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Abstract: Recently, significant developments have been achieved in the field of artificial intelligence, in
particular the introduction of deep learning technology that has improved the learning and prediction
accuracy to unpresented levels, especially when dealing with big data and high-resolution images.
Significant developments have occurred in the area of medical signal processing, measurement
techniques, and health monitoring, such as vital biological signs for biomedical systems and noise
and vibration of mechanical systems, which are carried out by instruments that generate large data
sets. These big data sets, ultimately driven by high population growth, would require Artificial
Intelligence techniques to analyse and model. In this Special Issue, papers are presented on the
latest signal processing and deep learning techniques used for health monitoring of biomedical and
mechanical systems.
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1. Introduction

Health monitoring is a diverse subject since it covers biological systems as well as physical systems.
Biological systems are usually associated with the monitoring of human health, whether it is related
to diagnosis of diseases, monitoring of daily activities, or vital signs. On the other hand, physical
systems health monitoring is associated with checking physical systems, such as structures and rotary
or linear displacement machines. Structural health is related to checking vibration, cracks, or fatigues
of materials in buildings, aircrafts, or pipes.

Due to the development of handheld-device technologies, processing power, and sensory accuracy,
the penetration into the biomedical field has received intense interest, which has led to the development
of new sensors and signal processing algorithms in the field. However, there is still a need to integrate
different systems and technologies such that real-time detection and diagnosis can be made available
to all people to meet the demand and requisites of the world health monitoring systems [1].

On the other hand, advances in technology, such as high-resolution cameras, optical sensors,
drones, and robotics, have evolved the generation of intelligent monitoring systems for physical
system health monitoring. Infrastructure health monitoring systems can monitor vibration in buildings,
displacement, rotation, stress/strain, cracks/spalling, and defects either directly or remotely. Structural
health traditionally is monitored using conventional sensors with data acquisition, transmission,
and information processing to assess the structure’s health check. Recently, smart sensors with
embedded microprocessors and wireless communication are being used, in addition to fibre optic
sensor technology and automated low-cost photogrammetry for flexible structure monitoring [2,3].
Furthermore, non-destructive testing equipment, such as eddy current equipment in pipes and aircraft
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bodies, have also evolved to become more accurate and reliable due to the developments of intelligent
signal processing systems.

On-line monitoring systems have also been used to monitor rotary and displacement machines.
The utilisation of vibration-based sensors in addition to image and wireless communication of
smart devices, and the use of programmable and web connected applications are the base for the
next-generation measurement technology of structural health monitoring. The abundance of handheld
smartphones with an easily programmable framework has helped in modifying the relevant software
to acquire data using embedded sensors. And in addition, noncontact sensors, such as unmanned aerial
vehicles (drones) and mobile sensors, to acquire structural data. The state-of-the-art methods have
been presented in a detailed literature review of the recent applications of smartphones, unmanned
aerial vehicles (UAVs), cameras, and robotic sensors used for structural condition monitoring and
maintenance [4].

The acquired data needs to be filtered, processed, and classified using the latest developments
in Artificial Intelligence (AI), such as deep learning and signal processing algorithms like Wavelets
transforms (WL) and Empirical Mode Decomposition (EMD). Such algorithms are computationally
intensive and require high speed computing. This has caused no major hurdle as the developments
and advances in computing has fulfilled this requirement, such as the use of GPUs, computer clusters,
edge computing, and cloud applications. Many systems now reside on the cloud, which only requires
access via the internet, providing sophisticated algorithm and high-speed processing power.

2. Review of the Contributions in This Special Issue

Papers published in this Special Issue can be classified into two groups, human health monitoring
(biological systems) and structural health monitoring (physical systems).

For the field of health monitoring applications to biological systems (human health), this issue
included five papers in the field. The use of signal processing and deep learning algorithms is common
among the recent applications. A typical example is heart failure detection using R-R interval to
monitor the heart rate variability using the long short-term memory deep learning network, which
can achieve up to 99% accuracy [5]. This example is extended to utilise wearable sensors that can
be used for real-time monitoring of people, athletes, and high-risk patients. This application is of
particular interest due to the type of recorded data using sensors on moving parts of the body [6].
Wearable devices, also being used to estimate the blood pressure using a photoplethysmogram (PPG)
sensor without the need for cuff and pressure extortion [7]. The advances in deep learning allows
extracting features from signals that was not possible using conventional algorithms due to artefacts
and noise. This also has been experienced with the use of AI for extracting meaningful signals from
electromyography (EMG) measurements [8].

The use of deep learning has also improved the accuracy of pneumonia detection and classification
using electronic nose. An accuracy of up to 94% can be achieved with the aid of deep learning networks.
This application has improved the detection accuracy, in addition to cutting the detection time and
avoiding the use of bacterial growth which usually takes days before the treatment can start [9].

The second group consists of six papers reporting research work on structural health monitoring,
many of which address fault detection on rotational machines. Vibration noisy signals are usually used
to diagnose faults on machines; however, due to vibration and electrical noise, the signal recorded
from sensory equipment is normally contaminated with noise that is sometimes higher in amplitude
to the vibration sensor output. As a result, conventional algorithm classification under experimental
conditions may severely degrade the accuracy under noisy environmental conditions, which are
ubiquitous in practical industrial applications. A one-dimensional (1-D) denoising convolutional
autoencoder (DCAE) [10] and a 1-D convolutional neural network (CNN) proved to be excellent
solutions to address this problem [11], whereby the former is used for noise reduction of raw vibration
signals and the latter for fault diagnosis using the de-noised signals. The DCAE model can be trained
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using noisy data for learning. Such configuration is used for fault diagnosis of ball-bearing failure in
rotational machines [12], railways, and diesel engine operations [13].

In addition to the use of deep learning algorithms, other feature extraction algorithms can be
used for pre-processing the signals before classification, such as EMD and WL [14]. This is in addition
to other different techniques, such as the use of video images in analysing the movements of large
structures [15].

The last paper is a mini review that addresses autonomous health monitoring systems.
Autonomous systems are defined within the context of intelligent systems that can learn, adapt,
and have a certain degree of self-control when integrated with advanced resources, such as smart
sensors and internet access, and can handle big data using AI and deep learning. Such systems should
be able to deal with dynamic environments where changes to internal parameters, and disturbances,
can be accommodated during operation by self-reconfiguration to adapt to the new environment.
A classic example of such system is adaptive control where the control law is adapted according to
changes in the environment. However, for autonomous systems, it should be able to reconfigure itself
when sensors or actuators fail or become out of their operational range [16].
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