
sensors

Article

Fruit Detection and Segmentation for Apple Harvesting
Using Visual Sensor in Orchards

Hanwen Kang and Chao Chen *

Laboratory of Motion Generation and Analysis, Faculty of Engineering, Monash University, Clayton, VIC 3800,
Australia; hanwen.kang@monash.edu
* Correspondence: chao.chen@monash.edu

Received: 3 September 2019; Accepted: 19 October 2019; Published: 22 October 2019
����������
�������

Abstract: Autonomous harvesting shows a promising prospect in the future development of the
agriculture industry, while the vision system is one of the most challenging components in the
autonomous harvesting technologies. This work proposes a multi-function network to perform the
real-time detection and semantic segmentation of apples and branches in orchard environments by
using the visual sensor. The developed detection and segmentation network utilises the atrous spatial
pyramid pooling and the gate feature pyramid network to enhance feature extraction ability of the
network. To improve the real-time computation performance of the network model, a lightweight
backbone network based on the residual network architecture is developed. From the experimental
results, the detection and segmentation network with ResNet-101 backbone outperformed on the
detection and segmentation tasks, achieving an F1 score of 0.832 on the detection of apples and 87.6%
and 77.2% on the semantic segmentation of apples and branches, respectively. The network model
with lightweight backbone showed the best computation efficiency in the results. It achieved an F1

score of 0.827 on the detection of apples and 86.5% and 75.7% on the segmentation of apples and
branches, respectively. The weights size and computation time of the network model with lightweight
backbone were 12.8 M and 32 ms, respectively. The experimental results show that the detection and
segmentation network can effectively perform the real-time detection and segmentation of apples
and branches in orchards.

Keywords: deep learning; machine vision; real-time fruit detection; semantic segmentation; visual sensor;
automated harvesting robot

1. Introduction

Apple harvesting is a labour-intensive, time-consuming, and costly task. The ageing population
and cost of the human resources has led to a decreasing of available labour force for the agriculture
harvesting [1]. Therefore, automatic harvesting robots that can automatically work in the field are
becoming a promising technology in the future development of the agriculture industry. Different
from the traditional automatic harvesting of crops, automatic harvesting of fruits such as apple is
in a more complicated case [2]. Robotic harvesting of fruit requires the vision system to detect and
localise the fruit. Furthermore, to increase the success rate and reduce the damage rate of automatic
fruit harvesting, information of the fruit pose [3] and stem–branch joint location and orientation [4] are
also required. This demands the robotic vision system to accurately and robustly extract the geometry
and semantic information from the working scene in the orchard environment [5]. Recently, with the
advancements of the depth camera technologies, the harvesting robotic vision system is able to model
and present the working scene in the three-dimensional form [6]. However, it is still challenging to
robustly and accurately perform semantic processing of the visual data in the orchard environment,
such as detection and segmentation of the fruit and branch, due to various factors such as illumination
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variance, occlusion, and variations of object appearance. To overcome these, it is crucial to develop
a highly effective and robust vision algorithm for the fully automatic harvesting [3]. In this work,
a multi-function Deep Convolution Neural Network (DCNN) is developed to perform the real-time
detection and semantic segmentation of apples and branches in orchards. Firstly, to enhance the
feature extraction ability of the network, the Gated Feature Pyramid Network (GFPN) and the Atrous
Spatial Pyramid Pooling (ASPP) are utilised in the developed Detection and Segmentation Network
(DaSNet). Secondly, to facilitate the fast computation of the network on the embedded computing
device, a lightweight network (lw-net) is developed based on the residual network architecture. In the
experiment, we evaluated the performance and efficiency of the DaSNet with different backbones and
different detector architectures. The comparison between the DaSNet and other deep-learning based
detection and segmentation works was also included.

The rest of the paper is organised as follows. Section 2 reviews the related work of fruit detection
techniques. Section 3 introduces the DaSNet model in detail. The experiment and discussion are
demonstrated and analysed in Sections 4 and 5 concludes the work.

2. Related Work

Fruit detection has been studied extensively in the past few decades. Several kinds of sensors have
been applied in the automation of fruit harvesting [7], including RGB/RGB-D camera, laser sensor,
thermal imaging sensor, and spectral imaging sensor. This work focuses on reviewing the techniques
which are developed for RGB image processing. Imaging detection can be classified into two groups:
conventional machine-learning based algorithms and deep-learning based algorithms. The former
methods use the image feature descriptors to encode the feature information, and then apply the
machine-learning based classifier to perform the segmentation or detection the fruit within the
image [8]. There are many expert-coded feature descriptors that have been developed, such as the
histogram of gradient [9], the colour coherence vector [10], and the local binary patterns [11]. Similarly,
many machine-learning based classifiers have been developed, such as the clustering, the Support
Vector Machine (SVM) and the neural network. Traditional machine-learning based algorithms
have been widely applied in automatic agriculture applications. Zhou et al. [12] proposed a colour
feature-based logistic regression classifier to detect apples in the orchard environment. Song et al. [13]
applied a Bayes classifier and SVM to learn the colour and texture features, in order to detect peppers
with an RGB camera. Luo et al. [14] and Wang et al. [15] utilised the colour feature-based and
texture-feature based AdaBoost classifier to perform the fruit detection.

Recently, DCNN shows promising performance in many computer vision tasks, including object
classification [16], object detection [17], and image segmentation [18]. Compared to traditional
machine-learning based algorithms, DCNN achieves a more robust and accurate performance due to
its strong feature extraction ability and autonomous learning mechanism [19]. There are two kinds
of DCNN model that have been developed to perform object detection: two-stage detectors and
one-stage detectors. Region Convolution Neural Network (RCNN) is one of the most successful works
of the two-stage detector, including RCNN [20], Fast/Faster RCNN [21,22], and Mask RCNN [23].
RCNN contains two sub-tasks networks: the Region Proposal Network (RPN) and the classification
network. The RPN searches the location of Region of Interest (ROI), while the classification network
predicts the class of ROI and regresses the boundary box of the ROI candidates. RCNN has been
widely applied in many vision-guided automatic agriculture applications. Sa et al. [24] applied
Faster RCNN on multi-vision sensor to detect peppers, rock-melons and apples. Bargoti and
Underwood [25] adopted the faster-RCNN model on the detection of apples and mangos in orchards.
Yu et al. [26] applied the mask RCNN to perform the detection and segmentation of the strawberry in
the greenhouse, in order to guide the automatic harvesting of strawberries. Another DCNN model,
called “one-stage detector” was developed more recently. Representative methods of one-stage detector
are Single Shot Detection (SSD) [27,28] and You Only Look Once (YOLO) [29–31]. The one-stage
detector combines RPN and classification network into a single architecture, which largely reduces
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the computation cost of the forward inference. The one-stage detector has been gradually studied
and applied in the vision-guided automatic agriculture applications such as the yield estimation and
automatic harvesting. Tian et al. [32] modified an improved YOLO-V3 network to perform real-time
detection of apples, which is developed to monitor and evaluate the growing of apples in orchards.
Koirala et al. [33] applied a lightweight YOLO network to perform the yield estimation of mangos in
orchards, and reported an F1 score of 0.89 in their work.

Semantic segmentation is another essential computer vision task, which predicts a class label
in each of pixel of the image [18]. Compared to object classification task, which predicts the image
class while losing the spatial information of the objects, semantic segmentation can preserve the
spatial information of the objects and predict its shape within the image [34]. Typical deep-learning
based semantic segmentation network applies the auto-encoder architecture to encode the image
data and generate the semantic segmentation of the image. Rather than using the sliding windows
strategies to classify all pixels within the image [35], deep-learning based semantic segmentation
network can predict the labels for all pixels within the image in a single forward inference.
Many semantic segmentation network architectures have been developed for different applications,
such as the Full Convolution Network (FCN) [36], SegNet [37], and the DeepLab [38–40], which are
designed for general applications, and Unet and Vnet [34,41], which are designed for medical image
analysis. Semantic segmentation network has also been applied in many agriculture applications.
McCool et al. [42] developed a multi-feature classifier to perform the semantic segmentation on
peppers, which is used to guide the robotic harvesting of peppers. Bargoti and Underwood [43]
developed a multi-Layered Perception to segment apples for yield estimation in orchards. Li et al. [44]
applied an FCN model to perform the automatic ground-based in-field cotton segmentation.
Lin et al. [5] applied an FCN model to perform the segmentation of guava fruits and branches and
estimate the pose of guava fruits based on the segmented information to guide the robotic harvesting.
It was reported that FCN model achieved higher segmentation accuracy than traditional algorithms.

3. Material and Methods

3.1. Vision Sensing System

The developed apple harvesting robot includes a UR-5 robotic arm and an RGB-D visual sensor,
as shown in Figure 1. The RGB-D camera applied in this work is the Kinect-v2, which is developed
by Microsoft Inc. The Kinect-v2 is comprised of an RGB camera and an infrared(IR) depth camera,
and can capture colour images with the resolution in the range between 640 × 480 and 1920 × 1080.
The IR depth camera of the Kinect-v2 can capture depth images with the resolution of 424 × 512.
During working, the depth image is resized to be consistent with the colour image size and fused.
Based on the previous in-field experiments and the computation ability of the applied embedded
computing device, the resolution of 640 × 480 is used in this work. In the experiment, the Kinect-v2
was controlled using the ROS-kinetic in Ubuntu 16.04 with the libfreenet2 SDK tool.

Figure 1. The developing apple harvesting robot. The robot comprises a RGB-D camera for vision
sensing. A universal robot arm (UR5) is applied as the manipulator.
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3.2. Network Architecture

3.2.1. Gated-FPN for Multi-level Fusion

Figures 2–4 show the three developed architectures of the DaSNet, which are named DaSNet-A,
DaSNet-B and DaSNet-C, respectively. DaSNet adopts multi-level feature pyramid network to receive
the feature tensors from the C3 layer (1/8), C4 layer (1/16) and C5 layer (1/32) of the backbone
network. From the previous study of the representation of the feature in the DCNN model, features in
different levels of the network contain different information of the objects [45]. The lower level network
(such as C3) mainly includes the spatial information of the objects, while the higher level network
(such as C5) mainly includes the semantic information of the objects. A recent study by Yao et al. [46]
has pointed out that direct fusion of the different levels of the network can lead to the spatial shift of
the feature and unbalance gradient propagation in the network training. Therefore, they developed
Gated-FPN to minimise the effect of the above issues. Similarly, GFPN design is adopted in the DaSNet
architecture to enhance the feature expression of the model. The GFPN design adopted in the DaSNet
is inspired by the work of the Long Short-term Memory (LSTM) [47] and the Gated Recurrent Unit
(GRU) [48], which adopt gate network to enable the network to selectively memorise or forget the
information within the sequences data. The GFPN in DaSNet adopts a channel-wise multiplication on
each channel of the input feature tensors, to allow the network to adjust the weights of the feature in
the feature maps. The weights used for the channel-wise multiplication is pre-activated by the sigmoid
function, to allocate the value range of the weights from zero to one. A batch-normalisation layer
is added after the gate as our experiment shows that the batch-normalisation layer can improve the
performance of the network model. The GFPN in the DaSNet allows the selective representation of
the feature between different levels, which can minimise the spatial shift of the feature maps from
different levels and balance the backward propagated gradients. The architecture of the GFPN used in
DaSNet is shown in Figure 5.

Figure 2. The architecture of DaSNet-A model. DaSNet-A has the common GFPN and the feature
processing block for processing of detection and segmentation tasks. The output of the feature
processing block in C3 level is upsampled to the original image size to generate the semantic
segmentation prediction.

Three different DaSNet architectures are developed in this work, as shown in Figures 2–4,
respectively. The details about these three network architectures and its correspond training methods
are included in Section 4.1.
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Figure 3. The architecture of DaSNet-B model. DaSNet-B has the common GFPN but the independent
feature processing block for processing of detection and segmentation tasks. FPB-s stands for the
feature processing block of the segmentation branch, while FPB-d stands for the feature processing
block of the detection branch.

Figure 4. The architecture of DaSNet-C model. DaSNet-C has the independent GFPN and the feature
processing block for processing of detection and segmentation tasks separately.

Figure 5. (a) The architecture of gate in the GFPN; and (b) the architecture of ASPP in the feature
processing block.

3.2.2. ASPP for Multi-Scale Fusion

Each level of the GFPN in the DaSNet adopts a feature processing block to process the feature
maps before it is fed into the detection and segmentation branch. DaSNet utilises the ASPP to enhance
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the feature extraction of the multi-scale information of the objects; the architecture of the feature
processing block is shown in Figure 5. The ASPP has been applied in many previous works on object
detection [46] and segmentation [49]. It relies on the dilation convolution with different dilation rate to
encode the multi-scale information of the objects into a single pixel within the feature maps, as shown
in Figure 6. The ASPP adopted in the DaSNet applies three branches, which include three 3 × 3 dilation
convolutions with dilation rates as 1, 3 and 6, and the feature maps on each branch of the ASPP have
64 channels. In addition, another branch, which adopts a 3 × 3 max-pooling layer, is also applied in
the ASPP, as our experiment suggested that max-pooling can improve the detection and segmentation
performance of the model. To keep the consistency of the channel number of the feature maps on
each branch of the ASPP, a convolution layer with a 1 × 1 kernel is adopted after the max-pooling.
All the branches of the ASPP are concatenated to generate the combined feature map. Then, a 1 × 1
convolution layer is applied to fuse the information within the combined feature map and reduce the
channel number of the feature maps to 128.

Figure 6. The ASPP adopts the dilation convolution with different dilation rates to encode the
multi-scale information of objects.

3.2.3. Lightweight Designed Backbone

To reduce the computing cost and facilitate the real-time applications of the DaSNet model in the
embedded computing device, a lightweight backbone network (lw-net0 is developed based on the
residual network architecture [50]. The lw-net adopts the bottleneck residual network block design to
reduce the weight size and computation complexity of the network inference. Meanwhile, to reduce
the feature information loss during the under-sampled pooling operation, the max-pooling layer of
the original residual network architecture is replaced with a modified down-sampling block design.
Both the bottleneck residual network block and the down-sampling block comprise two branches: the
body branch and the shortcut branch, which are shown in Figure 7. The bottleneck residual network
block design shortcuts to add the input feature map from the input of the block to the output of the
block. The down-sampling block applies a max-pooling layer in the shortcut branch to perform the
pooling of the input feature maps. Meanwhile, the second convolution layer in the body branch of
the down-sampling block applies a convolution layer with stride 2 to perform the pooling of the
feature maps as well. The lw-net architecture includes nine bottleneck residual network blocks and
five down-sampling blocks. In the experiment, the lw-net was pre-trained on the Cifar-10 and the
Cifar-100 datasets. The validation accuracies of the lw-net on the Cifar-10 and the Cifar-100 datasets
were 92.7% and 71.6%, respectively. The size of the total weight of the lw-net is only 3.46 MB. In the
experiment, the lw-net was further trained with the collected orchard image data, with the resolution
of the training image set to 128 × 128 and the object classes were apple, branch and background.
In addition to the developed lw-net, for acceleration of network computation purpose, some other
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state-of-the-art classification networks were also applied as the backbone for the DasNet model. In the
experiment, ResNet-50/ResNet-101 [50] and Darknet-53 [31], which were pre-trained with ImageNet
dataset, were applied as the backbone network of the DasNet model.

Figure 7. The architecture of the lw-net: (a) the lw-net architecture; and (b,c) the bottleneck residual
network block and down-sampling block architectures, respectively.

3.3. Training Data and Method

3.3.1. Data Collection

The data were collected by using the Kinect-v2 in the orchard located in Qingdao, China.
The collection time of the image data was from 08:00 to 18:00. We collected 800 images from the
orchards in total. The ground truth of the object detection was labelled by using the “LabelImg”,
which is publicly available on Github. The ground truth of the semantic segmentation was labelled by
using the windows drawing tool and surface pen. In the following experiment, 600 out of 800 images
were used to train the network, while the other images served as the validation data.

3.3.2. Training Method

The data were collected from a mobile vehicle that works in the orchard. The distance between
apple trees to the vehicle was between 0.8 and 1.5 m, which is also the working distance of the
developed apple harvesting robot. The diameter of apples in the orchard were 80–100 mm. At the
working distance of 0.8–1.5 m, most apples in the training data were presented in the form of small
scale objects. This unbalanced distribution of the scale of the objects may lead to under-fitting issue
during the training of the anchor-box based detector. Therefore, an augmentation method that can
minimise the unbalanced distribution of the scale of the objects within the training data was utilised in
this work. The resolution of the original image in the training dataset is 640 × 480, while the resolution
of the image used for the network training is 320 × 320. The reason for applying 320 × 320 as the
training resolution is to increase the number of the image in each training batch, which can stabilise
the training process of the batch normalisation layer [51]. During the training, the augmentation
algorithm had the probability of 0.5 to crop a patch whose size is between 160 × 160 and 320 × 320
from the original image and resize the cropped patch to the training resolution. Then, this step had
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the probability of 0.5 to be repeated another time to further amplify the small objects within the
training data. Other image augmentations, including image flip, colour saturation, contrast and
brightness adjustment, and translation, were also applied during the training. Several examples of
the training data that were processed by the applied augmentation are shown in Figure 8. To analyse
the distribution of the scale of the objects within the training data before and after the augmentation
process, a statistical analysis was performed, which is shown in Table 1.

Table 1. Statistic of different scale of object in the training data during the network training.

Index Iteration If Augmentation Small Median Large

1 100 Yes 67% 32% 1%
2 100 No 87% 13% 0%
3 1K Yes 58% 37% 5%
4 1K No 85% 12% 1%
5 10K Yes 51% 40% 9%
6 10K No 89% 11% 0%

Figure 8. Examples of augmentation method applied in the network training using: (a) crop, flip and
saturation adjustment; (b) brightness and contrast adjustment; (c) crop and flip; (d) crop and saturation;
and (e) flip.

From the statistical result of the training data shown above, the applied augmentation algorithm
can minimise the unbalanced distribution of the scale of the objects in the training data. However,
considering the number of objects in the large scale in the training data is still limited compared to the
objects in the small and medium scale in the training data, some open-source image data were collected
into the training dataset to further balance the distribution of the scale of the objects. During the
training, the Adam-optimiser was used to train the DasNet; the learning rate and decay rate used in
training were 0.01 and 0.9/epoch based on our previous experiment results.

4. Experiment and Discussion

The DaSNet code was implemented in Tensorflow 1.11 and trained on the Nvidia GTX-1080Ti.
The Kinect-v2 was controlled using the ROS-kinetic on the Ubuntu 16.04. The pre-trained weight and
implement code of ResNet-50/101 in Tensorflow [52], YOLO-V3/YOLO-V3(tiny) in tensorflow [53],
Faster-RCNN in caffe [54], and FCN-8s(ResNet-50/ResNet-101) in Tensorflow [55] were from the
Github publicly code library.
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Mean Intersection of Union (MIoU) [56] was used to evaluate the performance of the network on
semantic segmentation. The Average Precision (APIoU) [57], and F1 score [58] were used to evaluate
the performance of the network on object detection.

4.1. Experiment on Network Architecture and Training

4.1.1. Experiment on Network Architectures

DaSNet is developed to perform the detection and semantic segmentation of the multi-class
objects within a single network architecture. The object detection task includes the prediction of the
confidence score, the boundary box, and the class of the objects, while the semantic segmentation
only includes the classification on each pixel within the feature maps. Meanwhile, object detection
predicts the objects from the separate level of GFPN (C3, C4, and C5), while the prediction of the
semantic segmentation is generated from the upsampled feature maps of the C3 level in the GFPN.
Therefore, there may be a significant difference in the distribution of the feature maps between the
object detection task and semantic segmentation task.

Three architectures were developed to explore the optimal design of the network, which allows
the model to fit the feature distribution of different tasks within a single network. These three
models are named as DaSNet-A, DaSNet-B and DaSNet-C and shown in Figures 2–4, respectively.
DaSNet-A has the common GFPN and feature processing blocks for both object detection and semantic
segmentation. The prediction of the object detection is generated from the C3, C4 and C5 levels of
the GFPN, while the semantic prediction is generated from the upsampled feature maps of the C3
level of the GFPN. DaSNet-B has the common GFPN but the independent feature processing blocks
for the object detection and semantic segmentation. DaSNet-C has the independent GFPN and feature
processing blocks for the object detection and semantic segmentation.

Two different training strategies were utilised based on the characters of the different network
architectures. The first method “M1” is to train the network on the detection and semantic segmentation
tasks simultaneously, while the second method “M2” is to train the network on the detection and
semantic segmentation tasks separately. DaSNet-A was trained with the M1 method since the object
detection and semantic segmentation share the major body of the network model. DaSNet-B and
DaSNet-C were trained with M1 and M2 methods to explore which training strategies are optimal
for such network architectures. During the training of DaSNet-B and DaSNet-C with the M2
method, the weights of the detection branch and backbone were frozen, and only the weights of
the segmentation branch were involved.

4.1.2. Experiment Results and Discussion

The experimental results of the comparison between the different network architectures and
training methods are shown in Table 2.

Table 2. Experiment on DaSNet architectures and training methods (G stand for the GFPN) (∗ F stands
for fruit, B stands for branch).

Index Model Method AP50 F1 MIoU∗
F MIoU∗

B

1 DaSNet-A(G) M1 0.792 0.796 0.849 0.683
2 DaSNet-B(G) M1 0.803 0.8 0.857 0.703
3 DaSNet-C(G) M1 0.819 0.819 0.86 0.76
4 DaSNet-B(G) M2 0.827 0.821 0.865 0.757
5 DaSNet-C(G) M2 0.823 0.824 0.864 0.762
6 DaSNet-B(FPN) M2 0.799 0.792 0.832 0.722
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GFPN vs. FPN: Experiments 4 and 6 showed the performance evaluation of DaSNet-B with
GFPN and FPN, respectively. The results show that GFPN improved the AP50 from 79.9% to 82.7%,
and increased the F1 score from 79.2% to 82.1%. Similar results are also shown in the semantic
segmentation: DaSNet-B with GFPN had a higher MIoU score than DaSNet-B with the FPN. DaSNet-B
with GFPN achieved 0.865 and 0.757 on the segmentation of apples and branches, respectively.
DaSNet-B with FPN achieved 0.832 and 0.722 on the segmentation of apples and branches, respectively.
The experiment showed that GFPN can increase the performance of the network in both tasks of object
detection and semantic segmentation.

Network Architectures: Experiments 1–3 showed the performance of DaSNet-A, -B and -C on
the detection and segmentation when M1 training strategy was applied. From the experiment results,
DaSNet-C outperformed in the comparison of the performance of the three network architectures.
DaSNet-C had the independent GFPN and feature processing block for semantic segmentation and
object detection, which allowed the network to fit the feature distribution of the different tasks properly.
DaSNet-A had the common GFPN and feature processing blocks for both tasks, which limited the
ability of the network to fit the feature distribution of the different tasks. From the experiment results,
DaSNet-A showed the least efficient performance of the detection and segmentation.

Training Methods: Experiments 2–5 compared the performance of the networks when different
training methods were applied. Experiments 3 and 5 compared the performance of DaSNet-C trained
with M1 and M2 methods. Since DaSNet-C model had the independent branch for object detection and
semantic segmentation, similar results are shown in the comparison. Experiments 2 and 4 compared
the performance of DaSNet-B with M1 and M2 methods. From the experiment results, the DaSNet-B
showed better performance when the M2 training method was applied. The reasons that contribute to
the results are summarised as follows. When M1 training method was applied, backward propagation
of different feature distribution on the different tasks may lead to the under-fitting of the weights on
both tasks. When M2 training method was applied, the training of the segmentation task only focuses
on the update of the weight in the segmentation branch. From the experiment results, this measurement
improved the training quality and performance of the network.

Implementation efficiency: Table 3 shows the weights size and inference time of the DaSNet-A,
-B and -C. Considering the aspect of implementation efficiency and performance, DaSNet-B achieved
the equal detection (0.827 and 0.821 on AP50 and F1 score, respectively) and segmentation performance
(86.5% and 75.7% for apple and branch segmentation, respectively) compared to DaSNet-C. It kept a
similar implementation efficiency compared to DaSNet-A model (weight size is 12.8 M and inference
time is 32 ms). Therefore, the DaSNet-B architecture was considered as the best performing candidate
in the experiment, and it was applied as the DaSNet in the following experiments.

Table 3. Time efficiency and weights size of developed model (tested on GTX1080Ti).

Index Model Inference Time Weights Size

1 DaSNet-A(G) 30 ms 9.6 M
2 DaSNet-B(G) 32 ms 12.8 M
3 DaSNet-C(G) 40 ms 15.8 M

4.2. Experiment on Detection Performance

This experiment compared the performance and implementation efficiency of the DaSNet-B when
different backbone networks were applied, including the ResNet-50, ResNet-101, Darknet, and the
developed lw-net. Meanwhile, a comparison between the DaSNet and other state-of-the-art works,
includeing YOLO-V3, YOLO-V3 (tiny) and Faster RCNN, was also performed. The experimental
results are listed in Table 4.
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Table 4. Experiment of prediction performance on validation set (640 × 480) with GTX1080Ti.

Index Model AP50 F1 Weights Size Time

1 DaSNet-B(lw-net) 0.827 0.821 12.8 M 32 ms
2 DaSNet-B(ResNet-50) 0.831 0.825 112 M 47 ms
3 DaSNet-B(ResNet-101) 0.836 0.832 188 M 72 ms
4 DaSNet-B(Darknet-53) 0.832 0.827 176 M 50 ms
5 YOLO-V3(Darknet-53) [31] 0.80 0.797 248 M 48 ms
6 YOLO-V3(Tiny) [31] 0.782 0.776 35.4 M 38 ms
7 Faster-RCNN (VGG-16) [22] 0.817 0.813 533 M 136 ms

Experiments 1, 5, 6 and 7 compared the performance of the object detection of DaSNet-B (lw-net),
YOLO-V3, YOLO-V3 (Tiny) and Faster RCNN. The experimental results show that DaSNet-B (lw-net)
outperformed the three other network models. DaSNet-B (lw-net) achieved 82.7% on AP evaluation
and 0.821 on F1 score. Meanwhile, DaSNet-B model also outperformed in the implementation efficiency.
The weights size and inference time of DaSNet-b Model are 12.8 M and 32 ms, respectively. Experiment
6 was the performance evaluation of the tiny version of the YOLO-V3, which optimises YOLO-V3 in
terms of the calculation complexity and time efficiency. From the experiment results, DasNet-B with
lw-net achieved better performance on detection task, while kept the equal implementation efficiency
with the tiny version of YOLO-V3 network. Experiments 1–4 showed the performance evaluation
of the DaSNet-B with different backbone, including lw-net, ResNet, and darknet. As shown in the
results, DaSNet-B with ResNet-101 backbone performed the best within the test, achieving 83.6% on
AP and 0.832 on F1 score. The experimental results indicate that the powerful backbone network
can increase the performance of the detection network. However, the implementation efficiency of
DaSNet-B (ResNet-101) showed a decrease as the backbone increase the computation complexity
of the inference. The weights size and inference time of the DaSNet-B (ResNet-101) are 188 M and
72 ms, respectively. During implementation, DaSNet can use different backbone network based on the
computation hardware and the design requirement.

4.3. Experiment on Segmentation Performance

Semantic segmentation returns a multi-class mask to predict the label of each pixel of the input
RGB image, which is a critical task for sensing and understanding the working environment. In this
experiment, two different architectures modified from DaSNet-B model were tested. The first model
uses the concatenate operation at the C3 layer to fuse the feature maps for semantic label prediction,
which is named as the DaSNet-B-Concat model. The second model uses an adding operation to fuse the
feature maps for semantic label prediction, which is named as DaSNet-B-Add model. The architecture
of these two models are shown in Figure 9. The reason behind this experiment was to explore
which operation could generate better performance on the semantic segmentation. Similar to the
evaluation of the detection results, several pre-trained backbone networks were applied in this
experiment. The FCN-8s network was applied as the baseline algorithm to form the comparison.
FCN-8s network uses ResNet-50 and ResNet-101 as the backbone. The FCN-8s network was first
trained with PASCAL-VOC2012 and then trained using the orchard data. The results of the experiment
are shown in Table 5. The demonstration results of segmentation and detection of apple and branch
are shown in Figure 10.

Experiments 1 and 2 compared the performance of the DaSNet-B-add and the DaSNet-B-concat
model. From the experiment results, the DaSNet-B-concat achieved a better MIoU score compared to
the DaSNet-B-add model. DaSNet-B-concat achieved 86.5% and 75.7% on the segmentation of apples
and branches, i.e., 0.7% and 2.6% higher than the DaSNet-B-add model, respectively. Experiments 2–5
compared the performance of the DaSNet-B-concat model with the different backbone networks.
Similar to the experimental results for the detection evaluation, the DaSNet-B-concat model with the
ResNet-101 backbone outperformed in the segmentation evaluation. Meanwhile, the DaSNet-B-concat
model with the lw-net backbone also showed a good performance on the segmentation of apples and
branches, at 86.5% and 75.7%, respectively. Experiments 3, 4, 6, and 7 compared the performance of
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the semantic segmentation between DaSNet and FCN-8s. From the experiment results, the DaSNet
achieved a higher accuracy on the segmentation task compared to the FCN-8s. Especially, the MIoU
score of the branch segmentation achieved by the DaSNet was 4.5% and 3.9% higher than the
MIoU score achieved by FCN-8s. Since DaSNet adopts ASPP and GFPN to enhance the extraction
ability in terms of the multi-scale information and multi-level information, DaSNet achieved a
better segmentation performance compared to the FCN-8s model. From the experiment results,
the segmentation of the branch is more challenging than the segmentation of apples, as there are many
branches which are blocked by the leaves. In this condition, DaSNet could still segment the majority
structure of the branch from the background accurately, as shown in Figures 10 and 11.

Figure 9. The architecture of DaSNet-B-Add (a) and DaSNet-B-concat (b). DaSNet-B-Add model
uses adding operation to fuse the feature maps for segmentation, while DaSNet-B-Concat model uses
concatenate operation.

Figure 10. (a–i) show the segmentation and detection of apples and branches in orchard environment
by using the DaSNet.
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Table 5. Experiment of semantic segmentation performance on validation set (640 × 480) with
GTX1080Ti (∗ F stands for the Fruit, while B stands for the branch).

Index Model MIoU∗
F MIoU∗

B

1 DaSNet-B-Add(lw-net) 0.858 0.731
2 DaSNet-B-Concat(lw-net) 0.865 0.757
3 DaSNet-B-Concat(ResNet-50) 0.87 0.763
4 DaSNet-B-Concat(ResNet-101) 0.876 0.772
5 DaSNet-B-Concat(Darknet-53) 0.868 0.762
6 FCN-8s(ResNet-50) [36] 0.853 0.718
7 FCN-8s(ResNet-101) [36] 0.861 0.733

Figure 11. (a–h) show the instance segmentation (∗ yellow circle) of apples by using the circle hough
transform based on the detection and segmentation results of the DaSNet

After the segmentation by using DaSNet, Circle Hough Transform (CHT) was further used to
segment apples and its instance mask in each detected boundary box. Several processed image by
using the DaSNet and the CHT are shown in Figure 11. The blue box indicates the detected boundary
boxes and the yellow circle indicates the detected apple in each of boundary box. With the semantic
label and spatial information on each pixel within the image, further processing such as estimation of
the fruit pose [5], branch reconstruction [59] and the estimation of the stem–branch joint [3] can be
applied accordingly. Such post-processing techniques will be included in future work of our study.

5. Conclusions

This work developed a multi-function network DaSNet to perform the real-time detection and
semantic segmentation of the apple and branch in the orchards. The DasNet utilises the GFPN to
fuse the information from different levels of the model and adopts the ASPP to enhance the feature
extraction of multi-scale information of the objects. To improve the real-time computing performance of
the model in the embedded computing device, a lightweight backbone network based on the residual
network architecture was developed. Based on the different characters of the semantic segmentation
and object detection, three different DasNet architectures and corresponding training strategies were
developed and evaluated in the experiment. The comparison of the performance between the DasNet
and the other state-of-the-art works in object detection and semantic segmentation was included in
the experiment. From the results, the DaSNet with ResNet-101 backbone performed the best in both
semantic segmentation and object detection tasks. It achieved an F1 score of 0.832 on the detection of
apples and 87.6% and 77.2% on the segmentation of apples and branches, respectively. The DaSNet
with lightweight backbone lw-net achieved a good detection and segmentation performance while it
outperformed in the computation efficiency. It achieved an F1 score of 0.821 on the detection of apples
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and 86.8% and 75.7% on the segmentation of apples and branches, respectively. The weights size and
inference time of the network model was 12.8 MB and 32 ms, respectively. Overall, the developed
DasNet can perform real-time detection and segmentation in the orchards.
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