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Abstract: Airborne LiDAR bathymetry (ALB) has shown great potential in shallow water and coastal
mapping. However, due to the variability of the waveforms, it is hard to detect the signals from
the received waveforms with a single algorithm. This study proposed a depth-adaptive waveform
decomposition method to fit the waveforms of different depths with different models. In the proposed
method, waveforms are divided into two categories based on the water depth, labeled as “shallow
water (SW)” and “deep water (DW)”. An empirical waveform model (EW) based on the calibration
waveform is constructed for SW waveform decomposition which is more suitable than classical
models, and an exponential function with second-order polynomial model (EFSP) is proposed for DW
waveform decomposition which performs better than the quadrilateral model. In solving the model’s
parameters, a trust region algorithm is introduced to improve the probability of convergence. The
proposed method is tested on two field datasets and two simulated datasets to assess the accuracy
of the water surface detected in the shallow water and water bottom detected in the deep water.
The experimental results show that, compared with the traditional methods, the proposed method
performs best, with a high signal detection rate (99.11% in shallow water and 74.64% in deep water),
low RMSE (0.09 m for water surface and 0.11 m for water bottom) and wide bathymetric range (0.22 m
to 40.49 m).

Keywords: airborne LiDAR bathymetry; waveform decomposition; signal detection; waveform
classification; deconvolution

1. Introduction

Airborne LiDAR bathymetry (ALB) is a technique for measuring the depths of moderately clear,
near-shore coastal waters and lakes with a high-powered, high-pulsed green laser from a low-altitude
aircraft (200–500 m above ground level (AGL)) [1–3]. This technique can provide high-density,
high-accuracy, and three-dimensional bathymetric data safely and with high efficiency compared with
shipborne sonar. The swath width of an ALB system roughly ranges from 0.5–0.75 times AGL, namely
100–400 m, indicating that the area covered within 1 h ranges from about 20–60 km2 [4]. Since ALB
is cost-effective and time-saving, it has been widely used in coastal mapping, sediment budgets and
seabed protection [5,6].

Since the transmission of green laser involves air and water, the waveform processing for the ALB
system sometimes could be challenging. Water absorption and scattering influence the extraction of
the water surface and bottom returns from the waveform of a green channel, especially for turbid

Sensors 2019, 19, 5065; doi:10.3390/s19235065 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9860-0650
http://dx.doi.org/10.3390/s19235065
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/23/5065?type=check_update&version=2


Sensors 2019, 19, 5065 2 of 28

water and shallow water (a depth lower than 0.5 m) [7,8]. Water column scattering, which is much
more powerful than atmospheric scattering, leads to a low signal-to-noise ratio (SNR) in the received
waveform. Two main problems in the full waveform processing for ALB are given below:

1. Mixed peaks in surface return: The waveforms are the convolution of the emitted pulse and the
target cross section, and are digitized by the receiver. The limited full width at half maximum
(FWHM) of the emitted pulse and sampling rate in the LiDAR digitizer induce the peak stretching,
leading to a mixed peak of surface return and water column scattering. Especially when the
water is extremely shallow, the bottom return will also be included in the mixed peak. Taking the
mixed peak as the surface return may introduce errors ranging from 10 cm to 25 cm [9].

2. Weak bottom return in deep or turbid water: The pulse energy decreases exponentially with
depth in the water column, and the decrease rate is positively associated with water turbidity,
resulting in a rather weak bottom return in deep or turbid water [10].

For the first existing problem, some ALB systems use an NIR channel or a Raman channel to
measure the surface return. Pe’eri and Philpot [11] studied the relationship between the shape of the
Raman waveform and the water depth and used the Raman channel to measure the water depths
(shallower than 2 m). However, this algorithm may vary with water clarity. Allouis et al. [12] found
that the Raman signal is not reliable for depth estimation, since the Raman signal is sensitive to
water characteristics and proposed a depth estimation method using NIR and green fitted waveforms.
Another alternative is to establish a water surface model to determine the position deviation between
the mixed peak and the water surface, so that the single green laser ALB systems can be used to
estimate the water depth. Mandlburger et al. [9] analyzed the near water surface penetration (NWSP)
properties of green laser signals. Zhao et al. [13] studied the factors that influence the NWSP of
a green laser and proposed an NWSP modeling method. This method needs an auxiliary NIR
laser and some SSC sampling stations, which sometimes are difficult to obtain, and so waveform
decomposition may be the optimal solution to this problem. For topographic LiDAR, the Gaussian
model is sufficient for most applications [14]. However, the Gaussian decomposition method is not
suitable for ALB because the water column component in the waveform cannot be easily fitted by
Gaussian functions [15,16]. The triangular function [17] and quadrilateral function [18] were both
introduced to water column fitting but were only verified by simulated data. Ding et al. [19] proposed
an improved quadrilateral model for the water column fitting which shows a better fit to the field data
compared with the quadrilateral function. For very shallow water, a surface-volume-bottom (SVB)
algorithm was proposed by Schwarz et al. [20] and was applied to measure a riverbed. However,
waveforms at different depths vary greatly, and a single model is only suitable for waveforms in a
specific depth range.

For the second problem, the key is detecting the bottom signal from low-SNR waveforms.
Numerous waveform processing methods have been developed for waveform de-noising or signal
enhancement. Saylam et al. [21] used a moving-average filtering algorithm for waveform smoothing.
Pan et al. [7] introduced a continuous wavelet transformation (CWT) to project the signal into a
continuous time and scale subspace and found that more signals can be detected from the reconstructed
waveform while many signals are still undetectable. Wang et al. [15] examined some waveform
processing methods and concluded that the Richardson–Lucy deconvolution (RLD) [22] is good at
dealing with waveforms with a very shallow depth and a weak bottom response, and the average square
difference function (ASDF) [23] can better cope with noise. Richter et al. [24] proposed an attenuation
correction procedure to improve the detectability of water bottom signals. Launeau et al. [25] proposed
a waveform processing method including smoothing and edge enhancing to increase the detection
rate of the bottom signal in moderately turbid water. The de-noising and signal-enhancing methods
can improve the detection rate, but the detection accuracy is still limited by the waveform sampling
interval, which may also require waveform decomposition.

Although the previous methods have partially solved the above problems, there is no single best
waveform processing strategy across all applications [7,26]. The received waveform influenced by
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the water depth and the optical attenuation of the water column is varied and complicated. If each
component of the waveform is reconstructed, then both the water surface and bottom signals can
be precisely detected, and the accurate water depth can be estimated. In this study, we proposed a
depth-adaptive waveform decomposition method for green channel waveforms of ALB. Waveforms
are first classified by depth based on the shape. In waveform decomposition, two models are developed
for waveforms with different depths based on the calibration waveform and an improved quadrilateral
model, and a trust region algorithm is introduced to solve the model parameters. Field data from
an airborne topo-bathymetric LiDAR system and simulated data are used to assess the accuracy of
the detected water surface and bottom positions. The rest of the paper is organized as follows. The
field datasets used in this paper are introduced in Section 2, followed by the detailed description of
the proposed wave decomposition method. The experimental results are presented and discussed in
Section 3. Finally, Section 4 concludes this paper.

2. Materials and Methods

2.1. The Mapper5000 System and Study Area

The field data were collected by an airborne topo-bathymetric LiDAR (Mapper5000) system in the
Qilianyu Islands, Hainan Province, China. This ALB system was developed by the Shanghai Institute
of Optics and Fine Mechanics, Chinese Academy of Science. The system performed an elliptical scan
at a scan angle of ±15◦ giving a field of view (FOV) of 30◦ over a range of 16.8 km × 2.2 km, and the
detailed parameters are shown in Table 1. The sensor consists of four channels, including one NIR
channel (1064 nm, avalanche photodiode (APD)) and three green channels (532 nm, photomultiplier
tube (PMT)). These three green channels are set differently. PMT1 and PMT2 have a shallow field
angle, while PMT3 has a wide field angle. The instantaneous field of view (IFOV) of NIR, PMT1 and
PMT2 is 6 mrad, and the IFOV of PMT3 is 6-40 mrad. The receiving directions of PMT1 and PMT2
are perpendicular to each other. Because signals in PMT1 waveforms are generally stable, this study
focuses on the processing of PMT1 waveforms, and waveforms in other channels are used as references.
Besides this, the calibration waveforms collected in the laboratory are utilized as the approximation of
the emitted signal. With the detected bathymetric signals, point clouds can be generated by a data
processing software. This data processing software is designed for the Mapper5000 system including
geo-calibration and refraction correction for the point clouds. Detailed descriptions of the Mapper5000
system and its point clouds generation software are appended in Appendices A and B, respectively.

For the statistical analysis of waveforms, we choose four bathymetric points (P1–P4) with different
depths. In order to access the performance of the proposed waveform decomposition method, especially
in areas where the water depth is deep or shallow, two representative datasets, Dataset 1 and Dataset 2,
were selected from two different strips. Figure 1 shows the locations of the strips, the datasets and
bathymetric points in the study area.

Table 1. Field data acquisition parameters.

Pulse
Repetition
Frequency

Sampling
Speed

Beam
Divergence Altitude Speed Swath Width

5 kHz 1 GHz NIR: 2.5 mrad
green: 1 mrad 300 m 190 km/h 160 m
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Figure 1. Study area. The yellow solid lines denote the distribution of the strips, the range of the
datasets are in the red rectangles, and “+” denote the positions of the bathymetric points (P1–P4).

2.2. Workflow

The original PMT1 waveforms are processed with the depth-adaptive waveform decomposition
method to extract the accurate positions of the bathymetric signals. As shown in Figure 2, this is
a multistep process including preprocessing, signal detection and waveform decomposition. The
first step was to determine the useful range of the waveforms, classify the waveforms by depth and
improve the signal resolution by RLD. After deconvolution, the second step was to detect the signals
with an adaptive threshold, and the results were used as the initial values of the following waveform
decomposition. PMT1 waveforms were classified into two categories, “shallow water (SW)” and “deep
water (DW)”. In the last step, the fitting model was selected based on the waveform category. With the
initial values provided by the second step, the model parameters were solved by the TR algorithm.
After waveform decomposition, the surface and bottom signals were extracted from the waveforms.
To evaluate the accuracy of the results, signals detected from NIR waveforms and PMT3 waveforms
were used as reference data.
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Figure 2. Workflow of the depth-adaptive waveform decomposition method. PMT: photomultiplier
tube; RLD: Richardson–Lucy deconvolution; EFSP: exponential function with second-order polynomial
model; EW: empirical waveform model; NIR: near-infrared; TR: trust region algorithm.

2.3. Preprocessing

2.3.1. Useful Range

To ensure the ALB system can measure both land and water, the system normally records
thousands of samples for the received waveform, while the signals only exist in 0.8–5% of it. Thus,
if the range of the signals, which is known as the “useful range”, can be determined, the waveform
processing will be more efficient. Jutzi and Stilla [27] proposed a criterion that if the waveform is
three times higher than the noise power for at least 5 ns, a signal will be assumed to have been found.
In this paper, we choose the last 10% of the waveform to estimate the noise. According to the maximum
measurable depth and flight height of the system, signals cannot exist in this range. The truncation
noise NT and the noise power NP can be estimated using the minimum amplitude and the standard
deviation of the waveform in this range, respectively. The noise level NL can be expressed as follows:

NL = NT + 3NP. (1)

By searching the waveform using a criterion that a waveform higher than NL and lasting for no less
than 5 ns may indicate a signal, the useful range can be determined as shown in Figure 3.
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2.3.2. Waveform Classification

Received waveforms of the green LiDAR are varied with depths as shown in Figure 4. To fit the
waveforms with different depths, waveforms are grouped into two categories, “shallow water” and
“deep water”, according to a defined parameter S. Because the depths of the water that results in the
surface and bottom signal overlap vary with different ALB systems or measured area, it is difficult
to classify waveforms with an absolute water depth threshold. Based on the waveform analysis, we
found that the shape of the water column scattering in the received waveform is almost fixed in a small
measured area (See Section 3.1.1). If the water column scattering can be captured in the waveform, it
also indicates that there is no overlap between the water surface and the bottom signal. Thus, the water
column scattering can be used as a sign to classify the waveforms. In this study, shallow water and
deep water are not distinguished by absolute water depth but by waveform shape. If the surface and
bottom signal overlap in the waveform, it is defined as “SW”; otherwise, the waveform is labeled as
“DW”.

The parameter S is determined by the following equations:

S = min
{
R(t)

}
, (2)

R(t) =
1
N

∑N

m=1
[wC(mτ) −wR(mτ+ t)]2, (3)

where wR is the received waveform, wC is a section of the water column scattering truncated from the
received waveforms, N is the sampling number of wC, and τ is the sampling interval of the system.
Because the received waveforms in extremely deep water have complete water column scattering (see
Figure 4c), wC can be easily obtained from them. Specific details are given in Section 3.1.1. For the
“SW” waveform, the water column scattering is embedded by surface and bottom signals, and so the
received waveform is less similar to wC, as shown in Figure 5a. Because water column reflectance
varies little in a small measured area, the “DW” waveform will have a small S, as shown in Figure 5b.
Thus, received waveforms in which S is less than a threshold (TS) are classified as “DW”, while the
remaining waveforms are “SW”.
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2.3.3. Richardson–Lucy Deconvolution

Waveforms are processed by RLD to increase the signal resolution. Considering that most of the
waveforms are likely to have mixed peaks, especially for the first peak which may contains surface and
column return, this overlap mostly results from a convolution of the emitted waveform and the target
cross section. Thus, a deconvolution process is needed before detecting the signals.

RLD is an iterative deconvolution method which was developed by Richardson [28] and Lucy [29]
to recover a blurred image with a known point spread function (PSF). Many studies [22,30,31] have
applied this to LiDAR waveform processing in the time domain to estimate the target cross section,
where the emitted waveform is regarded as a PSF. The ith iteration can be calculated as

pi+1(t) = pi(t) ·

wT(t) ∗
wR(t)

(wT(t) ∗ pi(t))

, (4)

where “∗” is the convolution product, wT(t) is the emitted waveform which is approximated by the
calibration waveform in this paper, wR(t) is the received waveform, and p(t)i+1 is the ith iteration
solution of the target cross section. The initial value of p(t) for the iteration is simply set as wR(t), which
has negligible effect on the result. Determining the end point of the iteration is the key of RLD because
the noise amplification is due to overfitting. The stopping criterion of RLD used here is detailed
discussed in [32].

Figure 6 shows that RLD can improve the signal resolution whether in shallow water or deep
water waveforms. In shallow water waveforms, RLD can shorten the FWHM of the surface and bottom
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signals (see Figure 6a). In deep water waveforms, RLD can partially remove the background noise
while keeping the weak bottom signal (see Figure 6b).Sensors 2019, 19, x FOR PEER REVIEW 4 of 11 
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2.4. Signal Detection

A number of signal detection methods such as threshold, center of gravity and maximum are often
used in conventional LiDAR waveform processing [33]. However, most of them may not work for wR(t)
in ALB. We tested some of the conventional signal detection methods, as shown in Figure 7. It could be
determined that the center of gravity method may not be suitable for ALB signal detection, due to the
component of water column scattering in the received waveform. The threshold and maximum methods
can give more reliable results with an appropriate threshold. However, the appropriate threshold may
vary in different waveforms.
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In this section, an adaptive threshold was used for ALB signal detection instead of a fixed one, as
shown in Figure 8. The adaptive threshold T(t) is defined as

T(t) =
{

max{wC}+ 3×NP, t < tS
wC(t− tS) + 3×NP, t ≥ tS

, (5)

where tS is the minimum point corresponding to the minimum value S of R(t). As the water depth
changes, T(t) will be adjusted reasonably, effectively avoiding the influence of high-intensity fake
signals on signal detection and improving the reliability of the results.
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Candidate signals in deconvoluted waveforms are detected with the maximum method and filtered
by T(t). If there are more than two remaining signals, the two signals with the largest amplitude
are retained.
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2.5. Waveform Decomposition

There are three basic steps in waveform decomposition, including modeling, initialization and
fitting. The waveform processed here is denoted by w(t), which is the original received waveform
truncated at noise level NL.

2.5.1. Modeling

The key to waveform decomposition is to build a reasonable model. Some models for the ALB
waveform have been introduced, such as two Gaussian functions [12], a combination of a Gaussian
function, a triangle function and a Weibull function [17], a combination of two Gaussian functions
and a quadrilateral function [18], and a chain of exponential segments [34]. Considering that water
depth is an important factor influencing the shape of waveform (as shown in Figure 4), two models are
proposed for “SW” and “DW” waveforms, respectively.

The fitting model fW(t) can be expressed as

fW(t) = fS(t) + fB(t) + fC(t). (6)

For the surface return model fS(t) and bottom return model fB(t), the existing models use a specific
function, such as Gaussian, exponential and harmonic function, to model the surface and bottom
return, but are not exact in practice because of the distortion caused by the sensor response, as shown in
Figure 9. Thus, we do not use a model with some defined functions, but directly use a transformation
C of the calibration waveform to better fit the surface and bottom return:

C(A,µ, σ,ϕ) = Aϕ
( t− µ
σ

)
, (7)

where A is the amplitude scaling factor, µ is the time shift factor, σ is the time scaling factor, and ϕ
is the normalized calibration waveform. The calibration waveform used here can be collected in the
laboratory or substituted by a waveform received from bare ground, and ϕ is estimated using the
smoothing spline method, normalized in amplitude, and shifted in time to locate the peak at the
zero point.

The surface return model fS(t) is given by

fS(t) = C(AS,µS, σS,ϕ), (8)
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where AS, µS and σS are the amplitude scaling factor, time shift factor and time scaling factor in function
C, respectively.

The bottom return model fB(t) is given by

fB(t) = C(AB,µB, σB,ϕ), (9)

where AB, µB and σB are the amplitude scaling factor, time shift factor and time scaling factor in
function C, respectively.Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 
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For “SW” waveforms, the water column scattering model fC1(t) is equal to

fC1(t) = C(AC,µC, σC,ϕ). (10)

where AC, µC and σC are the amplitude scaling factor, time shift factor and time scaling factor in
function C, respectively. For “SW” waveforms, the proposed model fW(t) is based on the calibration
waveform and is therefore named the empirical waveform model (EW).

For “DW” waveforms, fC(t) is defined as

fC2(t) =


exp

(
f b2 + gb + h

)(
t−a
b−a

)
a < t ≤ b

exp
(

f t2 + gt + h
)

b < t ≤ c
exp

(
f c2 + gc + h

)(
d−t
d−c

)
c < t ≤ d

0 else

, (11)

where a, b, c and d are the horizontal coordinates of four boundary points in fC1(t), as shown in Figure 10,
and f, g and h are coefficients related to water column scattering. Here, an exponential function with a
second-order polynomial is proposed to improve the quadrilateral model presented in [19]. Hence,
this model is named the exponential function with second-order polynomial model (EFSP).

Thus, the proposed model fW(t) can be denoted by fW(t, γ) with the unknown parameter vector

γ = (AS, AB, AC,µS,µB,µC, σS, σB, σC), (12)

or
γ = (AS, AB,µS,µB, σS, σB, a, b, c, d, f , g, h). (13)
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2.5.2. Initialization

Initialization is a significant process in waveform decomposition. Waveform decomposition is a
nonlinear nonnegative least-squares problem, which can be solved by many algorithms, but global
convergence cannot be promised, especially when there are a large number of parameters to solve.

The first step of initialization is to calculate the initial value γ0. The results of signal detection
in Section 2.4, namely the rough positions of the surface and bottom signals denoted by tS0 and tB0,
are used for calculating the initial values of the parameters in γ:

(AS0, AB0, AC0,µS0,µB0,µC0, σS0, σB0, σC0) = (w(tS0), w(tB0), 0.5×w(tB0), tS0, tB0, 0.5× (tS0 + tB0), 1, 1, 1)
(a0, b0, c0, d0) = (tS0 − 0.5× tL, tS0 + 0.5× tR, tB0 − 0.5× tL, tB0 + 0.5× tR),

(14)

where tL is the length ofϕ to the left of the peak, and tR is the length ofϕ to the right of the peak. If
only surface signal is detected, the value of tB0 will be set as tS0 + 1/2 × tL.

In the EFSP model, the last three parameters in γ are estimated by a simple linear fitting:

Afit =


∑

t4 ∑
t3 ∑

t2∑
t3 ∑

t2 ∑
t∑

t2 ∑
t

∑
1

bfit =


∑

ln(w(t)) · t2∑
ln(w(t)) · t∑
ln(w(t))

[
f0 g0 h0

]T
= Afit

−1bfit,

(15)

where the fitting range is set at [tS0 + tR, tB0 − tL], because the surface and bottom returns have a
negligible effect on this part of the waveform.

2.5.3. Fitting

Regarded as a non-linear least-squares problem, the step of fitting is dealt with by many mature
theories and algorithms, such as the Gauss–Newton algorithm (GN), Expectation-Maximization
algorithm (EM) [35], Levenberg–Marquardt algorithm (LM) [36,37] and Reversible Jump Monte Carlo
Markov Chain (RJMCMC) [38]. However, GN, the most traditional method, easily converges at a
local optimal solution, and its modification, LM, although it has a global convergence to some degree,
may be influenced by the initial value in practice. Thus, the TR algorithm is introduced in this study.
Unlike the other algorithms mentioned above, TR can solve a problem with constraints, indicating that
the parameters will be calculated in a reasonable range. Furthermore, TR is not a line search algorithm
which is carried out along a search direction in each iteration; instead, TR searches the next iterated
point in a trust region, which is a neighborhood of the current iterate point. The principle is described
below [39].

The cost function Q(γ) is expressed as:

min Q(γ) =
∑n

i=1
[w(ti) − fW(ti,γ)]

2, γ ∈ Rm, (16)



Sensors 2019, 19, 5065 12 of 28

where n is the number of sampling points in the useful range, and m is the number of parameters in γ.
At the kth iteration, Q(γ) is expanded in Tailor at the current iteration point γ (k) with the second-order
terms preserved

Q(γ) ≈ Q
(
γ(k)

)
+∇Q

(
γ(k)

)T(
γ− γ(k)

)
+

1
2

(
γ− γ(k)

)T
∇

2Q
(
γ(k)

)(
γ− γ(k)

)
. (17)

We plug d = γ − γ (k) into Equation (17) and get the quadratic form:

ϕk(d) = Q
(
γ(k)

)
+∇Q

(
γ(k)

)T
d +

1
2

dT
∇

2Q
(
γ(k)

)
d. (18)

The trust region in the current iteration can be expressed as ‖d‖ ≤ rk, where rk is the trust region
radius. As the range of γ is given, we can limit the solution in a reasonable range by setting rk. Thus,
the cost function in Equation (16) will be translated into solving the following trust region subproblem:

min ϕk(d)
s.t. ‖d‖ ≤ rk.

(19)

By solving Equation (19) using a line searching algorithm, the optimal solution d(k) is obtained.
The key part of a TR algorithm is how to judge d(k); that is, whether to accept the current improvement
d(k) and how to change the trust domain radius rk. According to the chosen strategy, the TR method has
many forms [40]. This paper only uses one of them; that is, the correctness of d(k) is judged according
to the ratio of the actual decrease of the function value to the predicted decrease [41]:

ρk =
Q
(
γ(k)

)
−Q

(
γ(k) + d(k)

)
Q
(
γ(k)

)
−ϕ

(
d(k)

) . (20)

If ρk ≤ 0, then d(k) approximation fails, and we let γ (k+1) = γ (k). Conversely, if d(k) approximation
succeeds, we let γ (k+1) = γ (k) + d(k) and calculate the new trust domain radius rk+1 according to ρk.
The new starting point γ (k+1) and the trust region radius rk+1 are re-substituted into Equations (18)
and (19). We repeat these steps until the result converges.

3. Results and Discussion

3.1. Experiment I: Waveform Classification

3.1.1. Statistical Analysis of Waveforms with Different Depths

Water depth is one of the most important influence factors of the waveform. To classify the
waveform by depth reasonably, waveforms of four bathymetric points (P1–P4) with depths around 2
m, 10 m, 20 m and 30 m are randomly selected for analysis (100 waveforms for each bathymetric point).
For waveform registration, each waveform was shifted in time to locate the peak of the surface signal
at the zero point. The mean and variance curves of the four bathymetric points were calculated as
shown in Figure 11.

As depicted in Figure 11a, the bottom signal is most affected by the water depth, and its amplitude
shows an obvious decrease with the increase in water depth. Some differences can also be found in the
surface signals due to the change of the measurement time and position. However, the amplitudes of
water column scattering are almost constant at different depths. The variance curves in Figure 11b
show the difference in waveforms at the same water depth. It can be found that the surface and bottom
signals are still changing even at a constant water depth. In contrast, the change in water column
scattering is negligible.
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When the water depth is 30 m and the time offset is 10 ns, the variance quickly drops to 60,
indicating that the waveform after this point is slightly affected by the surface signal. When the time
offset is equal to 30 ns, the amplitude of the mean curves is below 5% of the intensity of the surface
signal; this suggests that the shape of water column scattering in the received waveform is almost fixed
in a small measured area, which can be used as a sign to classify the waveforms. Therefore, the mean
curve with a time offset between 10 ns and 30 ns can be truncated as wC (see Section 2.3.2).
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3.1.2. Distribution of S.

According to the width of the emitted signal, the received waveforms can be divided into three
cases:

• Case 1: Water column scattering is completely covered by the surface and bottom signals.
• Case 2: The length of water column scattering that is not covered is less than the length of wC.
• Case 3: The length of water column scattering that is not covered is greater than the length of wC.

In this experiment, waveforms in different cases were selected and S is calculated according to
Equations (2) and (3). As shown in Figure 12, the S values of the waveforms belonging to Case 1 are
above 4500, while the S values in Case 3 are below 3500. Thus, the threshold TS can be set between
3500 and 4500. In this paper, TS is set to 4000.Sensors 2019, 19, x FOR PEER REVIEW 6 of 11 
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3.2. Experiment II: Performance Analysis for the Processing Algorithms in Shallow Water

3.2.1. Reference Data

The bathymetric environment is complex and changeable. Figure 13 shows the scope of Dataset 1.
It can be seen that the edge of Dataset 1 is adjacent to the island’s coastline, which is the most affected
area by tides. Therefore, in accuracy analysis, the reference data must be acquired simultaneously with
the field data. However, the bathymetric sonar is inefficient in shallow waters compared to ALB; it is
difficult to ensure these two bathymetric methods are performed simultaneously.
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To assess the signal detection accuracy, signals detected from NIR waveforms were taken as
references. Because the NIR signal does not penetrate into the water column, it can provide an accurate
position of the water surface [9]. For shallow water, its waveform in the PMT1 channel has a strong
bottom return. Errors occur only when a mixed peak is detected. Thus, the accuracy of surface signal
detection can reflect the accuracy of the water depth.

However, NIR signals are not always reliable (sometimes buried below the noise level due to
strong absorption and sometimes saturated, see Figure 14). In this experiment, NIR signals are filtered
according to the signal strength before being used as references.
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Figure 14. The (a) normal, (b) buried and (c) saturated NIR signals. The NIR signals are not always
reliable. Sometimes the surface signal is buried below the noise level which cannot be detected, because
its strength is not within the dynamic range of the receiver. Sometimes the surface signal is saturated,
because the receiving direction of the sensor is approximately in the reflection direction of sunlight.
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3.2.2. Surface Signal Detection

To access the performance of the proposed algorithms in shallow water, the traditional maximum
method was applied to analyze the effect of the adaptive threshold (see Section 2.4). Signals in
waveforms processed by RLD are both detected by the maximum method with a fixed threshold and
adaptive threshold. The corresponding point clouds are referred to as RLD_M and RLD_A. The fixed
threshold is set to NT + 3NP. The Gaussian model proposed in [12] is used to process waveforms in
very shallow water. To compare the applicability of the model, waveforms are both fitted with the
Gaussian and EW model. Their initial values are calculated according to RLD_A, and the generated
point clouds are referred to as GD (Gaussian decomposition) and EW. The point cloud only processed
by the tradition maximum method is also presented for comparison (denoted by Max).

The water surface points from all the point clouds are compared in height with the reference data
(See Figure 15). Most of the inaccurate surface points are lower than the reference data, because the
bottom signals are detected as surface signals by mistake or the peak of the surface signal is shifted
backward due to the overlap with the bottom signal. The Max is most affected by this problem. Since
RLD can improve the signal resolution, this problem has been significantly improved in RLD_M and
RLD_A. EW shows a good consistency with the reference data, and most of the errors are within
0.15 m, indicating that the errors of the detected signal position are within one sampling interval of
the waveform.Sensors 2019, 19, x FOR PEER REVIEW 7 of 11 
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Figure 15. Comparison between the height of the water surface in reference data and detection results.

Figure 16 shows the water surface on the selected profile (see Figure 13) detected by the above
algorithms (only when both surface and bottom signals are detected will the surface point be displayed
in this figure). The water depths on this profile are shallower than 1 m. The height of the water surface
should float at 0 m, just as with the reference data. The heights of most points in Max are between −1 m
and −0.5, indicating that mixed peaks were detected. In RLD_M, more points have been detected, and
the number of error points is significantly reduced, proving that RLD can effectively improve the signal
resolution. Although the number of points in RLD_A is less than in RLD_M, most of the missing points
are outliers. There are still many outliers in GD. Compared with the other results, the distribution of
the points in EW is most similar to the reference data, and the difference is no more than 0.5 m.
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Table 2 provides the statistical parameters of the above results, where Dr represents the detection
rate, which is defined as the percentage of surface points with an error less than 0.3 m; RMSE denotes
the root mean square error of the surface points; min(d) corresponds to the detected minimum depth;
and Std. means the standard deviation of the heights of the surface points.

The detection rate of EW is 99.11%, which is the highest. The detection rate of RLD_M, RLD_A
and GD is close, but the result of RLD_A is more reliable, which can be found by comparing RMSE.
GD and EW have the minimum min(d), followed by RLD_M and RLD_A. Apart from the RMSE, Std.
can also reflect the accuracy of signal detection. Since sea level changes very little in a small area,
the smaller the Std. is, the more accurate the surface points are. In general, EW performs best, with the
highest detection rate, minimum error and maximum bathymetric range. The reference data has a
low detection rate (58.54%) and a small Std (0.0839), which indicates that NIR signals are undetectable
sometimes but accurate.
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(c) RLD_M; (d) RLD_A; (e) Gaussian decomposition (GD); and (f) EW.

Table 2. Performance assessments for surface detection results with field data.

Algorithm Dr (%) RMSE (m) min(d) (m) Std.

Max 95.39 0.1645 0.4414 0.2276
RLD_M 97.53 0.1218 0.3292 0.1309
RLD_A 97.19 0.1085 0.3292 0.1107

GD 97.29 0.1174 0.2208 0.1456
EW 99.11 0.0901 0.2208 0.1159

Reference 58.54 — — 0.0839
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3.2.3. Adaptability Analysis of the EW Model

To further study the effects of different models on waveform decomposition, three representative
waveforms are selected from Dataset 1. The corresponding depth of the first waveform is more than
1 m, and the initial values provided by RLD_A are exact. The depths of the second and third waveforms
are less than 1 m. For the second waveform, the initial values are rough, while for the third waveform,
RLD_A only provides the mixed peak position.

Figure 17 shows the fitting results. When the water depth is more than 1 m, the surface returns
fitted by the two models are both correct, but the peak position of the surface return fitted by the
EW model is closer to the reference data (see Figure 17a,d). When the water depth is less than 1 m,
although the whole waveform is well fitted with the Gaussian model, the position of the surface return
is not accurate (see Figure 17b,c). In contrast, the EW model is still applicable even in the absence of
accurate initial values (see Figure 17e,f). In addition, it can be found that the fitting of water column
scattering plays a very small role here, which also follows the practical situation, but it still influences
the positions of the fitted surface return and bottom return.
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3.3. Experiment III: Performance Analysis for the Processing Algorithms in Deep Water

3.3.1. Reference Data

Dataset 2 is located on a slope with depths ranging from 20 m to 40 m, as shown in Figure 18. This
dataset is selected to test the ability of the signal detection algorithms in deep water. The detection of
surface signals has been analyzed in shallow water, and for the waveforms in deep water, the difficulty
of signal detection mainly lies in the detection of the weak bottom signal. Thus, this experiment focuses
on the detection of bottom signals.

Here, signals detected from the PMT3 channel are used as reference data. Because PMT3 has
a larger field of view than PMT1, the intensity of the bottom return in PMT1 is weaker than that in
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PMT3 (see Figure 19b). In Dataset 2, the bottom signals are weak in PMT1, but still strong in PMT3.
Therefore, we apply the proposed method to PMT1, and the bottom signals detected from PMT3
with the maximum detection method are used as reference data. However, waveforms in PMT3 are
not applicable to all cases. When the water is shallow, PMT3 is affected by multiple reflection (see
Figure 19a), and when the water depth reaches a certain value, the bottom return in PMT3 is also
weak (see Figure 19c). Since the bottom reflection can be approximated as a non-directional diffuse
scattering, there is no difference between the bottom return in PMT1 and PMT2. Therefore, the optimal
strategy is to process the waveforms in PMT1 when the water is shallow and process the waveforms in
PMT3 when the detection of the bottom signal in PMT1 has failed. However, it is still necessary to
detect the weak bottom signal in PMT3 effectively. In Dataset 2, the bottom signals in PMT1 are weak,
which can simulate the detection of the weak bottom signal in PMT3.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 11 

 

 

(a) (b) (c) 

(d) (e)  (f) 

 

Figure 17. Waveforms fitted with (a–c) the Gaussian model and (d–f) the EW model.  

 
Figure 18. The scope of Dataset 2 (red line) and the selected profile (yellow line). Figure 18. The scope of Dataset 2 (red line) and the selected profile (yellow line).Sensors 2019, 19, x FOR PEER REVIEW 9 of 11 

 

 
(a) 

 
(b) 

 
(c) 

Figure 19. The received waveforms in PMT1, PMT2 and PMT3 with depths of (a) 1.4 m, (b) 35.1 m 
and (c) 57.8 m. 

 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

 
(e)  

 
(f)  

 
(g)  

 
(h)  

 

Figure 20. Locations of the water bottom on the selected profile from: (a) Max; (b) ASDF_M; (c) 
RLD_M; (d) ASDF_A (e) RLD_A; (f) dddNCFWF; (g) quadrilateral model (QUAD) and (h) EFSP. 

Figure 19. The received waveforms in PMT1, PMT2 and PMT3 with depths of (a) 1.4 m, (b) 35.1 m and
(c) 57.8 m.

3.3.2. Bottom Signal Detection

In deep water, waveforms may have a weak bottom signal with an amplitude approximately
equal to the noise level, which is possibly caused by a deep depth, a turbid water or a dark bottom.
Therefore, besides the RLD, which is used to improve the signal resolution, a filtering algorithm which
can de-noise the waveform but keep the bottom signal in the meantime is also effective. ASDF is
used as a filtering algorithm in [23], which is a substitute for the direct cross-correlation function to
estimate the time delay in two discrete time series and is more computationally convenient. ASDF_M
and ASDF_A denote the point clouds generated from the signals detected by the maximum method



Sensors 2019, 19, 5065 19 of 28

with a fixed threshold and the adaptive threshold from the waveforms that are processed by ASDF.
We also applied the method proposed in [25] which used a first derivative of a wide Gaussian filter
to reduce the processing range of the waveform, and processed the waveforms in this range with
normalization, multiple smoothing and three times derivation to increase the detection rate of the
bottom signal. The point clouds generated from this method are referred to as dddNCFWF. For the
waveform decomposition, since the Gaussian model is no longer applicable, the quadrilateral model
(QUAD) introduced in [18] is applied here together with the EFSP model proposed in this paper. These
models are initialized with RLD_A, and the corresponding point clouds are referred to as QUAD and
EFSP. Before the performance analysis, all the point clouds are filtered according to neighboring points
to eliminate outliers.

Figure 20 shows the detected water bottom on the selected profile (see Figure 18). The number of
the detected points in ASDF_M is nearly twice that in Max or RLD_M. However, when the thresholds
in the maximum method are adaptive, more water bottom points can be detected. RLD_A performs
better than ASDF_A, which is exactly the opposite of RLD_M and ASDF_M. The intensity of the bottom
signal varies greatly with water depth, but the fixed threshold cannot take all kinds of situations
into account. The detection rate of ASDF_M is higher than Max and RLD_M, while the detection
rate of ASDF_A is almost equal to that of RLD_A. Because noise can be filtered by ASDF, the results
indicate that the fixed threshold is more sensitive to the noise than the adaptive threshold. dddNCFWF
provides a high detection rate just as RLD_A. However, there is an offset between it and the reference
data which may be induced by the dissimilarity between the emitted waveform and the symmetrical
filters used in the method. Even with RLD_A as the initial value, QUAD still cannot accurately fit the
waveforms with the depths over 35 m. In contrast, the EFSP model is more flexible, but it seems that
there is little difference between RLD_A and EFSP.

In further comparing these algorithms, the above point clouds are statistically analyzed, as shown in
Table 3; the detection rate (Dr) is the percentage of bottom points with an error less than sqrt(0.32+(0.015
× d)2) m (where d is the water depth); RMSE is the root mean square error of the bottom points; and
max(d) denotes the detected maximum depth. Since there is an offset in dddNCFWF, its translation
(dddNCFWF_T) that best matches the reference data is also considered in the following analysis.

The detection rates of Max and RLD_M are low, while ASDF_M shows a higher detection rate.
The detection rate is significantly improved in ASDF_A, RLD_A and dddNCFWF. The detection rate
of dddNCFWF is almost equal to ASDF_A but lower than RLD_A, because the fake signals with
relatively high amplitude can be detected in dddNCFWF sometimes. In contrast, RLD can effectively
keep the signal which is similar to the emitted waveform and remove other noise even with relatively
high amplitude. The detection rate of QUAD is lower than RLD_A, indicating that the detection
rate is decreased after waveform decomposition with the quadrilateral model. EFSP can improve the
detection results in RLD_A with the highest detection rate of 76.64%. RMSE reflects the accuracy of
the detected points. ASDF_M has the minimum RMSE, but its detection rate is too low. dddNCFWF
has the largest RMSE. Although the accuracy can be improved by translation, there is still a large
RMSE in dddNCFWF_T. The distance of the offset may be related to the signal strength, so it cannot be
completely eliminated by the translation. Errors are introduced by the quadrilateral model with the
RMSE increased from 0.1347 m to 0.1504 m in QUAD. After waveform decomposition with the EFSP
model, the RMSE is reduced from 0.1347 m to 0.1076 m, indicating that EFSP may correct the initial
value even if there is some error in it. EFSP has a great max(d), exceeding the traditional maximum
method by 10 m. In addition, dddNCFWF has the maximum max(d) among the tested methods,
implying that it may have a better performance with an appropriate filter.
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(d) ASDF_A (e) RLD_A; (f) dddNCFWF; (g) quadrilateral model (QUAD) and (h) EFSP.

Table 3. Performance assessments for bottom detection results with field data.

Algorithm Dr (%) RMSE (m) max(d) (m)

Max 31.22 0.1694 29.57
ASDF_M 53.80 0.0944 35.25
RLD_M 33.13 0.1498 30.36
ASDF_A 71.16 0.1124 37.50
RLD_A 73.88 0.1347 38.60

dddNCFWF 71.01 0.3798 41.14
dddNCFWF_T 71.98 0.2247 40.95

QUAD 66.39 0.1504 37.36
EFSP 74.64 0.1076 40.49

3.3.3. Adaptability Analysis of the EFSP Model

Since water depth is a key factor affecting the strength of the bottom signal, four waveforms
in different depths are selected to test the adaptability of the model in waveform decomposition.
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The amplitudes of the bottom returns in these waveforms are 21.4, 3.2, 2.5, and 2 bins, respectively.
For the first three waveforms, the initial values provided by RLD_A are correct, while the position of
the bottom signal in RLD_A is wrong for the last waveform.

The received waveforms and their fitting results are shown in Figure 21. It can be found that the
quadrilateral model cannot fit water column scattering accurately compared with the EFSP model.
When the bottom signal is fairly strong, the waveform decompositions with the two models can
both converge to the exact position (see Figure 21a,b). With the decrease of bottom signal intensity,
the inadaptability of the quadrilateral model becomes more and more obvious, even when the exact
initial values are provided (see Figure 21c,e,g). In contrast, as long as the strengths of the bottom
signals are sufficient, the locations of the bottom signals obtained with the EFSP model are precise
regardless of the correctness of the initial values (see Figure 21d,f,h).Sensors 2019, 19, x FOR PEER REVIEW 10 of 11 
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3.4. Experiment IV: Accuracy Assessment for the Processing Algorithms

3.4.1. Simulated Data

To evaluate the accuracy of the surface and bottom signals, the water LiDAR waveform model
(Wa-LiD) presented by Abdallah et al. [42] was applied in this experiment. Wa-LiD is a successful
simulator for simulating green channel waveforms received from water, which has been widely used
in ALB research [15,18,19]. It can perfectly reproduce the received waveforms by adjusting some
realistic water parameters [42]. In this experiment, the Gaussian function in Wa-LiD was replaced by
the calibration waveform to better fit the real received waveforms. As shown in Figure 22, the real
waveforms can be well fitted by Wa-LiD with proper environmental parameters. However, there are
some differences between the leading and falling edges of the signal, which may be induced by the
slope of water surface and bottom.

To assess the accuracy of the bathymetric signals both in shallow and deep water, we generated
10,000 simulated waveforms in which the depth varied from 0 to 2 m with an interval of 0.0002 m,
and 10,000 waveforms in which the depth varied from 40 m to 50 m with an interval of 0.001 m.
The environmental parameters of each simulated waveform were randomly selected within the normal
range which was determined by the real waveforms.
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3.4.2. Signal Detection in Shallow Water

For the simulated waveforms of shallow water (0–2 m), we test the waveform processing algorithms
in Section 3.2.2. Since the accurate surface and bottom signal positions are known, the detection
rate of surface (Dr_S) and bottom signal (Dr_B), and their RMSE (denoted by RMSE_S and RMSE_S,
respectively) are assessed in Table 4. The accuracy of the surface signal is consistent with the field
experiment results. EW still has the highest detection rate and accuracy. The Dr_S in simulated data
is generally higher than that in field data, because the effect of waves on the water surface is not
considered in the simulated waveforms. It is worth noting that the Dr_S of GD is higher than that
of RLD_A, but the Dr_B of GD is significantly lower than that of RLD_A indicating that GD is not
adaptive to the waveforms. Due to the changes of the environmental parameters, the Dr_S of RLD_A
is lower than that of RLD_M. However, EW is still able to achieve the correct decomposition with
inaccurate initial values, which depends on the appropriate model (EW) and a good optimization
algorithm (TR).
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Table 4. Performance assessments for detection results in shallow water with simulated data.

Algorithm Dr_S (%) Dr_B (%) RMSE_S (m) RMSE_B (m) min(d) (m)

Max 69.88 66.96 0.1433 0.6365 0.5920
RLD_M 76.81 74.95 0.1437 0.3686 0.4178
RLD_A 71.77 74.87 0.1311 0.1266 0.4180

GD 78.70 59.07 0.1697 0.8832 0.1540
EW 94.75 97.92 0.1059 0.0845 0.0558

3.4.3. Signal Detection in Deep Water

The waveform processing methods in Section 3.3.2 are evaluated with the simulated waveforms
of deep water (40–50 m), and the statistical results are shown in Table 5. By comparing Tables 3 and 5,
it can be found that the translation of dddNCFWF (dddNCFWF_T) performs better than EFSP here.
Because the simulated waveform does not take into account the signal stretching caused by the slope
of the water surface, the offset in dddNCFWF becomes a fixed value which can be eliminated by
translation. It also proves that the error of dddNCFWF is mostly caused by the mismatch between
the symmetric filter and the asymmetric emitted waveform. Apart from dddNCFWF_T, EFSP still
has the best performance. Consistent with the results of the field experiment, the adaptive threshold
significantly increases the Dr_B, and the Dr_B of RLD_A is still greater than that of ASDF_A or
dddNCFWF, showing that RLD_A are the best initial values. Although EFSP does not increase the
Dr_B of RLD_A, the RMSE_B of EFSP has been significantly improved. Even for the weak bottom
signals in deep water, constructing a suitable model is also useful for improving the accuracy.

Table 5. Performance assessments for detection results in deep water with simulated data.

Algorithm Dr_S (%) Dr_B (%) RMSE_S (m) RMSE_B (m) max(d) (m)

Max 100 0.00 0.0469 — —
ASDF_M 100 0.22 0.0508 0.0835 43.36
RLD_M 100 20.35 0.0857 0.1896 49.92
ASDF_A 100 42.29 0.0508 0.1012 49.70
RLD_A 100 56.34 0.0857 0.1702 49.92

dddNCFWF 100 52.29 0.3994 0.4217 49.92
dddNCFWF_T 100 59.61 0.0434 0.0850 49.92

QUAD 100 46.97 0.1416 0.2573 49.92
EFSP 100 56.69 0.0616 0.0681 49.92

4. Conclusions

In this paper, a depth-adaptive waveform decomposition method for ALB was developed by
classifying and fitting the waveforms in the green channel based on the similarities between them and
the water column scattering. The application of the proposed method in shallow water datasets (where
the depth is less than 2 m) and deep water datasets (with depths ranging from 20 m to 60 m) showed
that this method can cope with most of the waveforms and significantly improves the accuracy of the
detected signals. The main conclusions are as follows:

1. Water column scattering can be used as a sign to distinguish the received waveforms in terms
of depth. The defined parameter S can be used to measure the similarity between the received
waveforms and the water column scattering. Since water column scattering is covered in the
shallow water waveform, the S of the shallow water waveform is obviously greater than that of
the deep water waveform. Thus, waveforms can be classified precisely according to S.

2. For the waveform preprocessing, improving the signal resolution is more efficient than denoising.
With an appropriate signal detection threshold, RLD always performs better than ASDF with a
higher signal detection rate. Although filtering algorithms can remove the noise in signals and
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improve the accuracy of signal detection, the weak bottom signal may be filtered out as noise in
the meantime.

3. The adaptive threshold can improve the reliability of the signal detection. The intensity of the
bottom signal varies greatly with water depth, while the noise in water column scattering may be
stronger than the bottom signal, leading to the detection of fake signals. Furthermore, although
RLD is a deconvolution algorithm with good noise resistance, noise is inevitably introduced in
the process. The adaptive threshold can better cope with the fake signals because it takes into
account the effects of the water column.

4. With an appropriate model and reliable initial values, waveform decomposition can significantly
improve the signal detection rate and accuracy. The proposed models, EW and EFSP, can fit the
waveforms well in most cases. Compared with the Gaussian function, the transformation of
the calibration waveform can better fit the water surface and bottom signals. The exponential
function with a second-order polynomial is consistent with the shape of water column scattering
in the waveform. The TR algorithm can solve the model parameters in a reasonable region
and provide an accurate solution. The results of waveform decomposition are based on the
whole waveform and are accurate to the sub-sampling interval. Even when the initial values
are wrong, the detection results can be corrected by waveform decomposition in some cases.
In addition, the processing time of waveform decomposition is long, meaning that whether the
wave decomposition step should be added depends on the accuracy requirements in practical
applications. The waveform decomposition model proposed in this paper is for the Mapper5000
system and may need relevant adjustments when applied to waveforms acquired by other
ALB systems.

The applicability of the model is very important in waveform decomposition. In shallow water,
due to the random fitting of water column scattering, a bias between the surface return fitted by EW
and the surface signal detected from the NIR channel can be found. For future research, it would
be useful to study the fitting of water column scattering in extremely shallow water. Using physical
models rather than empirical models to fit water column scattering may be a breakthrough in this field.
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Appendix A

As shown in Figure A1, the NIR laser and the green laser share a scanner which produces an
elliptical scan pattern, and the footprint has an almost elliptical shape at the sea surface [43,44]. With
an altitude of 300 m, the footprint of the NIR laser is 0.8 m along-track and 0.78 m cross-track, and the
footprint of the green laser is 0.32 m along-track and 0.31 m cross-track. The average point density on
the sea bottom amounts to 0.8 points/m2. The IFOV of the receiver is divided into two parts: a small
center IFOV (6 mrad) and a large edge IFOV (6–40 mrad). The APD, PMT1 and PMT2 channels use
the small IFOV while the PMT3 channel uses the large IFOV. The sensor simultaneously collects full
waveforms from four channels (NIR, PMT1–PMT3) with a sampling interval of 1 ns, corresponding to
a distance of 0.15 m on the slant path in the air.
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Figure A2. (a) The rotating scanner of Mapper5000 and (b) the spot trajectory on sea 
surface. The angle between the normal of the reflecting mirror and the axis of rotation is 
7.5°, resulting in an elliptical spot trajectory on the sea surface [44]. (c) The mechanism of 
the refraction correction for Mapper5000. The ray path of the green laser in air and water 
are denoted by green and blue line, respectively. 

Figure A1. Schematic diagram of optical system in the Mapper5000 system [44]. IFOV: instantaneous
field of view; APD: avalanche photodiode; PMT: photomultiplier tube; PBS: polarization beam splitter.
The “Laser” contains a green laser and an NIR laser. The IFOV of the receiver is separated into two
parts: a small center IFOV (6 mrad) and a large edge IFOV (6–40 mrad). The green light obtained from
the small IFOV is split by a PBS and is received by PMT1 and PMT2.

Appendix B

As shown in Figure A2a, the scanner in the Mapper5000 system contains a rotating mirror which
is controlled by a motor. The angle between the laser emission direction and the axis of rotation is 45◦,
and the angle between the normal of the reflecting mirror and the axis of rotation is 7.5◦. As the mirror
rotates, the laser will create an elliptical trajectory on the sea surface (see Figure A2b).

In this paper, the point clouds are generated by a data processing software which is designed
for Mapper5000. After extracting the bathymetric signals from the waveform, a data file is generated
containing the surface signal position tS, bottom signal position tB, the emitted signal position t0, the
encoder data of the scanner and the GPS time of each waveform. The data file and the POS data are
input into this software, and the point cloud data can be generated. The refraction correction is also
completed in this software, the principle is as follows.
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Figure A2. (a) The rotating scanner of Mapper5000 and (b) the spot trajectory on sea surface. The angle
between the normal of the reflecting mirror and the axis of rotation is 7.5◦, resulting in an elliptical
spot trajectory on the sea surface [44]. (c) The mechanism of the refraction correction for Mapper5000.
The ray path of the green laser in air and water are denoted by green and blue line, respectively.

As shown in Figure A2c, a right-handed coordinate system is established with the laser as the
origin, the flight direction as the positive direction of the Y-axis, and vertical upward direction as the
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positive direction of the Z-axis. According to the encoder data, the emitted direction of the green laser
can be determined, including the angle θa between the laser beam and the Z-axis, and the angle ϕ
between the projection of the laser beam on the XY plane and the positive direction of the X-axis. Then
the coordinates of the water surface point can be expressed as:

xS = O + ra

ra = Laγa =
ca∆ta

2 γa =
ca(tS−t0)

2 γa

γa = (sinθa cosφ, sinθa sinφ, cosθa)
T,

(21)

where ra is the ray of the laser in the air equal to the product of its unit vector γa and the transmission
distance La, ca is the velocity of light in air, and ∆ta is the two-way transmission time in the air.
According to the Snell’s law, when the laser pulse incident on the air-water interface the incidence
angle will change from θa to θw, and the velocity of light will decrease from ca to cw.

sinθa

sinθw
=

na

nw
=

cw

ca
, (22)

where na and nw are the refractive indexes of air and water equal to 1 and 1.33, respectively. The
coordinates of the water bottom point are given by:

xB = O + ra + rw

rw = Lwγw = cw∆tw
2 γw =

cw(tB−tS)
2 γw

γw = (sinθw cosφ, sinθw sinφ, cosθw)
T,

(23)

where rw is the ray of the laser in the water equal to the product of its unit vectorγw and the transmission
distance Lw, and ∆tw is the two-way transmission time in the water. Since a POS system is mounted
on the same platform as the laser, the instantaneous position and attitude of the platform in WGS84
can be known from the GPS time and POS data, and the coordinates of the water surface and bottom
points can be converted to WGS84.
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