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Abstract: Security has become critical for in-vehicle networks as they carry safety-critical data from
various components, e.g., sensors or actuators, and current research proposals were quick to react
with cryptographic protocols designed for in-vehicle buses, e.g., CAN (Controller Area Network).
Obviously, the majority of existing proposals are built on cryptographic primitives that rely on a
secret shared key. However, how to share such a secret key is less obvious due to numerous practical
constraints. In this work, we explore in a comparative manner several approaches based on a
group extension of the Diffie–Hellman key-exchange protocol and identity-based authenticated
key agreements. We discuss approaches based on conventional signatures and identity-based
signatures, garnering advantages from bilinear pairings that open road to several well-known
cryptographic constructions: short signatures, the tripartite Diffie–Hellman key exchange and
identity-based signatures or key exchanges. Pairing-based cryptographic primitives do not come
computationally cheap, but they offer more flexibility that leads to constructive advantages. To further
improve on performance, we also account for pairing-free identity-based key exchange protocols
that do not require expensive pairing operations nor explicit signing of the key material. We present
both computational results on automotive-grade controllers as well as bandwidth simulations with
industry-standard tools, i.e., CANoe, on modern in-vehicle buses CAN-FD and FlexRay.

Keywords: authentication; CAN bus; identity-based cryptography; key-exchange protocols

1. Introduction and Motivation

By default, the CAN bus, its newer embodiment with flexible data-rates CAN-FD and the high-end
FlexRay bus have no intrinsic security mechanisms. The research community did quickly react to
proven threats with countless proposals for assuring security on the CAN bus [1]. The industry has
also responded by including specifications for security in the AUTOSAR standards [2]. But while the
majority of existing proposals are based on cryptographic Message Authentication Codes (MACs) that
rely on a shared secret key, how to share this secret key is an issue that remains largely unaddressed.
Notable exceptions are the works in [3,4] which use physical properties of the bus to secretly exchange
cryptographic keys. But using physical properties of the bus may further lead to other vulnerabities,
e.g., probing as shown in [5], and these approaches do not build on traditional, well-known and
understood, cryptographic building blocks. The majority of security protocols from practice rely on a
secret key that is exchanged over an insecure network using some public-key mechanism. Automotive
networks will be no exception in adhering to this (one alternative is to hard code the keys inside each
component which is both insecure and impractical). Clearly, it is much more convenient to be able
to link each ECU to a particular manufacturer and to authorize it as part of a network by using the
public key of the OEM. However, the PKI (Public-Key Infrastructure) is not universally available inside
cars and moreover, exchanging public-key certificates on in-vehicle buses may give rise to additional
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concerns due to bandwidth limitations. In this work we discuss several approaches in a comparative
manner, including identity-based schemes which remove the need for public-key certificates.

The scenario that we address is suggested in Figure 1. Components, i.e., Electronic Control Units
(ECUs) originating from the manufacturer arrive at the system integrator and are placed inside the car.
To avoid issues that arise from the use of the PKI, each car has a unique identifier (which is consistent
to real-world scenarios) and the ECUs have specific names according to the functionality that they
address, e.g., BCM (Body Control Module), Gateway (GTW) or Powertrain (PWR). The identifier is
enough for deriving the public key in an identity-based scenario and thus it is sufficient for exchanging
session keys, secure tunneling, etc. This is suggested in Figure 2 where two nodes exchange signed
messages and require the certificates on each side in the conventional setting (i) while the certificates are
eliminated in the identity-based setup (ii) where the public key can be derived directly from the identity
of the principal (here we assume that derivation is done by some one-way function H applied over the
identity of the specific microcontroller µC). Some identity-based cryptographic schemes come at higher
computational costs, but we show that high-end ECUs can handle them. We assume that these ECUs
are linked by CAN-FD and/or FlexRay buses which are capable of handling larger data frames (larger
than the traditional 64 bits of CAN). Many other ECUs inside the car can be linked over sub-networks
separating them by the vehicle subsystems: body, powertrain, chassis, etc. Mobile devices may be
present as they may be linked in the future to diagnostic applications or for remote software updates,
etc. Due to a clear trend in bringing Android inside vehicles, e.g., infotainment units, we do not
exclude the presence of smart mobile devices as actors in such networks.

Figure 1. Addressed scenario: car setup during manufacturing.
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Figure 2. Exchanging signed messages in the conventional (PKI-based) setup (i) and in the
identity-based setup (ii).

Our work discusses several protocol versions since each of these offers certain advantages that
are garnered from the underlying cryptographic constructions, e.g., short signatures, the tripartite
Diffie–Hellman key-exchange, identity-based signatures and finally identity-based key exchanges.
To the best of our knowledge, there is no work to evaluate such key-exchange protocols for in-vehicle
communication scenarios. So rather than focusing on designing new cryptographic constructions, our
work is concerned with depicting applications of existing protocols and evaluating their performance
for in-vehicle environments. Such an analysis is necessary as it offers a first view over the advantages
and feasibility of these cryptographic constructions that have not been previously considered in this
setting. As already stated, key exchange is an important functionality since all protocols for assuring
the security of in-vehicle networks finally depend on a secret shared key.

All of the constructions that we use are based on the Diffie–Hellman key exchange which is the
de-facto standard in computer security along with RSA, but each protocol version is distinct in its own
way as we discuss later. RSA keys are too large for our embedded systems scenario, e.g., 2048–4096 bits,
thus we exclude RSA from our constructions. The protocol versions that we discuss are the following:
a regular Diffie–Hellman-based key exchange with short BLS signatures [6], then we replace BLS
with an identity-based signature from Paterson [7] and also include the tripartite version [8] of the
Diffie–Hellman key exchange. To remove the need for digital signatures, we further use Wang’s key
exchange [9] which is also identity-based but perhaps less popular than the rest (it proves however
quite efficient and well suited for our scenario). We go even further and to remove the need for the
more expensive pairing operations, we also test the identity-based key exchange by Cao et al. [10].
The implementation of these protocols on our experimental automotive-grade controllers is made
feasible by the state-of-the-art cryptographic library MIRACL [11].

The design goals of the protocols that we discuss are common characteristics of most
Diffie–Hellman-based key-exchange protocols such as authenticity for the secret shared key (which
also implies freshness) or forward secrecy (which implies that past sessions are protected even
if some future secret key is leaked). We do of course target minimal computational delays and
minimal bandwidth usage, but we underline from the beginning that public-key cryptography
and identity-based cryptography do not come cheap. An additional flavor that can be added to
key-exchange protocols on in-vehicle networks is that session keys can be destroyed in real time on the
bus in case something goes wrong with the key-exchange. The idea of destroying unauthentic CAN
messages by error flags was first proposed by the work in [12] and it seems a natural design choice in
case wrong key-parts are injected (likely due to an adversarial intervention).

1.1. Brief Background on CAN-FD & FlexRay

Regular CAN frames may carry at most 64 bits of data, making the traditional CAN not very
useful for the protocols that we discuss in this work. The newer CAN-FD or FlexRay have frames
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that can carry up to 64 and 254 bytes, respectively. These buses are the main target of our work.
The approaches that we present can be ported on CAN, but this is not a main intention for our work.

A few words on the structure of CAN and FlexRay frames follow. The first and last fields in each
CAN/CAN-FD frame are dedicated to signal the start and end of the frame. In the case of CAN and
CAN-FD the SOF (start of frame) indicates the frame start while the EOF (end of frame) indicates the
frame end. Similarly, FlexRay uses FSS (frame start sequence) to denote the frame start and FES (frame
end sequence) for the frame end. The frame header, which comprises the fields preceding the data or
payload field, holds the frame identifier (ID). CAN and CAN-FD both have an ID which has 11 bits
in standard frames and 29 bits in extended frames while the FlexRay ID field is always 11 bits long.
Moreover, the ID each frame contains additional fields specifying the payload length and type of the
frame. FlexRay contains two additional fields dedicated to the header cyclic redundancy check (CRC)
and communication cycle count. As previously mentioned, the data/payload field is at most 8 bytes
for CAN, 64 bytes for CAN-FD and 254 bytes in the case of FlexRay. All frames also carry a CRC field
computed over the entire frame. CAN and CAN-FD contain an additional acknowledge bit used to
signal the transmitter that the frame was received by other nodes.

1.2. Relevance of Sender/Receiver Identity

In this work we recognize that node identity may prove fundamental in establishing secure
connections for certificate-less scenarios, i.e., scenarios where the PKI is absent, which may be common
for in-vehicle networks. The brief discussion in this subsection tries to emphasize that node identity is
in fact used in many CAN-based scenarios (CAN-FD and FlexRay are simply alternatives when CAN
does not cover application needs).

Node identity is not directly defined in the specification of protocols like CAN or FlexRay which
usually covers only the lower protocol layers (i.e., the physical and data-link layer). The task of
defining node identities is deferred to higher layer protocols and it is in fact done by the SAE J1939 [13]
commercial vehicle bus protocol, the ISO-TP standard used for diagnosis, or by the DeviceNet protocol
used in automation. All these protocols are CAN-based and they provide various schemes for entity
identification on CAN using different abstraction levels (e.g., network node or a specific module within
a node). While one may argue that these are based on CAN rather than CAN-FD, we consider that it is
natural to expect they will soon migrate to CAN-FD due to the same bandwidth limitations that made
CAN unsuitable for modern vehicles. Migration to CAN-FD seems only a matter of time and in any
case here we only argue that the identity of nodes is a relevant component at the application layer. We
briefly show how the identity is formed in each of these CAN-based protocol suites.

In SAE J1939 each node has a unique address which is always transmitted by a sender as part of
the frame ID. This was used in previous work to provide node identity for message authentication as
the absence of authentication mechanism can lead to several attacks on J1939 [14]. Similarly, ISO-TP,
which is used as a base for diagnostics protocols like UDS and OBD-2, uses the CAN ID field to transmit
either the sender address or a unique identifier. The unique identifiers are defined by association with
a tuple of communication parameters that include the source and target address, for simplicity, we
denote these as ID(AddrA,AddrB). Please note that ID(AddrA,AddrB) 6= ID(AddrB,AddrA). DeviceNet
nodes are identified by a MAC ID which is also provided by a sender in all transmitted messages
either as part of the ID or data field.

Figure 3 summarizes the various forms in which senders using one of the previously discussed
CAN higher layer protocols encode their identity. Generally, except for a particular case in DeviceNet,
node identity is part of the identifier field. This identity, along with specific identifiers for the car and
manufacturer may serve as a mean to derive public keys for the components, thus removing the need
for PKI.
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ID (11 bit standard/29 bit extended) *Data field

29-12 11 10 9 8 7 6 5 4 3 2 1

(i) SAE J1939

AddrSource

(ii) ISO-TP

ID(AddrSource,AddrTarget)
AddrSource

(iii) DeviceNet

MAC_IDSource

MAC_IDSource

MAC_IDSource (6 bit)

Figure 3. Frame format with node identity as defined by the higher layer protocols of SAE J1939,
ISO-TP and DeviceNet.

1.3. Related Work on In-Vehicle Network Security

The security of the CAN bus has been addressed by a massive amount of work in the recent years.
The research on in-vehicle security was largely motivated by the attacks demonstrated in works such
as [15,16], etc. But both the research community and the industry were aware that cars are lacking
security for many years before, e.g., one of the earliest works discussing attacks over the CAN bus
is [17].

Most of the proposals that can be found in the literature use regular message authentication
codes (MACs), e.g., [18–21], possibly along with time-triggered authentication [22]. Besides regular
MACs, hardware countermeasures are also specified in [12] to destroy attacker messages with error
flags. Relevant to note, some works focus on efficient signal allocation to fit cryptographic tags along
with regular signals inside CAN frames [23,24]. Other recent efforts have also focused on assuring
AUTOSAR compliance, e.g., [25], or analyzing trade-offs between safety and security [26].

However, little or no work so far has been focused on how to share keys between CAN nodes.
A notable exception is the work in [3,4] which use physical properties of the bus to secretly exchange
cryptographic keys. However, as physical properties are harder to control, predict and may succumb
to some attacks, e.g., probing [5], relying on secure cryptographic building blocks is a safer alternative.
This is the approach we take in our work.

The Diffie–Hellman key exchange [27] is a well understood cryptographic protocol which stays at
the foundations of computer security, e.g., it is part of numerous protocols such as SSL/TLS, IPSec,
etc. Deriving group keys from the Diffie–Hellman key exchange was probably proposed for the first
time in [28]. More recent works such as [29] extend such schemes with dynamic group membership
making it possible to add or remove members, partition or merge existing groups. In our scenario we
consider that the group is fixed since this is the most likely case om automotive scenarios and we focus
on obtaining minimal bus and computational overheads. Designing the schemes for dynamic group
membership is a possibility but communication and computational constraints seem a more stringent
demand for in-vehicle networks. We also rely on the pairwise key-sharing approach from [28] that
propagates over group members in a binary fashion (two by two).

2. Key-Exchange Protocols

In what follows we present the protocol versions that we evaluate. We begin with a regular
Diffie–Hellman [27]-based key exchange with short BLS signatures [6], then we switch to identity-based
signatures due to Paterson [7] and then to Wang’s identity-based key exchange protocol [9]. We also
try to reduce the overhead of the Diffie–Hellman protocol by using its tripartite version due to Joux [8].
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To remove the need for the more expensive pairing operation we also test the pairing-free identity-based
key exchange proposed by Cao in [10]. A brief comparison between the protocols, summarizing their
pros and cons, is presented in Table 1 but more details follow upon each protocol description.

Table 1. Overview of advantages and disadvantages for the schemes discussed in this work.

Scheme: DHKE with
BLS

DHKE with
Paterson IBS

Tripartite-DHKE
with Paterson IBS Wang IBKE Cao IBKE

Pros: short signatures certificate-less
certificate-less certificate-less certificate-less

fewer
computations no signatures no signatures, no

pairings

Cons: requires
certificates

larger
signatures larger signatures requires

additional steps
requires

additional steps

2.1. Cryptographic Tool-Set

A bilinear pairing is a function e : G1 ×G2 → GT , where G1,G2,GT are three cyclic groups, the
latter being called the target group. If G1 = G2 the pairing is called symmetric. The function has
three properties which in case when G1 ×G2 are additive groups can be described as follows: (i) it is
bilinear by which e(aP, bQ) = e(P, Q)ab, ∀P ∈ G1, Q ∈ G2, a, b ∈ Z, (ii) non-degenerate which means
∃P ∈ G1, Q ∈ G2 such that e(P, Q) 6= 1 and (iii) ∀P ∈ G1, Q ∈ G2 the function e(P, Q) is efficiently
computable. By bilinearity it immediately follows that e(nP, Q) = e(P, nQ) = e(P, Q)n. This property
stays at the core of several unique cryptographic constructions, out of which we use the following:
the tripartite Diffie–Hellman key exchange due to Joux [8], the Boneh–Lynn–Shacham short signature
scheme [6], the identity-based signature from Paterson [7], the identity-based key exchange of Wang [9].
For clarity, we briefly recap these building blocks, for additional details we refer the reader to the
original works describing these protocols.

Boneh–Lynn–Shacham short signature scheme. The short signature in [6] sets room for signatures that
are merely 160 bits in length. The scheme is one of the most immediate and intuitive application of
pairings. By setting the public key to (αP, P), where α is a random secret, the signature is computed as
s = H(m)α. To verify that the signature is correct, the verifier simply checks that e(αP, H(m)) = e(P, s).

Identity-based signature by Paterson. In [7] an identity-based signature is immediately derived
from pairings. A public key is set for each user as QID = H(ID) by computing hash
function H over the identity ID, the private key is dID = αQID and α is the secret master
key. Values P, αP are also made public as system parameters. The signature is the pair R, S
where R = kP, S = k−1(H2(m)P + H3(R)dID). Verification implies checking for the following
equality: e(R, S) = e(P, P)H2(m)e(αP, QID)H3(R). Indeed, by looking at the second term from the
right e(αP, QID)H3(R) = e(P, αQID)H3(R) = e(P, dID)H3(R) = e(P, H3(R)dID). Thus, the second
term is e(P, P)H2(m)e(P, H3(R)dID) = e(P, H2(m)P + H3(R)dID) and the left term is the same since
e(R, S) = e(kP, k−1(H2(m)P + H3(R)dID)) = e(P, H2(m)P + H3(R)dID).

Tripartite Diffie–Hellman. Joux [8] generalizes the Diffie–Hellman key exchange for the case of the
three parties. It can be immediately observed that from the Diffie–Hellman key shares of three parties
aP, bP, cP, a unique shared key can be computed as e(bP, cP)a = e(aP, cP)b = e(aP, bP)c = e(P, P)abc.
Without bilinear pairings, in order to compute the common shared key abcP, the parties will also need
to exchange abP, cbP, bcP, besides the regular aP, bP, cP. The tripartite Diffie–Hellman key exchanges
makes this feasible without the expense of the three additional messages.

Wang identity-based authenticated key exchange. Wang [9] proposes an efficient identity-based key
exchange protocol. The following values are set: point GID = H(ID) is extracted by computing hash
function H over the identity ID of some principal, the private key of each party is dID = αGID and
α is the secret master key. Now, from the Diffie–Hellman key shares aGIDA and bGIDB (generated
by principal A and B which randomly select a and b) a common session key can be established as:
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e(GIDA , GIDB)
(a+sA)(b+sB) = e((a + sA)dIDA , sBGIDB + bGIDB) = e(sAGIDA + aGIDA , (b + sB)dIDB).

where sA = π(aGIDA , bGIDB) and sB = π(aGIDB , bGIDA) for some hash function π.
Cao et al. identity-based key exchange. The work in [10] proposes an identity-based key exchange

that does not rely on the expensive pairing operation e(·, ·). The protocol assumes a master secret
key x ∈ Z∗p and a master public key xP where P is a point of an elliptical-curve E/Fp. To compute
the secret key of a user IDA, the key-generation center selects random r ∈ Zp, computes RIDA = rP,
h = H(IDA, RIDA) and sIDA = r + hx (where H is a hash functions). The pair (sIDA , RIDA) is the user
secret key. The same is done for the other user IDB. To exchange a key, users IDA and IDB, generate a
random secret value a and b respectively, the compute TIDA = aP and TIDA = bp. Subsequently, they
exchange RIDA , TIDA . The common secret key is derived from the two identical shares K1

IDAIDB
=

sIDA TIDA + a(RIDB + H(IDB, RIDB)xP) = sIDB TIDB + b(RIDA + H(IDA, RIDA)xP) = K1
IDBIDA

and
K2
IDAIDB

= aTIDB = bTIDA = K2
IDBIDA

as sk = H(IDA, IDB, TIDA , TIDB , K1
IDAIDB

, K2
IDAIDB

) =

H(IDA, IDB, TIDA , TIDB , K1
IDBIDA

, K2
IDBIDA

).

2.2. PKI-Based Protocol Version, with BLS Signatures

In case of the BLS signature scheme [6] the public key cannot be retrieved from the identity of the
principals (this is not an identity-based scheme). Thus, the following scheme requires certificates and a
mean to distribute them. Certificates will not be sent during each key exchange, since they may be
valid for longer periods, and revocation lists or certificate updates may be performed periodically or
when requested by the manufacturer. We include this scheme mainly as a baseline for comparison to
traditional PKI-based approaches. Another relevant reason for exploring it is the fact that it offers the
shortest signatures that are known, i.e., 160 bits. We present all protocol versions following a syntax of
Send and Extract events. The first event consists of sending the key-part that is shared by each ECU and
the second consists of the extraction of the common session key that was so far negotiated, i.e., after
each ECU sent his share. Additionally, a Stop event can be invoked to stop the protocol run in case that
any ECU notices inconsistencies in the key that was so far negotiated.

Protocol 1 (Diffie–Hellman with short BLS signatures—DH-BLS). We assume the existence of a publicly
known key derivation function KD. In what follows Sig(ECUi, m) denotes a signature performed
with the private key of principal ECUi, i = 1 . . . n on message m, i.e., the first term of the Sig function
denotes the owner of the private key. Each ECUi, i = 1 . . . n runs the following three procedures:

1. SendDH(ECUi) in which ECUi=1...n sends its Diffie–Hellman key share as follows: generates a
random value ai and computes aiP then computes the coefficient a1Bi = KD(aia1Bi−1P), where
a1Bi−1P is the value previously broadcast by ECUi−1 (ECU1 and ECUn will skip the computation of
a1BiP), and broadcasts the tuple

{
aiP, a1BiP,Sig(ECUi, aiP||a1BiP)

}
on the bus (here the signature

is instantiated by the BLS scheme [6]),
2. ExtractDH in which ECUi=1...n retrieves the common secret key as follows: using subsequent

values broadcast on the bus by ECUj=i+1...n, at each newly received key share
{

ajP, a1BjP
}

it
computes the new coefficient a1Bj = KD(a1Bj−1ajP),

3. StopDH at each protocol step, any of the ECUi=1...n when computing a1Bj, j > i, if the newly
computed value multiplied by point P does not match the received value a1BjP the protocol is
aborted and this is signaled by error flags.

The common session key is a1BnP = KD(a1Bn−1anP). The protocol stops only when signatures
on the session key have been correctly retrieved from each node. Otherwise, as well as in case of errors,
the protocol restarts from step 1. The protocol run between the first 4 nodes is suggested in Figure 4 part
(i). Please note that ECU1 does not compute a1B1P since there are no previous Diffie–Hellman shares
and similarly ECUn will not compute a1BnP since there is not further node to exchange keys with.
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t

ECU1

ECU2

(a2P,a1►2P , sig(ECU2, a2P,a1►2P))
ECU3

ECU4

(a4P,a1►4P, sig(ECU4, a4P,a1►4P))

t

ECU1 ECU3

ECU2 ECU4

(a1P, sig(ECU1, a1P))

(a3P,a1►3P, sig(ECU3, a3P,a1►3P))

t

ECUi-1

ECUi

(aiP,a1►iP , sig(ECUi, aiP,a1►iP))
ECUi+1

ECUi+2

(ai+2P,a1►i+2P, sig(ECUi+2, ai+2P,a1►i+2P))

(ai-1P, sig(ECUi-1, ai-1P))

(ai+1P, sig(ECUi+1, ai+1P))

(a1P, sig(ECU1, a1P)) (a3P, sig(ECU3, a3P))

ECU12 ECU34

(i) (ii) (iii)

Bus
Bus Bus

(a2P, sig(ECU2, a2P)) (a4P, sig(ECU4, a4P))

(a12P, sig(ECU2, a12P)) (a34P, sig(ECU4, a34P))

Figure 4. Overview of protocol procedures for DH-BLS (i), pairwise version of DH-BLS (ii) and
tripartite Diffie–Hellman (iii).

To reduce delays due to intensive computations, we may add some parallelism by grouping
nodes two by two and the exchange the key between the logical entities formed by each two nodes.
This pairwise approach is suggested for the case of 4 nodes in Figure 4 part (ii). The exchange between
ECU1, ECU2 and ECU3, ECU4 are encircled since the computations of ECU1 and ECU3 are done in
parallel (note that in part (i) of the figure the computations propagate sequentially). Subsequently,
the logical entities ECU12 and ECU34 may continue to exchange a new session key. We consider that
this is done either by ECU1 or ECU2 on behalf of ECU12 or by ECU3 or ECU4 on behalf of ECU34. For
brevity we skip the formalism for this protocol version. This variation is also possible for two of the
schemes that follow.

2.3. Identity-Based Protocol Versions

The following protocol versions rely on the identities of principals which can be immediately
derived from the unique name of the ECU and the identifier selected by the manufacturer.
The identity-based versions of the key exchange do not benefit from the short BLS signatures,
but they eliminate the need for public-key certificates. The protocol based on the Paterson [7]
signature is identical to the previous BLS [6]-based protocol, it is only the signature that is different.
The modification is outlined next.

Protocol 2 (Diffie–Hellman with Paterson identity-based signature—DH-Pat). Each ECUi, i = 1 . . . n
runs the procedures of Protocol 1 with the following modification: in step SendDH(ECUi) the signature
is computed as a Paterson identity-based signature Sig(ECUi, aiP) which is the pair {R, S} as outlined
in the previous section.

We can optimize this by using the tripartite Diffie–Hellman scheme due to Joux [8] which allows
the dropping of one Diffie–Hellman computation for even-numbered nodes. This is described next

Protocol 3 (Tripartite Diffie–Hellman with Paterson identity-based signature—3DH-Pat). Each ECUi,
i = 1 . . . n runs the procedures of Protocol 2 with the following modification:

1. in SendDH(ECUi) even-numbered ECUs, i.e., ECUi=1...n, i ≡ 0 mod 2 sends only their
Diffie–Hellman key share, i.e., aiP, without the common share a1BiP, and odd-numbered ECUs,
i.e., ECUi=1...n, i≡ 1 mod 2 compute the shared session key with the tripartite Diffie–Hellman
(see below) and send the share a1BiP (the signature is computed as a Paterson identity-based
signature Sig(ECUi, aiP), i.e., the pair {R, S}),

2. ExtractDH in which each ECUi=1...n retrieves the common secret key as a regular tripartite
Diffie–Hellman key, i.e., even-numbered ECUs compute e(a1Bi−1P, ai+1P)ai , and odd-numbered
ECUs compute e(a1Bi−1P, aiP)ai+1 .

Figure 4 part (iii) clarifies the key-extraction starting from the case of an even-index node
ECUi−1. The even-numbered nodes ECUi−1 and ECUi+1 do not have to compute a common key.
Only odd-numbered nodes ECUi and ECUi+2 must compute a1BiP and a1Bi+2P respectively.
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Grouping the nodes two by two to achieve some parallelism in computation is possible in the case
of the first Paterson-based scheme, i.e., Protocol 2. For its tripartite version, i.e., Protocol 3, the nodes
may be grouped three-by-three. For brevity, we skip formalism for these protocol variations, but we
do discuss them later in the experimental section and evaluate their performance. Such a variation is
not possible for the following scheme.

The following protocol uses Wang identity-based key exchange [9]. The protocol is similar to
Protocols 1, 2 and 3 in which the Diffie–Hellman shared key is replaced with Wang’s identity-based
share. Note however that the protocol now establishes only a pairwise shared key between each two
ECUs. We add a symmetric-key-exchange step later to establish a common key for all nodes.

Protocol 4 (Wang identity-based). Each ECUi, i = 1 . . . n runs the following the procedures:

1. SendWang(ECUi) in which ECUi=1...n sends the key share required by the Wang key-exchange
protocol, i.e., aiGID(ECUi)

,
2. ExtractWang in which each ECUi=1...n retrieves the common secret key with ECUj=1...n, j 6= i as

e(GID(ECUi)
, GID(ECUj)

)(a+s(ECUi))(b+s(ECUj)).

We describe next the version based on Cao et al. [10] identity-based key exchange. Similar to
the protocol version based on Wang [9], the protocol establishes a pairwise shared key between each
two ECUs.

Protocol 5 (Cao et al. identity-based). Each ECUi, i = 1 . . . n runs the following the procedures:

1. SendCao(ECUi) in which ECUi=1...n sends the key share required by the Cao key-exchange
protocol, i.e., RID(ECUi)

and TID(ECUi)
= aiP,

2. ExtractCao in which each ECUi=1...n retrieves the common secret key with ECUj=1...n, j 6= i as
K1
ID(ECUi),ID(ECUj)

= sID(ECUi)
TID(ECUi)

+ ai(RID(ECUj)
+ H(ID(ECUj), RID(ECUj)

)xP).

Symmetric-key-exchange for a common session key. The previous two protocols do not allow
an immediate extension of the Diffie–Hellman key exchange to groups of nodes, they only lead
to a pairwise shared key between each two nodes on the network. However, this can be easily
extended, with one additional protocol step based on symmetric-key primitives that facilitates the
establishment of a unique session key between all nodes. In order to establish the common session
key, each node may broadcast a packet containing his share of the symmetric key, encrypted and
authenticated by a MAC, computed for each other node with the common key. That is, let ki,j be
the key shared between ECUi and ECUj (generated with either the Wang or Cao-based protocol
versions), then the packet sent by ECUi will contain the encryption and MAC of k′i with each of
the shared keys, i.e., EKD′(ki,1)

(k′i),MACKD′′(ki,1)
(k′i)||EKD′(ki,2)

(k′i), MACKD′′(ki,2)
(k′i)|| ... ||EKD′(ki ,n)

(k′i),
MACKD′′(ki,n)

(k′i). Here k′i is the part of the common session key generated by ECUi. The common
session key is further derived as KD(k′n, ...KD(k′2,KD(k′1, 0))...). This procedure can be summarized
in the following two protocol steps:

1. SendSym(ECUi) in which ECUi=1...n proceed in consecutive order by sending message
EKD′(ki,1)

(k′i),MACKD′′(ki,1)
(k′i)|| EKD′(ki,2)

(k′i), MACKD′′(ki,2)
(k′i)|| ... ||EKD′(ki ,n)

(k′i),
MACKD′′(ki,n)

(k′i) in which k′i is symmetric key generated by ECUi (the size of ki is to be
determined by practical constraints, more discussions follow),

2. ExtractSym(ECUi) in which every ECUi, i = 1 . . . n retrieves the symmetric key from all other
nodes by decrypting the packets from SendSym(ECUi) and then computes the common session
key as KD(kn, ...KD(k2,KD(k1, 0))...).

Due to the limited size of the payload, the encryption and MAC may be limited to the number
of bits in the data field divided by the number of nodes. For example, in case of 512 bit frames and
8 nodes, each node will send 64 bits of key material for each of the other nodes, i.e., 32 bits for the
key and 32 bits for the MAC. While 32 bits is insufficient for a single MAC, there are 8 such MACs
in the packet and the adversary must be able to forge more than a single MAC to forge a common
session key.
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2.4. Security Discussion

We do assume the existence of a regular adversary that has full control over the communication
channel. As stated, our protocols rely on well-known cryptographic blocks and deriving security
proofs would be out of scope since our goal is to establish whether these protocols are suitable for
in-vehicle scenarios. In particular, the first three schemes that we discuss are based on signed versions
of the Diffie–Hellman key agreement, which have a well understood security and stay at the core of
many protocols from practice, e.g., SSL/TLS, being studied in the literature long ago, e.g., [30]. The last
two protocols that we evaluate, i.e., Wang [9] and Cao’s IBKE [10], are indeed more recent, but they are
both accompanied by security proofs in the original works. If flaws and fixes are found in the future,
then these should be easy to embed in the constructions from this work. In what follows, we give only
a brief discussion on specific security concerns with respect to our setting.

Due to computational and bandwidth constraints, the key is established in a bandwagon manner,
i.e., the second node of each two nodes that already exchanged a Diffie–Hellman key will continue
negotiations for a new key with the next node (or pair of nodes in the pairwise version of the scheme).
Because of this procedure, if the i-th node is malicious and has an active role, it may inject a session
key that does not match the correct key a1BiP (note that this node must still be a genuine node of the
network since he still needs to sign the message). If such a situation occurs, the passive node can
destroy the following session keys with error flags forcing the key exchange to restart. If the attacker is
also able to disconnect the node from the bus immediately after it sends his Diffie–Hellman key share,
then the best that the adversary could achieve is a DoS since the disconnected node will not know the
session key. This can be again fixed by triggering a re-negotiation of the session key. In an automotive
scenario however, it is likely that all ECUs are trusted and the case of a malicious ECU that injects
wrong session keys appears less likely and will have little benefits for the adversary. Only a DoS will
be caused and if the malicious node is also a genuine node from the network it will have the secret
shared key anyway since it is included in the key exchange protocol. Consequently, such an attack
seems to have quite a limited impact. Nonetheless, DoS attacks on the CAN bus are generally feasible
due to the design of the bus, i.e., dominant bits always overwrite recessive ones, and these cannot be
stopped by cryptographic countermeasures. Thus, we consider such attacks to be out of scope for the
current work.

3. Experimental Results

This section discusses computational and bandwidth results for each of the protocols.
The experiments were performed using high-end embedded platforms for computational results
as well as the CANoe simulation environment for bandwidth results, devices are illustrated in Figure 5.

Figure 5. Components employed from our experiments.
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3.1. Computational Results with Pairing Libraries

For evaluating the computational overhead of the previously proposed key-exchange protocols
we selected two automotive-grade platforms with 32-bit cores designed to offer high performance
for demanding applications. The first is a Microchip SAM V71 microcontroller built around an ARM
Cortex M7 core which can operate at up to 300 MHz and has access to the 384 KB SRAM and 2 MB
of Flash on-chip memories. The second, an Aurix TC297 from Infineon, features 3 CPUs based on
Infineon’s TriCore technology each running at up to 300MHz with 728 KB of SRAM and 8 MB of Flash.

All the computational measurements were done by clocking the CPUs of the two microcontrollers
at their maximum frequency, i.e., 300 MHz. Only one core was used on the TC297 platform with no
task parallelization for a fair comparison of performance measurements on the two platforms. Also,
the same optimization options for the GNU compilers were used to generate the object code for the
two platforms.

For evaluating the key exchange mechanisms on the two embedded platforms we used MIRACL
(Multiprecision Integer and Rational Arithmetic C Library) [11], an open source C library with support
for ECC. The implementations of the cryptographic building blocks for the protocols were executed on
each of the two employed microcontrollers and the run times of the main operations were measured.
The MIRACL [11] cryptographic library provides examples for BLS and Wang. However, it does not
have an implementation for Paterson’s scheme, neither for the tripartite Diffie–Hellman or Cao key
exchanges, which we had to implement ourselves and was not a difficult task given the extensive
support of the library.

The BLS signature was evaluated on a 20 byte curve, i.e., option MR_PAIRING_MNT, which
yields a short 20-byte signature when coordinates are in compressed form (an extra bit is needed for
the sign). The BLS signature was done on type 3 pairings. Both the Paterson identity-based signature
and the Wang identity-based key exchange require type 1 pairings. We evaluated them both on GF2
with option MR_PAIRING_SS2 which lead to 48 byte coordinates, i.e., 392-bit curves, and Zp with
option MR_PAIRING_SSP which resulted in 64 byte coordinates, i.e., 512-bit curves. For Paterson’s
scheme the size of the signature is double since there are two values in each signature.

Table 2 summarizes these run times measured in milliseconds. The Infineon TC297 generally
outperforms the Microchip core. As for the signature schemes, Paterson gave poorer results than BLS.
Thus, it seems that BLS or Wang’s key exchange are the preferred solution. Pairings over GF2 are also
included for comparison but they are known to be insecure so they will not be present in the synthetic
analysis from the next section. The results in Table 2 do not account for specific optimizations in the
MIRACL library which may further improve on the computational time.

Table 2. Computational overhead in milliseconds on the Microchip SAM V71 and Infineon TC297.

Microcontroller
BLS DH Tripartite Paterson IBS Wang IBKE

GF(p) 160 Bit GF(2m) Curve GF(p) 512 Bit GF(2m) 384 Bit GF(p) 512 Bit GF(2m) 384 Bit GF(p) 512 Bit

Gen Sign Ver Share Key Share Key Gen Sign Ver Gen Sign Ver Gen Share Key Gen Share Key

Microchip SAM V71 712.8 106.5 1496 82.04 502 293 978.4 257.6 418.4 1151 4676 1020 2470 159.4 82.04 614.8 3348 293 1152

Infineon TC297 226.3 34.70 451 28.70 142 116 396.4 63.84 147.5 392.4 1690 376.6 904 31.90 28.70 180 1281 116 430.4

To obtain better performance results we further implemented the steps required for the Cao-based
protocol version. The implementation was done both on the fast and small 160-bit non-pairing friendly
curve but also on the 512-bit pairing friendly curve to obtain clear image on computational penalties.
Of course, the implementation on the pairing friendly curve does not use the expensive pairing
operation, but it is still about 4 times slower. On the 160-bit curve, the results are several times (or up
to an order of magnitude) faster than for the rest of the primitives. The results are presented in Table 3.
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Table 3. Computational overhead in milliseconds for Cao’s pairing-free IBKE.

Microcontroller

Cao IBKE

GF(p) 160-Bit Curve GF(p) 512-Bit Curve

Gen Share Key Gen Share Key

Microchip SAM V71 78.2 77.6 379.4 307 290 1168

Infineon TC297 28.3 28.1 135.5 120 114.1 459.1

3.2. Synthetic Performance Evaluation

In Table 4 we estimated the computational and bus overhead for each of the protocol versions.
We use the following notations: (i) tsBLS, tsPat is the time to sign a message with the two schemes,
i.e., BLS and Paterson, (ii) tvBLS, tvPat is the time to verify a signature with the two schemes, i.e., BLS
and Paterson, (iii) tsDH is the time to compute the Diffie–Hellman key share of a node, i.e., aP, (iv) teDH
is the time to extract the common Diffie–Hellman key share of a node, i.e., compute abP from a and
bP, (v) tetDH is the time to extract the common key share of the tripartite Diffie–Hellman, i.e., compute
abcP from a, bP and cP, (vi) tshWang and tkWang is the time to compute the Wang key share and the time
to extract the common key between two nodes, (vii) tshCao and tkCao is the time to compute the Cao key
share and the time to extract the common key between two nodes.

Computational time. Table 4 presents the synthetic evaluation for computational time and bus
overhead. For the Diffie–Hellman-based schemes, each sender node, i.e., ECUi at step i, has to verify
the signature on the received packet, extract the Diffie–Hellman session key aia1Bi−1P, compute a
new Diffie–Hellman key share a1BiP and sign the packet he sends. The first node does not need to
extract a common session key and verify the signature since there is no previous sender while the
last node does not need to send a secondary key share since no sender follows. We assume that
all nodes have computed their Diffie–Hellman key share aiP in parallel at protocol initialization to
save on computational time. For all protocols, we have the same sum of the four computational
terms for each sender, e.g., in case of the DH-BLS we have tvBLS + teDH + tsDH + tsBLS and it follows
similarly for the rest. The exceptions are the Wang and Cao-based schemes were each node must
compute his share then extract the next key, e.g., tshWang + tkWang. The time for the symmetric-key
extraction in case of the Wang-based scheme is negligible, i.e., under 1ms and it is neglected to avoid
overloading the table. For n nodes, we sum over the computations for all nodes (the first node is
spared from one computation of the common session key and one signature verification). This leads
to n(tsDH + tsBLS) + (n− 1)(teDH + tvBLS) for the DH-BLS scheme and similarly for the rest. With the
schemes from Wang and Cao, in case of n nodes, there are n− 1 key extractions since each node has to
extract a key with each of the other nodes, e.g., ntshWang + (n− 1)tkWang. The pairwise versions further
reduce on the computational load for n nodes since extraction goes pairwise in parallel (two by two or
three by three in case of the tripartite versions), i.e., in case of a single node before each key-exchange
computations are identical to the previous case and this goes for log2 n and log3 n steps in case of the
tripartite versions. This leads to (tsDH + teDH + tsBLS + tvBLS) log2 n in case of the Pairwise DHKE-BLS
and similarly for the rest of the pairwise versions.

Bus overhead. Let ` denote the size of the point on the elliptic curve in bytes (we discuss later
practical instantiations for each of the curves). The BLS signature requires only one point for encoding.
In case of DH-BLS, the size of the message for the first and last node, i.e., ECU1 and ECUn, is smaller
since it does not include the second Diffie–Hellman key share. This leads to a total of 2` bytes for the
first and last nodes. For the rest n− 2 nodes, an additional Diffie–Hellman key share is needed which,
along with one point of the first Diffie–Hellman keyshare and one for the signature, requires a total of 3`
bytes. Summing up for all the n nodes, this leads to 4`+ 3(n− 2)` = `(3n + 2). In the pairwise version
of the DH-BLS scheme just one Diffie–Hellman key share and one signature need to be exchanged by
each node, resulting in 2` bytes. Over the entire binary three there are (2log2 n+1 − 1) nodes and thus it
leads to 2`(2log2 n+1− 1) bytes. Similar computations are done for the DH-Pat protocol version, but here



Sensors 2019, 19, 4919 13 of 17

the signature is larger requiring two points from the curve for encoding. For one Diffie–Hellman
key share and one signature we have a total of 3` bytes. These are sent by the first and last node.
The rest of the n− 2 nodes have to send and additional Diffie–Hellman key share leading to 4` and
for all of the n nodes to a total of 6`+ 4(n− 2)` = 2`(2n− 1). Similarly for the pairwise version of
the DH-Pat scheme we have the larger signature compared to DH-BLSwhich leads to 3`(2log2 n+1 − 1)
bytes. The tripartite 3DH-Pat version saves one Diffie–Hellman key share for each even node, resulting
in a total of 3` n

2 + 4` n
2 = 7` n

2 . In the pairwise tripartite version there are 3log3 n+1−1
2 nodes in the three

and since each sends 3` bytes (one key share and one signature) this results in a total of 3`( 3log3 n+1−1
2 )

bytes. Finally, for Wang’s scheme one point of the curve is sent by each node, leading to a total of `n
bytes. Cao’s scheme requires two points from the curve which leads to a total of 2`n bytes.

Practical instantiations of the curves in MIRACL. We now discuss the resulting busload after specific
curve instantiations available in MIRACL. We assume point compression is used, thus a single
coordinate (X) plus the sign of the other (Y) is sufficient. In case of DH-BLS, the size of one coordinate
of the point on the elliptic curve is 20 bytes and an extra byte is used for the sign resulting in a
total of 21 bytes. The size of the message for the first and last node will be 42 bytes and for the
following n− 2 nodes 63 bytes. In the pairwise version of the DH-BLS scheme there will be a total of
42(2log2 n+1 − 1) bytes. For the DH-Pat protocol version, which uses a symmetric pairing, we used a
64 byte curve (which was the smallest symmetric pairing we were able to find in the MIRACL library,
one additional byte is for the sign of the point). For one Diffie–Hellman key share and one signature
we have a total of 3× 65 = 195 bytes. The rest of the n− 2 node must send and additional 65 bytes,
thus 195 + 65 = 260 bytes in total. Similarly for the pairwise version of the DH-Pat scheme we have
195(2log2 n+1 − 1) bytes and for the tripartite 3DH-Pat version n

2 195 + n
2 260. For the pairwise tripartite

version this leads to a total of 195( 3log3 n+1−1
2 ) bytes. Finally, for Wang’s scheme we use the same 64 byte

curve available in MIRACL leading to a total of 65n bytes.

Table 4. Computational overhead and busload (synthetic estimation).

Protocol Computational Time Busload

DHKE with BLS (DH-BLS) n(tsDH + tsBLS) + (n− 1)(teDH + tvBLS) `(3n + 2)

Pairwise DHKE with BLS (tsDH + teDH + tsBLS + tvBLS) log2 n 2`(2log2 n+1 − 1)

DHKE with Paterson IBS (DH-Pat) n(tsDH + tsPat) + (n− 1)(teDH + tvPat) 2`(2n− 1)

Pairwise DHKE with Paterson IBS (tsDH + teDH + tsPat + tvPat) log2 n 3`(2log2 n+1 − 1)

Tripartite DHKE with Paterson IBS (3DH-Pat) n(tsDH + tsPat + tvPat) +
n
2 tetDH 7` n

2

Pairwise Tripartite DHKE with Paterson IBS log3 n(tsDH + teDH + tsPat + tvPat) 3`( 3log3 n+1−1
2 )

Wang IBKE ntshWang + (n− 1)tkWang `n

Cao IBKE ntshCao + (n− 1)tkCao 2`n

Figure 6 shows the estimated computational time for one node (left) and for 4 nodes when
running each of the protocol versions. The bus time is not added since it is too low compared to
the computational time, i.e., the computational cost for each operation is in the order of hundreds of
milliseconds while the time to send a packet on the bus in the order of hundreds micro-seconds. For one
node the computational time is 1s or less at each step, with the exception of the DH-Pat scheme, and for
4 nodes this increases to around 2 s for all schemes except DH-Patwhich may be too computationally
intensive. Such timings are affordable in case key negotiation is done during car setup at a reseller or
in an authorized garage during periodic maintenance services. By using the pairing-free version based
on Cao’s protocol, the computational time for sharing a key between 4 nodes will drop to around
500ms which is the time required for generating one share and then reconstructing three keys from the
shares of the other three nodes.
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(i) (ii)

Figure 6. Computational time (s) on one node (i) and estimated computational time for 4 nodes (ii)
(based on Infineon TC297 results).

Furthermore, with the size of the messages, we include busload in our evaluation by using
CANoe, a comprehensive environment for development, testing and analysis of automotive networks.
We built CANoe configurations to simulate networks with different number of nodes programmed to
generate traffic as imposed by each of the proposed key exchange schemes. The computational time is
modeled in the simulation as a delay before the packet is sent. For the pairwise-based approach on
CAN-FD we depict the computational time plus the bus delay in Figure 7i. This time, we account for
the delays on the bus since the computations are done in parallel and we expect significant reduction
in the computational time. Still, the delays on the bus play a less significant role. Clearly, the pairwise
approach reduces the time drastically as the number of nodes increases. The pairwise approach can
handle 8–16 nodes for the BLS-based protocol version in the same time required by the basic version
for 4 nodes. The busload was not significant, always below 1%.

(i) (ii)

Figure 7. Computational and bus transfer time (s) for: the three versions of the protocol in case of 2, 4,
8 and 16 nodes on CAN-FD (i) and FlexRay for 4-64 bytes frames (ii).

When using FlexRay the communication overhead depends on the length of the communication
cycle which is defined as a fixed number of macroticks (MT). The time-triggered nature of the FlexRay
protocol assures the predictability of frame arrival times. This is always valid for static frames and
also applies to dynamic frames to some extent. We analyze the communication overhead of FlexRay
communication during the key exchange process considering a 16 node network, a bit rate of 10M
bit/s and a communication cycle with a dynamic segment fixed to 320 MT, a symbol window of
13 MT and a network idle time of 2 MT. We keep the number of slots in the static segment fixed
to 20 corresponding to one slot for each of the 16 nodes plus an additional 25% for other traffic of
future extensions. We analyze the effect of the static segment size on the time required to complete
the key exchange procedure. The static frame payload sizes considered in our analysis along with the
communication cycle duration yielded in each case are presented in Table 5. In Figure 7ii we depict the



Sensors 2019, 19, 4919 15 of 17

computational time plus transmission time in case of 4, 6, 8, 12, 16, 24, 32, 48 and 64 bytes per frame in
the static segment for the pairwise DH-BLSin case of 8 nodes. The computational time dictates the full
runtime while transmission time has only a small effect. The runtime is slightly higher than in case
of CAN-FD due to the fixed communication cycles as each node must wait for its time-slot, while on
CAN-FD messages are sent as soon as they are ready.

Table 5. Computation overhead and busload (synthetic estimation).

Payload Size (Bytes) 4 6 8 12 16 24 32 48 64

Cycle duration (µs) 895 935 975 1055 1135 1295 1455 1755 2095

4. Conclusions

We discussed several key-exchange protocols for in-vehicle networks that rely on four prominent
cryptographic constructions: short signatures, identity-based signature, the tripartite Diffie–Hellman
key exchange and identity-based key exchanges. Most of these constructions were built on top of
bilinear pairings. Computational demands are not low, but the experimental results show that these
schemes are ready for practical adoption and, in case of identity-based protocols, they do have the
advantage of not requiring public-key certificates which may be troublesome for in-vehicle networks.
By moving toward non-pairing-friendly curves, the computational demands lower by five to ten
times, while identity-based authentication is still feasible. All the required computations are affordable
for high-end cores and future research may come with improvements. Due to obvious performance
constraints, it is expected that the security of in-vehicle networks will largely depend on symmetric
cryptography and more demanding public-key-based operations will not be performed so often.
We expect that key-exchange protocols, such as the ones discussed in our work, are to be performed
only during car setup by the manufacturer or in an authorized garage during periodic maintenance
services, etc.
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