelectric pattern recognition [11]. Willison amplitude
(WAMP) [36], Autoregressive (AR) model parameters [37] and time domain-auto regression (TD-AR)
are also used to extract feature information. In comparison to other feature extraction methods,
such as Fourier transform and Wavelet Transforms (WT), TD-AR features have achieved higher
classification performance for the detection of hand movements with EMG signals [37]. Lui and
Huang [38] implemented a fourth-order AR model for the EMG feature extraction and showed better
classification performance. This approach only includes the trained data (EMG pattern classes) and
rejects all untrained data of the classifier. Some of the recently developed features are Wavelet packet



Sensors 2019, 19, 4596 6 of 30

transform (WPT) based features [11], short-time Fourier transform (STFT) [39] and EMG synergies
by matrix factorization analysis [40]. STFT comparing to TD and fractal domain features state EMG
signals better relationships with different muscles.

Recently, time-dependent power spectral descriptors (TD-PSD) [11] were proposed, which consists
of feature sets (wavelength ration, sparseness, irregularity factor and spectral moments (first, second
and fourth)). TD-PSD with force level training shows more robustness of pattern recognition against
force variation than most of the other feature extraction methods [41], such as reduced spectral
moments by Vuskovic and Du (VD-MOM), AR+RMS, TD, wavelet and discrete Fourier transform
(DFT) [42]. Khushaba [43] proposed a temporal-spatial descriptor (TSDs). EMG features set collected
from several intact-limbed and amputees are accepted on multiple sparse and high-density (HD) for
executing multiple degrees of freedom (hand and finger movements). Time-derivative moments (TDM)
based feature extraction [44] is a novel feature set extraction proposed to enhance the performance of
EMG-PR in upper limb motion classification. Furthermore, most of the previous studies had focused
on time-domain features to reduce computational difficulty. In addition, it does not require additional
levels of data transformation [45].

Usually, after feature extraction, dimensionality reduction (DR) is applied. DR is the process of
removing the number of arbitrary variables under consideration by locating a group of key variables.
When the information is liberally dispersed (scattered) due to the EMG classification, there may be a
problem caused by the large variance of the EMG signal. Thus, dimensionality reduction methods can
unite this information more effectively and solve the problem of feature dimension. Dimensionality
reduction thus helps in saving the computational cost and reduces the level of system complexity [46].
Uncorrelated linear discriminant analysis (ULDA), principle component analysis (PCA), and orthogonal
fuzzy neighbourhood discriminative approach (OFNDA) are common dimensionality reduction (DR)
techniques used to reduce the feature space.

3.4. Myoelectric Classification

The next stage, followed by feature extraction, is feature classification. The information gathered
during feature extraction is fed into the classification stage. A classifier should be able to classify the
pattern efficiently in less time to meet the real-time constraints of the prosthesis. Notably, only a few
numbers of studies have compared the potentiality of classifiers to meet real-time control.

The myosignals pattern classification for explicit movements is more focused on the extraction
of activities from arm muscles. For amputees, due to their amputations, only a few muscles will be
present in the residual limb to extract the feature of signals. For instance, in the case of transhumeral
amputation, the availability of forearm muscles is completely unavailable. Most of the pattern
recognition studies are, therefore, concentrated on trans-radial control. However, several studies tried
to classify finger movements using multiple features and classifiers, such as multi-layer perceptron
and neural network. Usually, in EMG-PR, the classifier performs well on trained (actions) classification
patterns. To improve the robustness of PR systems, the untrained classification pattern is also equally
important. Furthermore, from the past few years, the detection of untrained actions (novelty detection)
has also been studied. In order to solve the problem of novelty detection [47], different methods were
proposed and studied, such as the ensemble of one-class support vector data description (SVDD) [38],
and modified boosted random forests [47].

Although various classification methods are available, classification algorithms include two main
trends: Statistical (LDA and SVM) and Neural (MLP and ANN) [48]. The conventional PR method
also depended on KNN and LDA algorithms to categorise arm motions into different pattern classes.
LDA scheme is one of the most adopted classifiers in the implementation of myoelectric control. LDA
classifier has shown high classification accuracy, and it is very simple to implement [49]. In KNN
feasibility and precision check of classifying features have done for diverse time windows such as EMG
histogram and noise levels [50,51]. In 2001, instead of concentrating fully on the classifier like KNN
or LDA, some authors demonstrated that the pattern classification and its accuracy are more deeply
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depend on the selection of features [39,52]. As the input data are suddenly changing myosignals,
they have the downside of immediately switching the control from rest to contraction. This prohibits
changeover of the feature set from one to another in less time and an efficient manner.

Moreover, it delays the coordination between multiple tasks utilizing large degrees of freedom
in real-time. As a solution, the wavelet packet-based feature set can classify myoelectric activity in
real-time where the data streams are continuously exhibiting superior performance. A research work
then started on the KNN classifier with a genetic algorithm, upon the trans-radial muscles having the
potential to control a multi-fingered prosthetic hand.

Another classification technique mostly used for the EMG signal classification is an artificial
neural network (ANN). An ANN is easily trainable and has the capability of modelling both linear
and non-linear data [49]. The SVM classifier, due to its kernel-based characteristics, has gained wide
application in the field of myoelectric control. SVM is most popular for performing classification as
well as regression using machine learning tasks. SVM is an advanced statistical learning approach
providing an accurate and optimal solution in a short time. The different classifiers used in various
works of literature have been reported in Tables 1–3.

Although a lot of developments and progress were made in the field of EMG-PR, the development
of a DOF prosthesis that could aid in simultaneous prosthetic control is still a challenge. Based on
the literature studies, it indicates that classification accuracy can be increased with appropriate use of
EMG channel and feature set.

3.5. Post-Processing for Upper Limb EMG

To overcome the limitations of conventional EMG control [11] post-processing has been proposed.
Furthermore, the post-processing stage is next to the classification level for the removal of errors and
misclassifications. The control performance of a multifunctional prosthesis in a practical and laboratory
setting will always show various disparities. To minimise this classification error due to unintended
actions during the real-time applications, Simon et al. [53] introduced the practice of decision-based
velocity ramp functions as a post-processing method. This function attenuates the speed of action
soon after the classifier decision is altered. Moreover, post-processing approaches give a smooth state
transition from the current motion class to the changeover state. The greatest advantage of this is that it
could be combined with the multi-level real-time continuous control. Some of the other post-processing
techniques are Moving Velocity [30], and the majority vote [39,54,55]. The majority vote [56] has also
shown improvement in real-time EMG-PR control of hand prosthesis.

All advances in pattern recognition schemes with multiple input channels have improved the
overall classification accuracy for multifunctional control. Pattern recognition methods inherently
use sequential control, which requires sufficient windows (intervals) to extract useful classification
features without delay of response time. When the processing window decreases, the performance
window decreases significantly. Generally, with a normal pattern recognition algorithm, simultaneous
and proportional control is difficult to achieve. For instance, to grab an object—closing of fingers
together with pronation—an additional combination of classification features is required. This may
increase the number of patterns needed to be trained, which in turn creates an undesirable increase in
response time.

Moreover, pattern recognition does not provide proportional control, which is critical for
optimizing the response time. As a classifier is a binary decision control, it cannot influence the speed
or strength of prosthesis that requires an additional proportional component to the control of signal.
This will make the system more complex and decrease overall power [57].

To overcome the need for a complex device and to provide proportional and simultaneous control,
regression is one of the commonly used methods [47]. The regression approach can evaluate number
of control signals continuously from the EMG signal directly. For example, if one control signal assists
wrist rotation then the other control signal evaluates hand opening. Moreover, this approach provides
more user-friendly and spontaneous control of the prosthesis. Some of the regression approach used
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for the control (movement) of prosthesis are linear and non-linear regression [16], ANN [58] and
non-negative matrix factorization [40]. The regression method has thus far presented promising results,
permitting direct and spontaneous control to the user and further developments are likely to reinforce
the robustness of regression approach.

4. Real-Time Application of Myoelectric Prosthesis

The high functionality (multiple DOF) and high accuracy are achieved on testing offline and
real-time collected data from amputees. However, when tested by amputees or patients for real-time
usability, it does not give the same level of accuracy. Moving from the virtual environment to the
real world requires the implementation of prosthetic devices. One of the major challenges that
influenced the usability of the prosthesis is the lack of robust and a portable embedded system to
implement the EMG- PR algorithms, other challenges include the design of dexterous prosthetic
hands, multichannel electrodes placement, compensation between power consumption, small size,
etc. [59]. Various hardware has been implemented to develop prosthetic hands for persons with
disabilities. Hardware chips are designed for filtering EMG signals and other applications such as
grasp detection and human-computer interventions to obtain an accurate signal for prosthetic arm
control. Furthermore, virtual environments allow the user to practice different controlling gestures
that the designated prosthetic device supposed to control in real-world [60]. Some of the experimental
outcomes on the real-time collected data from amputee, real-time with embedded packages and
real-time using virtual reality environment are discussing in the following Sections 4.1–4.3, respectively.

4.1. Real-Time Collected Data from Amputee

Several researchstudiesonable-bodiedandhandamputeeshavebeendonetoevaluate the consequences
of arm position variation on EMG-PR classification performance. Offline classification accuracy/errors have
shown that arm variation affects the classification performance. To reduce such effect of arm variation,
various classification techniques [61] have been proposed. Similarly, classification accuracy identifies
the desired movements from several classes of motion. Some of the previous research studies had
shown that offline classification has not a good correlation with real-time performance of EMG-PR [61]
control of the prosthesis. However, some of the recent classification accuracies on the real-time
performance of amputee data are explained in this section. Nearly all EMG-PR control for real-time
collected data from hand amputee followed the same stages to operate. The features are extracted
from pre-processed EMG data. From the extracted data, the feature is usually selected for training
and control set. Then, the classification technique is applied for training classifiers and control set
classifiers. The general algorithm of this whole system is shown in Figure 2.

In 2003, Karlik et al. [62] conducted a study on the classification of myoelectric signals for
precise overall control of multifunction prosthesis using Fuzzy clustering neural network architecture.
The author also compared the accuracy of multi-layer perceptron (MLP) having a back-propagation
algorithm and the new fuzzy clustering neural networks (FCCN). The fuzzy clustering involved the
division of input data into several fuzzy parts that intersect each other and thus defined by membership
grade [0,1]. An algorithm was proposed to implement these fuzzy clustering that minimised the cost
function. A comparative assessment shows that using FCNN provides more reliable results than MLP.
The FCNN achieved 98% accuracy with half training time than that of MLP. Later, in 2005, a promising
method by Chan and Englehart [63] added into the row of the continuous controllers. The new method
followed a hidden Markov model (HMM) as the data segment classifier. The HMM classifier was a
suitable probabilistic approach for pattern recognition at that time due to the resilience to sequential
myosignal variations. For a four-channel six function design, HMM has more performance accuracy
(94.63%) than MLP with a good level of robustness and quick response.
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Al-Timemy et al. [37] proposed a process for the classification of finger motions for dexterous
control of the myoelectric prosthesis. The myosignal was recorded from six traumatic below-elbow
amputees. TD-AR features were used to extract useful information from the segmented EMG
window. To find the best match of features reduction (to reduce computational power) and classifiers,
two different features reduction tools (PCA and orthogonal fuzzy neighbourhood discriminative
approach (OFNDA)) and classifiers (LDA and SVM) were combined to make four different forms.
The results show the high accuracy with OFNDA and LDA.

Furthermore, the studies show that feature reduction plays an important role than a classifier to
achieve high accuracy with multi EMG channels. In 2013, Pan et al. proposed a solution for partial hand
amputees with a functional wrist to predict the finger joint angle using EMG [64]. The experiment was
performed on two amputees. EMG signal was recorded from eight targeted muscles and was sampled
at 2000 Hz frequency. TD feature sets were fed to the LDA classifier to identify seven different static
wrist positions. A switching rule, including LDA classifier and 14 state-space models, was proposed
for continuous decoding of finger joint angles. The average classification error rate (CER) was 6.18%,
which demonstrates that forearm movements and the continuous movement of the finger can be easily
classified. Similarly, in 2016, Ganesh et al. proposed the combination of ICA and Icasso to minimise
the number of EMG sensors and increased robustness of myoelectric control [12].

Early in 1993, [34] an experiment was performed on one amputee using the Hudgins feature set.
These features classified using ANN classifier with one EMG channel proved that the EMG signal
shows deterministic structure during the beginning of muscle contraction. Riillo et al. [65] proposed an
optimization methodology of sEMG based hand gesture classification using pre-processing techniques
such as PCA (unsupervised) and CSP (supervised). One trans-radial amputee (right-hand below-elbow
amputee) participated in the experiment. TD features were extracted from segmented data (using
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overlapped windows). Similarly, three classifiers (LDA, SVM and ANN) [65] were tested by assessing
the average accuracies of each time window. The study shows that the best results obtained for the
real-time system were using the ANN classifier.

Another research work extended the classification control using a support vector machine (SVM),
obtained high accuracy (92–98%) with less training time [66]. Stango et al. [67] used the SVM
classification technique, followed by variogram features. The variogram is a measurable degree of
spatial correlation. The experiment was performed on one trans-radial traumatic amputees. The main
purpose of this experiment was to analyse the spatial features of HD EMG-PR for myoelectric control.
Variogram features maintain a good classification accuracy without retraining even if the EMG channel
is eliminated during the experiment phase. Hence, the study shows spatial proposed improved the
robustness of EMG-PR. In [68], the effectiveness of using twin SVM (TSVM) in multi-class prosthetic
control with unbalanced datasets was demonstrated with the RMS value (feature).

The summary of the comparison of some of the EMG-PR classifiers using real-time amputee data
is shown in Table 1. All the achieved accuracy was demonstrated only in ideal research settings.

Among the many classifiers (Figure 1) in myoelectric control, LDA seems to be widely used
classifiers. On the other hand, SVM and KNN, due to their kernel trick characteristics and
non-parametric nature [51], respectively, have equally been used widely. Though the better performance
was achieved with many classifiers, high-density surface EMG is impractical to use as a source for
real-time control.



Sensors 2019, 19, 4596 11 of 30

Table 1. Summary of various individual classifiers and combined classifiers tested on amputee data 1.

Pre-Processing Segmentation/Window Length Feature
Extraction/DR Classification Post-Processing Classes/EMG

Channel Accuracy

N/A 256 ms overlapping 32 ms TD, 6AR, RMS/PCA,
ULDA KNN, LDA [69] Majority vote 7/57 >97%

N/A 200 ms length with
50 ms increment

6AR, RMS, IAV, ZC,
WL, SSC/OFNDA LDA [37] N/A 12/11 90%

N/A 200 ms with 5 ms
increment window

MAV, ZC, WL,
SSC/N/A LDA [64] N/A 7/7 95.64%

ICA 250 ms overlapping window
with 64 ms increment

4AR, RMS, MAV, ZC,
VAR, WL/ULDA LDA [12] N/A 12/11 >90%

CSP 300 ms with 75 ms of delay
between the overlapped window

M, RMS, WA,
SSC/PCA ANN [65] N/A 5/6 92.04%(PCA)

93.4%(CSP)

N/A Window set to 4500 and window
shift 50 Variogram/N/A SVM [67] N/A 7/48 81.6%

N/A 256 ms with window shift 32 ms WL/N/A NN [70] N/A 4/6 An average RMS
error=0.16 for 4 patterns

N/A 200 ms sliding window RMS, log(rms)/N/A Fuzzy c- means
clustering [71] N/A 4/3 87.5±13%

N/A 200 ms with an increment
of 75 ms

RMS, WL, ZC,
SSC/N/A LDA [72] N/A 6/8 >91%

1 Table omit the results from able-bodied subjects.
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4.2. Real-Time EMG-PR with Embedded System

An embedded system was customised to perform a specific task and function often with real-time
control. This system was mainly based on microcontrollers or microprocessors. Real-time embedded
for the EMG-PR for hand prosthesis can be enhanced to reduce cost, size and increase the reliability
and performance of the prosthetic device. Almost all of the real-time EMG-PR control using embedded
systems followed the same stages to operate, as shown in Figure 3. Firstly, the sEMG signal is recorded
from the subject muscle using electrodes. Then sEMG signal acquisition takes place. This signal goes
through pre-processing techniques. The features are extracted and selected from the pre-processed
signal. Once the selected features are classified, the command was sent to the embedded controller to
control the end effector.

 

  Figure 3. Real-time EMG-PR with embedded system. 

 

 

Figure 3. Real-time EMG-PR with embedded system.

Wirta et al. [73] first reported the used of embedded myoelectric pattern recognition system in 1963.
The robotic arm was developed, and Discriminant analysis was chosen as a classification technique.
After a few years during 1996, a real-time EMG-PR was proposed with a digital signal processing
(DSP) (TMS320C31) based system having a modified maximum likelihood distance (MMLD) classifier.
Four able-bodied and two quadriplegic subjects volunteered and were designated with five motions of
neck and shoulders. The total response time for EMG discrimination was 0.17 s, and it achieved a
95% mean discrimination rate [74]. An analogue integrated circuit for the wireless transmission of
physiological signals designed by Yeng et al. [75] focused more on the transmission system, not on
the implementation of the prosthesis. In 1999, an Evolvable Hardware (EHW) chip for myoelectric
artificial hands was developed to serve as a standard tool for hardware validation [76].
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To access the computer for limbs disabled through their remaining muscles, a real-time assistive
device was designed in 2007 with PR of EMG signals [77]. The signals were measured from the
muscles of the lower arm of the subject during different wrist motions. The obtained signals were
filtered, and a supervised multi-layer neural network trained by a backpropagation algorithm was
used for the classification of the user’s movement and clicking of a cursor. The drawback of that article
was that the researcher focussed more on the qualitative evaluation of performance than presenting
the control implementation. Similarly, Anbin et al. [78] proposed the novel combination of signals
(EMG and inertial measurement unit (IMU)) to be used for mouse controller (cursor movements).
LDA classifies the EMG data into several groups of 128 ms time window and 32 ms increment window,
which correspond to the pre-defined computer mouse operations. The results showed an accuracy
of 88%.

In 2007, Bitar et al. [48] explained in detail the design of portable Musical Instrument
Digital Interface (MIDI) using a continuous wavelet transform (CWT) decomposition and SVM.
A low-complexity portable dsPIC33FJ256GP710 embedded system was designed that collects and
classifies EMG signals. This embedded system is quite inexpensive and consumes less power.
The output from four-channel was sampled at 1 kHz frequency using the dsPIC’s on-chip A/D
converters. The channel window (fixed-length windows of 0.6 s with 0.3 s overlap) was normalised
by its respective power. The CWT coefficients were computed for each and every channel separately,
and the desired features were extracted. Finally, six class classifications were performed using the SVM
classifier, and the decision of the classifier transmits the result as labels in real-time using Bluetooth to a
remote interface. Moreover, to control a MIDI-enabled device (mechanical prosthetic hand), these labels
were then converted to MIDI commands. The experiment showed an achieved 91% accuracy.

Ke et al [59] presented the latest progress on EMG-PR control of a prosthetic hand. EMG signal
was acquired using an armband with eight-channel electrodes. A powerful embedded system was
introduced to deal with the decoding algorithm of EMG signals. These real-time surface myoelectric
signals decoding and EMG training (onboard) were incorporated in the embedded system to control a
prosthetic hand of six DOFs. The result showed that the possibility of speeding up the movement of a
PR prosthetic arm, making it more suited for daily application, is promising.

In 2013, Xiaorong et al. [79] proposed a first real-time EMG-PR self-recovery classification using a
cumulative sum algorithm (CUSUM) detector. Forty-eight motion artefacts were introduced on 12
real-time testing trials. CUSUM detector successfully detected the 43 artifacts, which lead to 93.5% of the
elimination of misclassification caused by motion artefact. Similarly, in 2015, Ann et al. [80] compared
the non-adaptive (conventional) and adaptive control (real-time) prediction learning. The experiment
was performed on one trans-humeral prosthesis and three able-bodied subjects. EMG signal acquired
using eight channels sampled at 1 kHz to classify the eight classes of motion. Subjects were asked to
wear a Bento arm (anthropometric robotic arm), which consists of MTT (AX-18 smart robotic arm)
incorporating five DOF. The result shows the adaptive control decreases the total switching time and
improve myoelectric robotic arm during uninterrupted use by subjects (amputee and normally limbed).

A few articles showed the real-time control of commercially available prostheses for finding the
user experience with pattern recognition control. Understanding the patient’s experience can help
clinicians and patients who choose prosthetic options. The commercially available EMG-PR control
was interfaced with multiple degrees of freedom DEKA arm [81]. This study provided an extensive
description of the user experience of operating a DEKA arm using EMG-PR control. The majority of
the participants preferred the future prospective of EMG-PR as a control measure.

Mastinu et al. [82] presented the real-time implementations of PR techniques on dysmelia subjects
(congenital disorder). The subject was asked to use iLimb-ultra (Touch Bionics, UK) for five consecutive
days during the experiment. This system is known as the artificial limb controller which includes a
pattern recognition system. The classification accuracy and motion test of the system were compared
with different classes on motion (open hand, closed hand, side grip, fine grip and pointer) individually.
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The real-time pattern recognition accuracy for motion test (subjects were asked to perform as directed
on-screen) was higher than the classification or execution accuracy.

Hargrove et al. [83] demonstrated the outcomes obtained from the commercially available
prosthetic used by subjects undergone targeted muscle reinnervation (TMR). Subjects wore a
commercially available prosthesis to perform different household tasks. A comparison of direct
method and pattern recognition methods in TMR subjects were performed, and statistical significance
of both methods was evaluated. Users performed well with pattern recognition incorporated devices.
Additionally, among the eight subjects participated, seven preferred pattern recognition control.
Some of the papers related to the real-time with embedded packages are summarised and shown in
Table 2.

Among many classifiers (NN and SVM), LDA is one of the most used classifiers for real-time
embedded systems. LDA’s main advantages are its simplicity of implementation in an embedded
processor. Although many studies have been done and the embedded system has been implemented
to develop the prosthetic of a lost limb using EMG-PR control, a major issue of achieving natural and
reliable control of limb remains unsolved.
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Table 2. Summary of the real-time controller in an embedded package.

Pre-Processing Segmentation/Window
Length Feature Extraction CLASSIFICATION Post-Processing Classes/EMG

Channel
Sampling
Frequency Processor

N/A N/A N/A MLNN [77] N/A 6/4 1 kHz PCI-6034e

N/A 600 samples (0.586 s) CWT SVM [48] N/A 5/4 1024 Hz dsPIC33FJ256GP710

N/A Overlapped analysis window
160 ms with 20 ms increment MAV, SSC, ZC, WL LDA [79] N/A 3/4 1000 Hz M3-Microcontroller

N/A 300 ms with 200 ms overlap
(100 ms increment) MAV, SSC, ZC, WL LDA [59] N/A 6/8 200 K samples

per sec STM32F4072GT6

N/A 100 ms with 50 ms increment MAV, SSC, ZC, WL LDA [82] N/A 5/7 1000 Hz M4 microcontroller

N/A 250 ms Integrate- EMG,
RSS, INVAR

KFD (DR), RBFNN
(classifi-er) [84] Majority vote 9/8 200 Hz/channel Arm Cortex—A53

N/A 200 ms with 175 overlap MRV,
WVL, ZC, SC, 6AR LDA [85] N/A 7/12 1000 Hz Logic PD SOMDM 3730

N/A 150 ms analysis window with
50 ms overlap MAV, ZC, SSC, WL LDA [86] N/A 11/12 1 kHz USB-1616FS
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4.3. Real-Time Using Virtual Reality

To be able to control virtual prosthesis and to become familiar with a real-time prosthesis, voluntary
muscle contraction control is very important; this can be done by using a visual feedback system.
The improvement of learning depends on the user and visual feedback system, thus, the feedback
system must allow the user to learn new tasks using their muscles [87]. Most of the virtual prosthesis
followed the same stages to operate. Firstly, the EMG signal acquisition takes place using electrodes on
the residual muscle of amputees. Then, the signal is amplified and filtered to acquire the myoelectric
signal to be used. The interface between the virtual system and acquisition of myoelectric signal is
created, which consists of isolation, pre-processing of the signal in the hardware, personal computer (PC)
communication, communication between PC and MATLAB, processing in software and communication
between MATLAB and virtual world [87] (part of MATLAB). The general idea followed by most of the
virtual prosthesis is shown in Figure 4.

 

Figure 4. General representation of virtual prosthesis process. 

 

Figure 4. General representation of virtual prosthesis process.

The continuing the examination of real-time control of prostheses using the myoelectric signal
resulted in a robust scheme pattern recognition [29]. Twelve subject data from four channels were
used for real-time control. Unlike the traditional methods involving transient control, which requires
initiation from rest, a continuous stream of class decisions was delivered to the prosthetic device.
Pattern recognition was performed on sliding time windows with 256 ms in duration and with the
LDA classifier. The continuous decision (intended motion) permitted intricate classifications involving
multiple joints without disruption. The continuous classifier performs very well with a significant
gain in accuracy and response time over a wide range of analysis window lengths if accompanied by
majority vote post-processing. Moreover, the control scheme required minimal storage capacity.

Ann et al. [88] presented that the target achievement control (TAC) test in the virtual environment
provides a good platform for PR control practice and testing. In a TAC test, virtual prosthesis moved
from an inactive position to the target position. In 2015, Martina and Haripriya [89] constructed a
prototype using sEMG signal to record the data from the brachioradialis muscle of forearm to control
the movement of powerpoint slides transmitted in real-time. Furthermore, Agamemnon et al. [90]
performed an experiment on 20 able-bodied and two amputees to find the outcome of two sensors
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(sEMG and inertial measurement (IM)). Twelve electrodes were used to acquire sEMG signal in a
sampling frequency of 2 kHz. Feature sets such as MAV, WL, 4AR and logVar were extracted using a
sliding window of 256 ms with 50 ms increments. Two sets of the experiment (offline and real-time)
were performed. Real-time prosthetic hand control was based on offline observation. Touch Bionics
’robotic hand’ have been used for real-time performance. It shows that the combination of both IM
and sEMG improved the classification performance of a prosthetic hand. Additionally, the use of
IM and sEMG reduce number of sensor require to achieve high level of accuracy. Yanjuan et al [61]
investigated that both offline motion classification accuracy and real-time motion completion rate are
important to assess the performance of EMG-PR control.

Identifying multiple DOF (hand movements) using a few EMG sensors is one of the necessities for
developing high levels of usability prosthetic hands. Trongmun et al. [91] present a signal processing
technique that classifies 17 spontaneous classes of motion from EMG signals using spectral features
and an ANN. Online classification experiments were performed on twelve subjects (seven male
and five female) to assess the reliability of the proposed method. An overall correct classification
rate of 83% was achieved, showing the ability to classify 17 movements from six EMG sensors.
Moreover, the classification of nine movements could achieve accuracy of up to 92%. EMG pattern
classification has been widely studied to decode user-determined for intuitive prosthesis control.

The significant breakthrough was occurred with the introduction of surgical procedure to improve
the control of hand prosthesis known as targeted muscle reinnervation (TMR) [92]. The real-time
and offline performance of EMG-PR with TMR patients was presented using a generic electrode
grid. Four amputee subjects (two trans-humeral, two shoulder articulation) that underwent TMR
surgery participated in this study. In a real-time virtual analysis as well as offline classification,
a generic grid-like electrode performed better than the control site (specific site for electrode placement).
Although TMR has the potential to provide advanced control of wrist and grasp patterns for myoelectric
control, the concept has not yet been a success in implementing it to multiple DOFs for the prosthesis.

For assessing the real-time PR control of TMR based multifunction prostheses, Todd et al. [86]
showed the performance outcome based on motion (selection time, completion time and completion
rate). The experiment was performed on both virtual and real prosthesis. The performance was first
ascertained by training and testing with a virtual multifunction prosthesis. Later on, the experiment
was carried on three TMR patients with upper-limb prostheses. The mean classification accuracy of
88% with standard deviation (SD) of 7% for patients who had undergone TMR surgery and 97% with
standard deviation (SD 2%) for control participants was achieved. Furthermore, the summary of some
studies based on real-time using the virtual reality environment is presented in Table 3.
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Table 3. Summary of real-time analysis with a virtual prosthesis.

Pre-Processing Segmentation/Window Length Feature Extraction Classification Post-Processing Classes/EMG
Channel Sampling Frequency

N/A 256 ms ZC, MAV, SSC, WL LDA [29] Majority vote 4/4 1000 Hz

N/A 150 ms analysis window with 50
ms window increment MAV, SSC, ZC, WL LDA [88] N/A 7/6 1 kHz

N/A 500 sample/s N/A NN [93] N/A 8/17 N/A

N/A 32 sample hamming window
with 75% overlap PSDs ANN [91] N/A 17/6 200 Hz

N/A
Sequential analysis window 150
ms with a time increment of 100

ms (50 ms overlapping)
MAV, ZC, WL, SSC

SPC
CC

MPC [61]
Majority vote 7/16 1000 Hz

N/A 100 ms overlapping
sliding window MAV Error-correcting output codes

classifier [94] N/A 13/15 2048 Hz

N/A 150 ms sliding window with 100
ms increment MAV, ZC, WL, SSC LDA [56] Majority vote 7/6 1000 Hz

N/A 128 ms increment to 1024 ms 6AR and RMS Linear regression cascade
model [95] N/A 3/6 1000 Hz

N/A 250 ms with 50 ms increment 6AR, MAV, ZC, SSC, WL LDA [92] N/A (9-13-17-29)/(14-15) 1 kHz

N/A 200 ms sliding window TD5 -MAV, SSC, WL, ZC EASRC [28] N/A 6/8 1000 Hz
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5. Discussion

The first pattern recognition control scheme was developed in the late 1960s. By the 1980s,
the approach was more refined by extracting features using autoregression from a smaller number
of input channels. This allowed greater accuracy (nearly 86%), but was unable to achieve that in
real-time. At the beginning of the 1990s, pattern recognition and its accuracy were improved further
with artificial neural networks. Then, the methodology was shifted to the analysis of real-time scenarios
with a continuous shrinkage to permit precision of roughly above 92%. The inclusion of real-life
constraints and reduction of dynamic error were large discussions after the late 1990s. Since then,
most of the studies attempt to achieve a perfect natural level control in myo prosthesis by the selection
of appropriate classifiers and post-processing techniques. It is obvious that the popularity of pattern
recognition methods keeps on increasing, and the research studies are evolving into a more natural
control of artificial arms. A sudden increase in pattern recognition control can be visible from the
year 2000 onwards. Though there are some fluctuations in the level, with the change in computing
capability of processors, the interest in research on pattern recognition has risen and shown major turn
since 2010.

There are still many challenges to implementing real-time prosthesis, mainly in a wearable
embedded system. First, a solution scheme involves a re-training PR classifier. Presently, this process
includes the restructuring of the training feature matrix, the estimation of variables in the pattern
classifiers, and then forming new organization of the testing feature vectors. It is unknown if the
embedded system can control all this approach fast enough for each decision. Second, many components
are incorporated into the EMG-PR algorithm; the interaction between the components and the precise
time control is critical.

At last, it requires a compact combination of all components of the embedded PC. The system
requires to provide the interfaces needed for the collection of data, sufficient computing power for
decision making in real-time, effective memory management and low energy utilization [79]. All of the
above-mentioned challenges are less explored.

Most of the above said articles tried to analyse and use repeated data by setting ideal clinical
conditions for classification error and accuracy. Moreover, the real-time articles mostly tested their
results with able-bodied subjects. In real amputee life, some unwanted, unrealistic repeatable
contractions can be observed from myo-signals during classifier learning. Those considerations were
the least discussed and identified. When a user is asked to perform several activities under real-life
conditions, such as varying size loads, orientation and weather, the classification error in the real-life
scenario is high from their equivalent able-bodied subject. It is also clear that pattern recognition
systems have yet to obtain an extensive application for numerous reasons such as (1) the absence of
good user interface, (2) uncertainty in classification accurateness and control and (3) variations in
patterns over the period. The previous studies have shown practical achievements for the control of
ULPs. Together with this achievement, the advancement of inaccurate classification and speed from a
reliable command method is enough to process with less time, less error and minimum mental effort.
While many classification schemes have been analysed, generally, the feature identification methods
are stuck to time-domain features and are paired with LDA classifier.

Moreover, none of the pattern recognition systems have been found to be 100% precise. The wrong
classifications need to be alleviated to make a myoelectric pattern recognition control as a valid choice
for an amputee. Otherwise, users become frustrated, as they are unsuccessful at completing a task due
to unintended prosthesis movement. Ultimately, this can lead to the rejection of the device itself.
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6. Challenges and Future Prospects

With technological advancement, purely aesthetic orthopaedic prostheses have gained more and
more functionality over the years. Although the prosthesis nowadays provides a lot of movements
(DOF) for amputees, there are still some challenges that need to be fixed for the real-time EMG-PR
control for hand prosthesis.

The real-time usability of available multiple DOF prosthesis is impacted by various factors such
as intuitiveness of device, comfort, appearance, function, durability and cost. Furthermore, there are
some other compounding factors, which are explained in Table 4.
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Table 4. Some of the challenges of real-time EMG-PR control of hand prosthesis.

Challenges Description

Comfort The socket that is the part of the upper limb prosthesis may interfere with the elbow (a function of the residual joint). If the socket does not fit correctly,
the patient may suffer from pain, sores and blisters. Such prostheses will be experienced as heavy and cumbersome [96]. Even some prostheses with
appropriately designed sockets, face problems of heat, sweating and chafing.

Appearance Most of the developed upper-limb prostheses do not look natural in appearance. Additionally, the user can find the prosthesis uncomfortable to wear.
The user is still unable to control the multiple degrees of freedom simultaneously and consistently.

Function Nowadays, upper limb prostheses perform almost all everyday activities. However, it remains challenging to obtain opening and closing positions of
the hand from the residual limb. This is because residual muscles often used for hand prosthesis are biceps and triceps, which do not convey the
information for closing and opening the hand [97].

Durability Many of the upper limb prostheses are heavy and have short battery life.

Cost Upper limb prosthesis costs around $50,000, which is quite difficult to afford by amputees from all over the world.

Technology Developed prosthetic devices still lack intuitiveness and reliability between user motion volition and real motion of prosthesis. Similarly, much
training is needed to operate those prosthetic hands.

Processing delay The embedded processor used exhibits some delay (around 3 s), which halt the acquisition of EMG for that delay period.

EMG interferences The transient changes in EMG often result from external interferences, changes in electrode impedance, muscle fatigue and electrode shift, among
others. During practical use, this transient change arising from variations (long- and short-term) in the acquisition environment caused degradation of
the clinical vitality of the device and limited its users’ adoption [11].

Electrode displacement (shift) Electrode displacement occurs each time when users use a prosthesis, electrodes slightly reconcile in a different position relative to underlying
musculature. When the user performs some task, due to the loading and positioning of limb, a movement of electrode occurs. Such an electrode shift
can lead to a change in EMG characteristic (recording) of the limb, and thus, make it more difficult to decode the movements [98].

Amputee movement EMG signal from the limb position is mostly recorded when the user is in a static position (sitting), but in a real-time scenario, prosthesis users have to
use the device in different positions (walking, climbing stairs). However, the variation in limb position effect the classification performance of
EMG-PR [99].

Muscle contraction forces While performing everyday activities, the same limb assists different muscle contraction forces across different conditions. Thus, the variation in
muscle contraction force occurs due to the same targeted limb results in myoelectric signal pattern classification inconsistency. Hence, it affects the
EMG-PR control of prosthesis [24].

Limb position variation Variation in limb position occurs while performing a different action in everyday life. For upper-limb amputation, the effects are seen on residual
muscle (located in a prosthetic socket) from which the EMG signal is collected. Additionally, various limb positions lead to the variation in
gravitational force, which leads to the displacement of target muscles. These factors cause variation in EMG signal pattern affecting the EMG-PR
control of prosthesis performance.
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Future Prospects-Implementation of Real-Time EMG-PR Control

• Electroencephalogram (EEG), and ECog (Electrocortocogram) measures brain signals, and they
could be used to supersede EMG for prostheses control. ECog electrodes are invasive as
they are placed directly inside the head, whereas EEG electrodes are non-invasive, as they are
positioned on the scalp area [100], where information regarding the targeted body movements
are measurable [101]. EEG and ECog have currently found an application as a brain-machine
interface [102], and in theory, can control the movement of the prosthesis similar to the EMG. In
other words, while EMG measures the electric current from muscles and provides the control
signal according to the action intended by subject [103], brain-machine interface decodes the
electrical signal generated from the brain and converts them to the control signal for the control
of prostheses [104] without using a muscle as an intermediate [100]. Unfortunately, due to
the invasiveness (ECog) and the problem associated with electrodes montage stability (EEG),
generalised poor signal-to-noise ratio (SNR) and the poor spatial resolution of the signals, not to
mention the discomfort related to the need of having multiple devices over the subject’s body
(i.e., head and limbs), we believe that, at present, these devices may be better suited for patients
with spinal cord injury where voluntary EMG signals may be not available. It is necessary to
mention that another issue often related to the use of brain signals to drive external devices is the
need of extensive training [105,106] and poor performances of the brain to computer interface.

• The prosthetic control unit should be increased, and appropriate pattern-recognition should be
used for proper handling of the prosthetic device.

• The prosthetic device should be developed using low-cost materials, affordable to all amputees.
• Intuitiveness can be developed by extracting the signals using ultrasound imaging [107],

force myography (FMG), TMR and Implantable myoelectric sensor [108].
• One possible way to minimise or eliminate this drawback of EMG interferences is to develop an

electromagnetic shielding technique [11] and implement the best filtering strategy.
• Rather than depending on existing proposed training, an intelligent adaptive prosthetic system

should be developed and implemented. An intelligent EMG-PR system requires to represent a data
stream accurately in real-time. It shows a possible way to restrict the deficiency in the prosthesis
market. With such developments, users’ expectations can be met, and thus, device adoption for
everyday use can be increased.

• Feature extraction is a core of conventional EMG-based pattern recognition control. To achieve
the real-time usability of prosthetic, issues related to the feature extraction should be addressed.
Deep learning (machine learning method based on ANN) may be one possible way to solve
the problem of feature extraction [11]. Thus, more research on deep learning in pattern
recognition-based prosthesis control should be conducted.

7. Conclusions

This review paper presents a brief introduction to EMG-PR techniques and explores the work
done on real-time (amputee data, embedded and virtual environment) myo-activated prosthesis based
on pattern recognition control over the years. Through the literature survey, some of the key techniques
required for the improvement of existing real-time application of EMG-PR for hand prosthesis are
presented. Although the perspective of intelligent pattern recognition control methods for the multiple
degrees of freedom for hand prosthesis has been well investigated, their real-time usability is still being
challenged by a number of compounding factors. Natural neuromuscular control of prosthesis should
be proportional and investigate multiple degrees of freedom. However, while reviewing the existing
literature, we have observed that the majority of real-time prosthesis uses EMG, i.e., multiple channels
targeting multiple residual muscles to generate multiple synchronous control signals. The challenges
are even greater than a single degree of freedom due to the proximity of the muscles/electrodes,
etc. This should be well investigated in the future for real-time scenarios. Furthermore, to achieve
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real-time usability, appropriate design of the prosthetic device, virtual training, feature extraction and
classification techniques should be properly investigated and implemented.
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ALFN Abe lan fuzzy network
ANFIS Adaptive neuro-fuzzy interface system
ANN Artificial neural network
AR Auto regressive
CER Classification error rate
CSF Common spatial pattern
CUSUM Cummulative sum
CWT Continuous wavelet transform
DFT Discrete fourier transform
DOF Degree of freedom
DSP Digital signal processing
DR Dimensionality reduction
EASRC Extreme learning machine with adaptive sparse

representation classification
ECog Electrocorticogram
EEG Electroencephalogram
EHW Evolvable hardware
EMG Electromyogram
FCM Fuzzy C means
FCNN Fuzzy clustering neural network
FD Frequency domain
FDF Frequency domain feature
FP Feature projection
HD High density
HMM Hidden Markov model
IAV Integral absolute value
ICA Independent component analysis
IM Inertial measurement
IMU Inertial measurement unit
KFD Kernel fisher discriminant
KNN K-nearest neighbour
LDA Linear discriminate analysis
LTFR Linear time frequency representations
MA Moving average
MAV Mean absolute value
MDA Multiple discriminant analysis
MIDI Musical instrument digital interface
MLP Multi-layer perceptron
MMLD Maximum likelihood distance
MRV Mean relative value
MV Majority Voting
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NBC Naive Bayes classifier
NN Neural network
OFNDA Orthogonal fuzzy neighbourhood

discriminative approach
PCA Principal component analysis
PNS Peripheral nervous system
PR Pattern recognition
PSD Power spectral density
QTFR Quadratic time frequency representations
RBF Radial Basis function
RF Random forest
RMS Root mean square
SD Standard deviation
sEMG Surface EMG
SF Sample frequency
SNR Signal to noise ratio
SOM Self organizing maps
SPSE Steady posture and steady EMG
SRC Sparse representation classification
SSC Slope sign change
STFT Short time Fourier transform
SVDD Support vector data description
SVM Support vector machine
TAC Target achievement control
TD Time domain
TDF Time domain features
TD-PSD TD-Power spectral descriptors
TFDF Time frequency domain features
TKE Teager-Kaiser energy operator
TMR Targeted muscle re-innervation
TSD Temporal- spatial descriptor
TSVM Twin SVM
ULAs Upper limb amputees
ULDA Uncorrelated linear discriminant analysis
ULP Upper limb prosthesis
VD-MOM Vuskovic and Du-MOM
WAMP Willison amplitude
WL Waveform length
WPT Wavelet packet transforms
WT Wavelet transform
ZC Zero crossing
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