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Abstract: In this paper, an onboard vision-based system for the autonomous landing of a low-cost
quadrotor is presented. A novel landing pad with different optical markers sizes is carefully designed
to be robustly recognized at different distances. To provide reliable pose information in a GPS (Global
Positioning System)-denied environment, a vision algorithm for real-time landing pad recognition
and pose estimation is implemented. The dynamic model of the quadrotor is established and a
system scheme for autonomous landing control is presented. A series of autonomous flights have
been successfully performed, and a video of the experiment is available online. The efficiency and
accuracy of the presented vision-based system is demonstrated by using its position and attitude
estimates as control inputs for the autonomous landing of a self-customized quadrotor.

Keywords: onboard vision; micro aerial vehicle (MAV); monocular camera; autonomous landing;
low-cost sensors

1. Introduction

Over the past decade, significant progress has been achieved toward the automation of aerial
robotic vehicles and related technology, leading to a variety of potential applications such as emergency
response, traffic monitoring, inspection of power cables, package delivery, etc. [1,2]. micro aerial
vehicles (MAVs) such as quadrotors are potentially able to move flexibly and explore efficiently in
unforeseeable 3D environments with complex terrains, which is almost impossible for ground robots
while executing time-sensitive missions. However, because of the limited payload and onboard battery
endurance, micro quadrotors have a relatively shorter flight time than fixed-wing aircrafts, mostly
ranging between 8 and 25 min. Consequently, micro quadrotors are programmed to land on a specific
platform and get recharged periodically for operations that cover large areas. In such a scenario, how to
precisely and robustly land an autonomous quadrotor on a ground platform is still a challenging task
of MAVs, considering that the onboard processing power is strictly limited and sensors are micro.

As the most difficult and risky phase in flight, autonomous landing requires robust recognition of
the landing platform and accurate measurement of the MAV’s movement with respect to the ground
target. So far, it is still difficult to accurately estimate the relative position between the MAV and the
landing platform unless using 3D light detection and ranging (Lidar) sensors or a differential global
positioning system (DGPS), which are heavy and unaffordable [3–5]. For this reason, novel sensors are
studied in many research works toward autonomous landing. [6] presented a low-cost visual tracking
system for the hovering control of a Hummingbird quadrocopter by using a Wii remote infrared (IR)
camera and a pattern of four infrared spots fixed on the landing pad. In [7], a low-cost solution based
on a monocular camera was implemented for the autonomous takeoff, hovering, and landing of a MAV.
By using projective geometry [8–10], the 6 degrees of freedom (DOF) pose of the quadrotor relative
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to a typical landing pad (the letter “H” surrounded by a circle) could be accurately estimated from
image streams. In [11], a complete ship deck simulation for the autonomous landing of a helicopter
on ships was proposed by using a single downward-looking camera and a moving platform with
helipad marks. Another approach inspired by the behavior of insects used optical flow as feedback for
MAVs in visual servo control [12], since it provided relative velocity to the dynamic environment [13].
Herissé et al. [14] presented a nonlinear controller for a vertical takeoff and landing (VTOL) unmanned
aerial vehicle (UAV) that enabled hovering above and landing on a moving platform, by exploiting
measurement of the average optical flow.

Compared with the sensors mentioned above, monocular cameras passively receive environmental
information and have an inherent potential for object recognition tasks, while still being lightweight,
low cost, and computationally efficient [15]. Unlike stereo cameras with limited baselines, monocular
cameras are able to keep functioning even if the object is detected at a large distance. Considering that
MAVs have limited payload and computational capability, monocular vision is comparably more
attractive for autonomous landing and extended applications. In [16], AprilTag markers [17] were
recognized by a single forward-looking camera mounted on the AR.Drone micro UAV, and state
estimation was achieved based on a delayed-state extended Kalman filter (EKF) in GPS-denied
situations. [18] presented an integrated visual detection system with a standard field of view camera
lens and a fisheye lens occasionally used to capture faraway or highly close targets.

Due to the importance of autonomous localization and navigation, the issue of simultaneous
localization and mapping (SLAM) has triggered a lot of interest in the research community, with
the wide use of monocular vision. In [19], a model of the vision inertial absolute navigation system
(VIANS) was established, and estimation of absolute navigation information was achieved based
on the presented EKF and unscented Kalman filter (UKF). Shen et al. [20] and [21] presented a
monocular visual–inertial system (VINS-Mono) for the 6DOF state estimation of UAVs, in which
only a monocular camera and a low-cost inertial measurement unit were utilized. The proposed
visual–inertial odometry (VIO) obtained high accuracy based on the real-time fusion of pre-integrated
inertial measurement units (IMU) data and feature observations, and then the relocalization process
started to eliminate accumulative drifts. In [22], a versatile visual marker-based multi-sensor fusion
estimator was presented, which combined a variable optional number of sensors and positioning
algorithms in a loosely coupling fashion. The results of estimation showed high accuracy in real
experiments, controlling a quadrotor equipped with an IMU and an RGB camera.

In order to recognize the landing platform and precisely estimate the 6DOF pose with images
captured by the onboard camera, artificial markers are widely used in autonomous landing
tasks, especially square-based fiducial markers such as Matrix [23], ARTag [24], ARToolKit [25],
ARToolKitPlus [26], AprilTag [17], and ArUco [27]. These markers are generally encoded by an inner
binary code in order to be uniquely identified. With error detection and correction, the four corners
of the identified marker can be used as reference points to estimate the camera pose by solving the
Perspective-n-Point (PnP) problem [28–33], given that the camera is properly calibrated. Amongst these
fiducial markers proposed in recent papers, ArUco markers, presented by Garrido-Jurado et al, have
gained popularity in visual servo systems [34]. By using the ArUco library supported by OpenCV,
it is not difficult to generate configurable dictionaries of markers and make a C++ program capable
of identifying and localizing those markers within the predefined dictionary. However, of all the
implemented marker-based autonomous systems, it is still a challenging task to acquire accurate
pose estimates by using low-cost cameras with large image noises in the movement of a MAV.
When getting much closer to the landing platform, the camera may lose part of the marker due to its
restricted field of view (FOV) and rotation movement, so that the estimates of the camera pose will be
extremely unreliable.

In this paper, motivated by the existing challenges mentioned above, an onboard monocular
vision algorithm for the 6DOF pose estimation of a MAV is proposed by utilizing a consumer camera.
A novel landing pad is designed with a predefined configuration of several ArUco markers surrounded
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by a circle, which observably improve the detection range and the robustness of recognition. With a
dynamic weighed mean filter, a fusion estimation method is presented for a more accurate 6DOF
pose with respect to the landing pad. Then, the relative position, velocity, and yaw angle are put
into a cascade proportional-integral-derivative (PID) controller as input information to control the
hovering flight of the MAV in GPS-denied situations, thus paving the way for autonomous landing on
a specific landing pad. Based on the DJI F450 frame, an experimental quadrotor is self-customized
and equipped with a low-cost camera at the price of $10, a microcontroller using consumer sensors,
and an onboard computer for image processing. Compared with measurements of external positioning
devices, the presented system is demonstrated to be reliable and cost-effective for the precision landing
of an autonomous MAV.

The rest of this paper is organized as follows. In Section 2, the design of the landing pad and the
algorithm used to identify the pattern are described. The estimation of the camera pose relative to the
landing pad is presented and a method for fusion estimation is described. In Section 3, the dynamic
model of the micro quadrotor is established, and the architecture of the overall landing system is
presented. Section 4 describes the setup of the experiments, and practical results are given in this part.
Finally, Section 5 concludes this paper.

2. Landing Pad Design and Vision Algorithm

2.1. Landing Pad Design and Recognition

The most commonly used landing pads—such as a letter “H” surrounded by a circle—are not
highly featured and may not be uniquely identified in a cluttered environment. False positives caused
by similar shapes of other objects in the background will inevitably reduce the robustness and reliability
of the vision system. Compared with other patterns, square-based fiducial markers are an efficient
approach to achieve both high speed and precision, which use an inner binary code for identification
and error correction. The markers chosen for the design of the landing pad are generated from the
predefined dictionaries of the ArUco library in OpenCV. Each marker is composed by a black border
and an inner binary matrix (6 × 6 bits), which encodes its unique identification (id).

To detect and decode an ArUco marker, the image is converted to gray-scale and segmented using
a local adaptive threshold strategy at the first step. Then, a contour detection and a polygonal
approximation are performed. After the perspective projection is removed by computing the
homography matrix, the resulting image can be divided into a grid, and each element is assigned a value
of 0 or 1 by using the Otsu thresholding method [35]. Once the binary code is extracted, the marker
and its unique identification will be determined if it actually belongs to the predefined dictionary.

In [36], the proposed Fractal Marker, a novel type of marker, is built as an aggregation of squared
markers of different sizes, one into another, in a recursive manner, and a method for marker detection
under severe occlusions is also presented. Taking into account the latest advances in the fractal
ArUco, a novel landing pad with a wider detection range is designed in this paper to achieve a better
performance in autonomous landing tasks. Figure 1 presents the predefined landing pad, which
consists of eight unique ArUco markers surrounded by a circle. The radius of the circle is 700 mm,
which facilitates its fast detection in the image at a large distance. The location of each marker is
carefully designed, and the physical size of these markers ranges from the minimum (29 × 29 mm) to
the maximum (135 × 135 mm), so that the desired marker can be kept within the restricted FOV of the
onboard camera at different heights. It is worth mentioning that the smallest marker (29 × 29 mm) is
placed inside the marker (120 × 120 mm) at the center of the landing pad, which is carefully designed
so that the vision system will not lose all of the markers, even if the camera is very close to the landing
pad. Based on this, a smaller “blind” range will be achieved.
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The optimal design and configuration of the landing pad significantly improves the accuracy 
of recognition instead of using an unaffordable camera with high resolution. As shown in Figure 2, 
the bigger markers can be detected and recognized at a larger distance, and if the UAV is much 
closer to the landing pad, the smaller ones could still be recognized. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2. Markers recognized at different heights in camera view. When the camera is far away from 
the landing pad, the whole circle is captured in the view (a,b). With the change of attitude and 
height during a landing maneuver, part of the pattern moves out of the camera view (c). When the 
camera gets very close to the landing pad, only two markers can be recognized (d). 

Figure 1. Configuration of the predefined landing pad.

The optimal design and configuration of the landing pad significantly improves the accuracy
of recognition instead of using an unaffordable camera with high resolution. As shown in Figure 2,
the bigger markers can be detected and recognized at a larger distance, and if the UAV is much closer
to the landing pad, the smaller ones could still be recognized.
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Figure 2. Markers recognized at different heights in camera view. When the camera is far away from
the landing pad, the whole circle is captured in the view (a,b). With the change of attitude and height
during a landing maneuver, part of the pattern moves out of the camera view (c). When the camera
gets very close to the landing pad, only two markers can be recognized (d).
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To compute the relative position to the landing pad, the physical size and position of the detected
marker must be known. When more than one marker is recognized, the measurement noise can be
greatly reduced, and the precision can be improved by data fusion.

2.2. Relative Pose Estimation

The problem of solving the exterior orientation of a calibrated camera given reference 3D points
and their corresponding 2D projections is commonly referred to as a Perspective-n-Point (PnP)
problem, which is one of the most fundamental researches in computer vision. For large values of
n, the direct linear transformation (DLT) method is commonly used to compute the camera pose.
However, due to the overlook of the intrinsic camera parameters that we are able to acquire, the DLT
method is comparatively inaccurate. The clamped DLT is an alternative method that exploits the
known intrinsic parameters, but the accuracy is still low. Even though some non-iterative methods
such as perspective-three-point (P3P) and efficient perspective-n-point (EPnP) are relatively fast at
finding an optimal solution, these are not considered because they are not especially robust in planar
cases, and sometimes lead to a mirror effect. Compared with these methods, the iterative method and
the homography model for planar patterns are selected to estimate the camera pose, which is followed
by nonlinear optimization using the Levenberg–Marquardt algorithm to minimize the reprojection
error [37].

The coordinate systems are defined in Figure 3. In the camera frame, the origin is the optic center,
and Zc coincides with the optic axis of the camera. It is also worth mentioning that the origin of the
world frame W is set at the center of the landing pad, which is attached to the ground platform.
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Let cMm be the homogeneous transformation matrix from the marker frame to the camera frame,
which consists of a rotation matrix cRm (3 × 3) and a translation vector ctm (3 × 1). The coordinate
transformation from frame M to C is given as:

xc

yc

zc

1

 = cMm


xm

ym

zm

1

 (1)

where [xm, ym, zm]
T is the position of the reference point in the marker frame, [xc, yc, zc]

T is the
corresponding position in the camera frame, and transformation matrix cMm is:

cMm =

[ cRm
ctm

0T 1

]
(2)

In real flights, the camera frame rotates along with the quadrotor, while the xmym plane of the
marker frame is kept horizontal. So, the inverse of cMm will be more useful in this paper, which is
given as:

cMm = cM−1
m =

[ cR−1
m −

ctm
cR−1

m
0T 1

]
(3)

where cMm is the transformation matrix from the camera frame to the marker frame, and the pose of
the quadrotor with respect to marker i can be estimated with analysis of it. As the landing pad is
a cooperative target and the origin of the world coordinates is set at the center of the landing pad,
the pose of marker i in the world frame is known. Thus, a translational transformation wMm from the
marker frame to the world frame can be calculated, which is given as:

xw

yw

zw

1

 = wMm


xm

ym

zm

1

 (4)

In the captured image, any point can be positioned by pixel values, which is generally defined as
[u, v]T. With a calibrated camera, the reference point can be transformed from the pixel values to the
camera coordinates, which is given as: 

u
v
1

 = Min


xnc

ync

1

 (5)

where [xnc, ync, 1]T is the corresponding position on the normalized image plane, and Min is referred to
as the intrinsic parameter matrix of the camera, which is expressed as:

Min =


f /dx 0 u0

0 f /dy v0

0 0 1

 (6)

where f is the focal length, dx and dy are the physical length per pixel in the x and y axis directions,
respectively, (u0, v0) is the intersection of the optical axis and the image plane in 2D pixel coordinates.
As mentioned above, the landing pad and those planar patterns are located on the zw = 0 plane in W.
Thus, the transformation from the normalized coordinates to the world coordinates can be expressed as:
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
xnc

ync

1

 = H


xw

yw

1

 (7)

where the 3×3 matrix H is a planar homography defined as:

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 (8)

where hi j is the i,j-th element of H, which leads to equations as follows:{
xnc(h31xw + h32y + h33) = h11xw + h12yw + h13

ync(h31xw + h32y + h33) = h21xw + h22yw + h23
(9)

When an ArUco marker is decoded and recognized, its four corners are located in the pixel
coordinates and their corresponding position in the world frame can be derived from the predefined
identification and the actual size of the detected marker. Given at least four such correspondences,
a set of linear equations can be established to solve the elements of H:

x1
w y1

w 1 0 0 0 −x1
ncx1

w −x1
ncy1

w −x1
nc

0 0 0 x1
w y1

w 1 −y1
ncx1

w −y1
ncy1

w −y1
nc

...
...

...
...

...
...

...
...

...
xn

w yn
w 1 0 0 0 −xn

ncxn
w −xn

ncyn
w −xn

nc
0 0 0 xn

w yn
w 1 −yn

ncxn
w −yn

ncyn
w −yn

nc


h = 0 (10)

where h is a 9×1 vector that contains all the hi j elements defined as h =[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]T
,
[

xi
nc yi

nc 1
]T

is the i-th reference point in the

normalized coordinate, and
[

xi
w yi

w 1
]T

is the homogeneous coordinate in the world frame.
Therefore, the matrix equation is simplified as:

Ah = 0 (11)

Thus, the solution can be computed by using known methods such as singular value decomposition
(SVD) and the average reprojection error RE

avg can be minimized, which is defined as:

RE
avg =

n∑
i=1
‖xi

nc −Hxi
w‖

n
(12)

where n is the total number of corner correspondences.

2.3. Fusion Estimation

When more than one marker is recognized, pose estimates of different observed markers can
be fused to form a better estimator. The previously estimated pose of the quadrotor with respect to
the world frame given by every detected marker can be fused to get a more accurate result of the
estimation. One way is to take a weighted average of the obtained estimates. Assuming that the
estimator is unbiased, the variance of the original estimates should be taken into account to determine
the weight coefficients. In general, the weights are chosen to minimize the variance of the weighted
average such as a linear minimum variance estimator (LMVE).
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Let pi be the original pose estimate of i-th detected marker, which is independent, and p̂ be the
unbiased estimate for the actual parameter p after taking the weighted average, which is as follows:

p̂ = ω1p1 +ω2p2 + · · ·ωnpn (13)

where ωi(
∑n

i=1 ωi = 1 and ωi ≥ 0 for all i) is the weight that is to be determined, and n is the total
number of markers that are observed. The estimation error p̃ and known conditions are:

p̃ = p− p̂ (14)

E(p̃) = 0 (15)

where E(p̃) is the mathematical expectation; then, it can be proved by using the method of Lagrange
multipliers that the variance is minimized when:

ωi =

1
Var(pi)∑n

j=1
1

Var(p j)

(16)

and its minimum value MSEmin is:

MSEmin =
1∑n

i=1
1

Var(pi)

(17)

While the quadrotor starts to descend and approach the landing pad, the weight ωi is updated in
real time according to the total number of markers that are recognized and the noise of the original
data, thus leading to a more accurate and reliable result.

3. Dynamic Model and Landing System

3.1. Dynamic Model

The quadrotors are gradually emerging as a popular platform in aerial robotics research due to
their low cost, the ability to hover, and the simplicity in mechanical structure. The vehicle consists
of four brushless motors and four propellers providing the necessary force and moment for 6DOF
motion control. Unlike helicopters that need complex mechanical control linkages, the quadrotors rely
on four individual motors and the variation in speed to control the vehicle, which greatly simplifies
the whole system.

The 6DOF motion of a rigid quadrotor and corresponding frames are described in Figure 4.
The quadrotor vehicle is represented by a rigid body of mass m and of moment of inertia J along

with external forces and torques caused by propellers and gravity. A local North–East–Down (NED)
frame N and a body fixed frame B attached to the UAV at the center of mass are introduced to describe

the motion of the quadrotor. Let np =
[

npx
npy

npz

]T
and nv =

[
nvx

nvy
nvz

]T
be the position

and linear velocity of the mass center relative to N. Θ =
[
φ θ ψ

]T
is defined as the roll/pitch/yaw

angles, which describes the orientation of the quadrotor in N. The rotation matrix Rn
b from B to N is

given as:

Rn
b =


cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ+ sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+ cosφ cosψ cosφ sinθ sinψ− sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

 (18)
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The equations of motion for the quadrotor can be described as:

n .
p = nv (19)

n .
v = gn3 −

fb
m

Rn
b n3 (20)

J · b
.
ω = −bω ×

(
J · bω

)
+ Ga + τ (21)

where fb is the translational force applied to the quadrotor expressed in B, τ is the torque, g is the
acceleration due to gravity, and bω is the angular velocity of the MAV in frame B. The gyroscopic moment
Ga, which is mainly generated by propellers, is not considered in this case. Furthermore, the translational
dynamics shown in Equations (19) and (20) can be simplified as:

n ..
px = −

fb
m
(sinφ sinψ+ cosφ sinθ cosψ) (22)

n ..
py = −

fb
m
(− sinφ cosψ+ cosφ sinθ sinψ) (23)

n ..
pz = g−

fb
m

cosφ cosθ (24)

Furthermore, it can be assumed that sinφ ≈ 1, cosφ ≈ 1, sinθ ≈ θ, and cosθ ≈ 1, considering that
the roll and pitch angles are very small, which leads to a simplified dynamic model as described in [38].

3.2. Flight Control Algorithm

Since the quadrotor is an underactuated system with four independent inputs, only the desired

position
[

xd yd zd
]T

and desired attitude ψd can be directly tracked. Other variables such as φd
and θd are determined by the known ones. The hierarchical control scheme of a quadrotor system is
shown in Figure 5.

The position
[

xi yi zi
]T

and yaw angle ψi of the quadrotor from marker i are estimated by
the onboard vision system in the world frame, while the roll and pitch angles given by the onboard
microcontroller using an EKF are expressed in global NED. The state of the quadrotor, the control desired

position
[

xd yd zd
]T

, and the yaw angle ψd are all expressed in the global NED. The position of the
landing pad in global NED is exploited to calculate the state of the quadrotor. Cascade PID controllers
are designed to individually control the 3D position and yaw angle of the quadrotor. The inner-loop
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controller for attitude control has been implemented on an open source autopilot. All PID gains have
been preliminarily tuned in hovering flight tests. Considering that the thrust value is determined not
only by the input of the desired position but also by the total takeoff weight of the quadrotor, the height
controller is divided into two parts: a slightly changed base value for hovering and a fast controller
for position control. An overview of the proposed landing system including landing pad recognition,
6DOF pose estimation, and flight control is shown in Figure 6.
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When the landing pad is recognized by the onboard vision system, the quadrotor will maintain a
constant descending velocity while continuing to track the target. With the landing pad mentioned
above, the estimates obtained by the proposed system will not be divergent when the quadrotor is
close to the target. Finally, due to the ground effect on the quadrotor, the motors are programmed to
be shut off directly when the height is under 0.08 m and the horizontal distance must be less than
0.1 m simultaneously.

4. Experiments and Results

4.1. Experimental Setup

Most of the experimental UAVs are rather expensive with high-precision sensors and devices,
which are unaffordable for practical applications. Instead of depending on high-resolution cameras that
may cost more than $400, a low-cost consumer camera is used to establish the onboard vision system.
The camera at a dimension of 35 × 35 × 30 mm3 weighs only 50 grams and has a maximum resolution
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of 1280 × 720 at 30 frames per second (fps), which makes it an ideal onboard sensor (see Figure 7a).
With a constant focus length of 3.6 mm, the camera is aimed downward and attached to the bottom of
the fuselage, covering a diagonal FOV of 90◦. The price of only $10 is very attractive, considering its
unexpected great performance. After calibration, the intrinsic parameters of the onboard camera are
f /dx = 912.5796, f /dy = 909.4341, u0 = 669.2593 and v0 = 322.0985, while the distortion coefficient

vector is
[

0.0486 −0.0907 0.0003 −0.0009 0
]T

.
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As shown in Figure 8, the self-customized quadrotor is 45 cm in diameter based on the DJI
F450 frame, and weighs 1.6 kilograms, including all the onboard devices and payloads. A 3300 mAh
lithium battery powers all the motors and onboard electronics, which leads to a maximum flight time
of up to 25 min.
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The overall system setup to perform the flight experiments for validation of the landing control
algorithm is shown in Figure 9.
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Figure 9. The architecture of the experimental system.

The inner-loop stabilization and attitude control of the quadrotor is achieved by utilizing a
microcontroller developed by the Pixhawk team at ETU Zürich [39]. The Pixhawk controller is
equipped with dual inertial measurement units (IMU) in case any one of them is malfunctioning.
Many additional sensors and devices can be supported via drivers released by developer communities.
The firmware version selected in this paper is 1.5.5.

In order to achieve more complex operations such as image processing, object recognition, data
fusion, and position control, an Intel NUC with Core i5 processor is used as an onboard computer to
perform the proposed vision algorithm. Based on serial communication, the current status and pose
estimates can be transferred from the NUC to the Pixhawk flight controller as input information, which
is developed based on a MAVLINK [40] extendable communication node for the Robot Operation
System (ROS) [41], as shown in Figure 10. A higher estimation and control rate will significantly
improve the accuracy, if supported by the hardware. However, in this paper, the estimation rate is at
25 Hz, and is limited by the onboard computation power. Thus, the control rate cannot be faster than
25 Hz under the current conditions. By using a 2.4 GHz remote controller (RC), the quadrotor can
be controlled manually at the beginning of the experiment, and then switched to the offboard mode
triggered by an RC signal.
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Figure 10. Robot Operation System (ROS) nodes and topics created to implement the algorithm.

ROS nodes are basic executable programs that process information to communicate with other
nodes. In this system, the necessary nodes and topics shown in Figure 10 have been created and used
to achieve the vision-based autonomous landing algorithm. Predefined topics can be published or
subscribed by these nodes, thus passing the messages from one to another.

Once the landing procedure is launched, the quadrotor is in a fully autonomous mode, and only
the onboard images along with IMU data can be utilized to provide navigation information. Since no
GPS data can be received in indoor environments, a motion capture system (OptiTrack [42]) is used to
provide the 6DOF pose of the quadrotor in real time at 100 Hz as the ground truth data, which can be
compared with the vision system. To evaluate the proposed system, pose estimates of each detected
marker have also been recorded as a reference value.

An autonomous landing test is shown in Figure 11.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 19 

 

 
Figure 10. Robot Operation System (ROS) nodes and topics created to implement the algorithm. 

ROS nodes are basic executable programs that process information to communicate with other 
nodes. In this system, the necessary nodes and topics shown in Figure 10 have been created and 
used to achieve the vision-based autonomous landing algorithm. Predefined topics can be 
published or subscribed by these nodes, thus passing the messages from one to another. 

Once the landing procedure is launched, the quadrotor is in a fully autonomous mode, and 
only the onboard images along with IMU data can be utilized to provide navigation information. 
Since no GPS data can be received in indoor environments, a motion capture system (OptiTrack [42]) 
is used to provide the 6DOF pose of the quadrotor in real time at 100 Hz as the ground truth data, 
which can be compared with the vision system. To evaluate the proposed system, pose estimates of 
each detected marker have also been recorded as a reference value. 

An autonomous landing test is shown in Figure 11. 

 

(a) 

 

(b) 

Figure 11. Cont.



Sensors 2019, 19, 4703 14 of 19

Sensors 2019, 19, x FOR PEER REVIEW 14 of 19 

 

 

(c) 

 

(d) 

Figure 11. Autonomously approaching (a,b), descending (c), and landing on a static landing pad (d). 

4.2. Hovering Flight Control and Accuracy Analysis 

During the indoor experiments, the GPS and air pressure sensor for position control were 
disabled. The desired yaw angle was set to be zero degrees. Under such conditions, a series of 
hovering and hand-held tests at different heights have been conducted with the onboard vision 
system. Compared with hand-held cases, the vibration of the quadrotor in real flight could increase 
errors to the pose estimates, but the actual impact was not so great in hovering flight. This is not a 
surprise, because the roll and pitch angles are quite small, which will not introduce large deviations. 
By comparing to the ground truth data, the root mean square errors (RMSEs) of the proposed vision 
algorithm during the whole flight are listed in Table 1 (in the Estimated row). As a contrast, the 
data without fusion estimation is listed (in the Single marker row). 

Table 1. Root mean square errors (RMSEs) of hovering flight at 1 m in different cases. 

RMSEs (mm) x y z xy Plane 3D 

Single marker 30.8 44.0 8.9 53.7 54.4 

Estimated 10.1 19.1 5.5 21.6 22.2 

In about 82 seconds flight at 1 m height, an accuracy of ±10.1 mm in the x position and ±19.1 
mm in the y position could be achieved, which is much better than that of a single ArUco marker. 
The deviation of 3D position estimates is 22.2 mm, thus leading to an accuracy of 23.2 mm in 
hovering control measured by the motion capture system. Figure 12 shows a more detailed record 
of the flight. Results of the proposed vision system are plotted in blue, the single marker is plotted 
in green, and the ground truth data are plotted in red. 

  

Figure 11. Autonomously approaching (a,b), descending (c), and landing on a static landing pad (d).

4.2. Hovering Flight Control and Accuracy Analysis

During the indoor experiments, the GPS and air pressure sensor for position control were disabled.
The desired yaw angle was set to be zero degrees. Under such conditions, a series of hovering and
hand-held tests at different heights have been conducted with the onboard vision system. Compared with
hand-held cases, the vibration of the quadrotor in real flight could increase errors to the pose estimates,
but the actual impact was not so great in hovering flight. This is not a surprise, because the roll and pitch
angles are quite small, which will not introduce large deviations. By comparing to the ground truth data,
the root mean square errors (RMSEs) of the proposed vision algorithm during the whole flight are listed in
Table 1 (in the Estimated row). As a contrast, the data without fusion estimation is listed (in the Single
marker row).

Table 1. Root mean square errors (RMSEs) of hovering flight at 1 m in different cases.

RMSEs (mm) x y z xy Plane 3D

Single marker 30.8 44.0 8.9 53.7 54.4
Estimated 10.1 19.1 5.5 21.6 22.2

In about 82 s flight at 1 m height, an accuracy of ±10.1 mm in the x position and ±19.1 mm in the y
position could be achieved, which is much better than that of a single ArUco marker. The deviation of 3D
position estimates is 22.2 mm, thus leading to an accuracy of 23.2 mm in hovering control measured by the
motion capture system. Figure 12 shows a more detailed record of the flight. Results of the proposed vision
system are plotted in blue, the single marker is plotted in green, and the ground truth data are plotted
in red.
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Figure 12. Position (a–c) and yaw angle (d) estimates during a hovering flight at 1 m height.

It is obvious that the proposed estimates plotted in blue are well in line with the ground truth
data throughout the flight test. Outliers caused by image noises have been significantly filtered by the
proposed fusion estimation method. With the low-cost onboard vision system, high-precision control
of autonomous hovering flight is achieved.

4.3. Autonomous Landing

This section presents the results of autonomous landing on the static landing pad, which is fixed
on a ground platform. Once the quadrotor is armed and switched to the offboard mode, it will take off

autonomously to the set point and keep hovering until the next command is received. As shown in
Figure 13, after 7 seconds of hovering around the set point (0, 0, 1900)T (mm), the quadrotor received a
command to land, and it took about 8 s to descend. Then, the onboard system started to determine
whether the shut-off condition was met or not. The process was repeated until the destination area was
reached, where the quadrotor could be blindly powering down. The final position of the quadrotor is
very close to the center of the landing pad, which reflects the significance of this novel landing pad.
The results are plotted in the world frame to better show the relative pose of the quadrotor with respect
to the landing pad.
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Figure 13. Position (a–c) and yaw angle (d) estimates during an autonomous landing.

Figure 14 shows the pose estimates in a successful takeoff, hovering, moving, and landing flight.
For the beginning of the takeoff phase, the quadrotor ascended without closed-loop control until one of
the markers was recognized. A command made by the ground station was sent to the onboard system,
and then the quadrotor moved to the set point (550,−550, 2100)T (mm). After hovering about 10 s,
it started the landing phase, and did not take much time to meet the shut-off condition.
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Some oscillations still remain in the current configuration, which occurred with sudden changes
of the quadrotor’s attitude. In this paper, the camera is fixed to the bottom of the quadrotor, and so it
rotates along with the body frame. The estimation error will significantly increase when the orientation
of the camera changes quickly in a very short time, especially at a relatively low estimation rate.
A higher operating frequency would significantly improve the stabilization, but is prevented by the
limited ability of onboard image processing. In fact, considering the cost of all the sensors and devices,
the performance of the proposed vision system is quite attractive in practical applications.

A video of these experiments demonstrating autonomous flights with the proposed system is
available at Supplementary Materials section.

5. Conclusions

In this paper, we have presented an onboard vision system that consists of a downward-looking
camera, a microcontroller, and an image processor to visually and autonomously provide position and
attitude estimates of the MAV with respect to the ground platform. A novel landing pad using different
ArUco marker sizes is carefully designed for autonomous landing tasks, ensuring the detectability at
different distances. With the proposed algorithm, position and attitude estimates of the MAV can be
calculated by utilizing reference points extracted from the pad image. A method of fusion estimation
has proved its effectiveness in experiments.

We demonstrated the proposed vision algorithm through a series of experiments, which enabled
a self-customized quadrotor to autonomously take off from, hover above, track, and land on a static
landing pad. Evaluated by an external tracking system, the results of real-time flight experiments
have shown the feasibility, robustness, and accuracy of the vision algorithm. Considering that the
cost of sensors is very low, the achieved accuracy is very attractive and sufficient for autonomous
landing tasks.

There are several directions in which future work is of interest. To achieve more robust and
accurate measurements, the sensor fusion of both IMU data and the vision system is worth investigating.
Extra sensors such as infrared camera and Lidar may be used to expand the application of MAVs.
Furthermore, we plan to place the camera in a gimbaled platform, which enables the MAV to track and
approach a moving target.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/21/
4703/s1, Video S1: Onboard Monocular Vision System for Autonomous Landing of a Low-Cost MAV in
GPS-Denied Environment.
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