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Abstract: In this paper, we introduce a novel type of transdermal drug delivery device (TD3) with a
micro-electro-mechanical system (MEMS) design using computer-aided design (CAD) techniques as
well as computational fluid dynamics (CFD) simulations regarding the fluid interaction inside the
device during the actuation process. For the actuation principles of the chamber and microvalve,
both thermopneumatic and piezoelectric principles are employed respectively, originating that the
design perfectly integrates those principles through two different components, such as a micropump
with integrated microvalves and a microneedle array. The TD3 has shown to be capable of delivering
a volumetric flow of 2.92 × 10−5 cm3/s with a 6.6 Hz membrane stroke frequency. The device
only needs 116 Pa to complete the suction process and 2560 Pa to complete the discharge process.
A 38-microneedle array with 450 µm in length fulfills the function of permeating skin, allowing that
the fluid reaches the desired destination and avoiding any possible pain during the insertion.

Keywords: transdermal drug delivery; micro-electro-mechanical systems (MEMS); finite element
analysis; microstructures; computational fluid dynamic

1. Introduction

The usage of transdermal drug delivery devices (TD3) based on micro-electro-mechanical systems
(MEMS) and NEMS technology is increasing [1–3]. The transdermal drug delivery (TDD) method refers
to medicine administration through the skin at determined depths [3–5]. These new devices are facing
some challenges, such as the drugs dose effectiveness and the pain caused during the dosing process
by the insertion devices. Another approach is dosing from a transdermal patch, which could provide
the medicine continuously using the capillarity principle [6]. However, the extraordinary barrier
properties of the skins outer layer, stratum corneum, almost wholly block the transport of insulin and
other large therapeutic molecules. Chemical, electrical, ultrasonic, and other methods have had some
success in increasing transdermal insulin delivery [7,8]. The microneedle array designs differ in needle
structure, shape array density, and materials, and these are one of the most modern techniques for
drug delivery [5]. A microneedle can be classified on the fabrication process in-plane, which is hard
to fabricate with two-dimensional geometry, and out-plane microneedles, which are appropriate for
fabrication in two-dimensional arrays by wafer-level processing [9]. An actuated driven membrane is
the most common method to make a fluid move in the micro-electro-mechanical world [10]. The main
issue is how the membrane gets the mechanical energy to transmit it to the fluid. There are several ways
involving electrostatic, magnetostatic, pneumatic, piezoelectric, and many other actuation principles to

Sensors 2019, 19, 5090; doi:10.3390/s19235090 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9331-0491
http://www.mdpi.com/1424-8220/19/23/5090?type=check_update&version=1
http://dx.doi.org/10.3390/s19235090
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 5090 2 of 11

achieve this [11]. In this paper, we present the TD3 design device using computer-aided design (CAD)
techniques and the proposed validation design using computational fluid dynamics (CFD) setting
simulations that will evaluate the performance of the device. We emphasize the fact that the structural
design is oriented to the device functionality and to the way of what an actuation principle refers to,
giving us the confidence and ensuring us to have a structural design developed exclusively for the
operating conditions and settings that only a TD3 will confront.

2. Transdermal Drug Delivery Device (TD3)

The TD3, which has a 38-microneedle array attached, is designed to integrate a
thermopneumatically driven membrane that impulses the fluid through them and pyramid-shaped
piezoelectrically driven microvalves integrated to correct the flow direction [4,7]. A previous study
was presented on the design of the microneedle to understand the best structure that allows delivering
the necessary dosage for a patient, without damaging the insulin molecule or the patient feeling
pain [12]. The submitted contribution of the microsystem design is in accord with the results of several
researchers [3,11,13], which will allow full integration in the future in the third generation transdermal
drug delivery [3].

2.1. TD3 Actuation Principle

The thermopneumatic actuation principle has many coupled physics models, such as solid
mechanics, fluid mechanics, and thermodynamics [9,11]. The actuation principle, shown in Figure 1,
starts with the gas expansion enclosed in the upper chamber, which is generated by a change in
temperature ∆T. Due to the forces generated under the increased pressure in the heated gas, a membrane
expands and causes a change of volume and pressure in the lower chamber, ∆V and ∆P, respectively.
Valves are strategically positioned to avoid unwanted reversed flows. These valves are known as check
valves and in this case, are piezoelectrically driven check valves that operate in synchrony with the
actuated membrane.
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the micropump.

In recent years, several researchers have worked on the development of piezoelectric (PZT)
actuators. In 2016, Dr. Shoji, in Japan, reported a study showing the development of a PZT actuator
based on Nafion-117, wherewith a signal square-wave polarization waveform of ±2.0 V, for 2 s, where
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the fabricated micropump effectively transported water at ~5 L/s [11]. In the same year, research
from the Department of Mechanical and Materials Engineering, Queen’s University from Canada,
reported the development of a PZT actuator based on poly(dimethylsiloxane) (PDMS), with a peak
flow rate of 135 µL/min and a maximum back pressure of 25 mm H2O at an actuation frequency of
12 Hz [13]. Furthermore, in India, researchers reported another study of PZT PDMS with pressure-flow
characteristics of the micropump of maximum back pressure 220 Pa at a maximum flow rate of
20 µL/min [14].

Once the fluid has left the lower chamber, it flows directly to a set of microchannels that will conduct
the fluid to the microneedle array. The suction and discharge are the micropumps basic movements,
which will be the main design parameters to take into account during the structural allocation.

2.2. TD3 Structural Design

The volumes of both the upper and lower chambers are directly responsible for the excellent
micropump performance. This is the reason why these chambers were sized first, in order to assign a
spatial location that complies with the design requirements to conform to the device [9,10].

2.2.1. Suction Oriented Structural Design

The inlet, or suction, section of the micropump shown in Figure 1, is composed of four inlets and
each one of those has a piezoelectrically driven pyramid-shaped microvalve for flow direction control
purposes before entering the lower chamber. The total inlet area is 4 × 10−2 mm2, which does not
decrease downstream, not even in the entrance to the lower chamber, which is confirmed by eight
inlets. The outlet area, or entrance to the lower chamber, is 4 × 10−2 mm2 and is established in this way
to avoid unnecessary membrane overload in the suction process.

2.2.2. Discharge Oriented Structural Design

The outlet of the micropump is composed of several structures identifiable in Figure 2. On each
side, four inlets are placed and directed toward the pyramidal-shaped microvalves with a total area of
4 × 10−2 mm2. Their function is to rectify the flow direction through the coupled microchannels and
finally, in direction to the microneedles.Sensors 2019, 19, x FOR PEER REVIEW 4 of 11 
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Figure 2. Fluid volume discharge structure.

In the last decade, different studies reported different techniques for the fabrication of drug delivery
microsystems in patients. Nguyen et al., in 2013, reported a study of drug delivery microsystems based
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on Lab on Chip technology [15]. The techniques used in that study were a micromachining laser for
the hollow metal microneedles [16] and deep reactive ion etching to fabricate the silicon microneedles.
Sanjay et al. reported, in 2018, a microneedle used so that rat skin could be microinjected accurately
with required depths (50–900 µm) and rates (up to 60 µL/min) [17].

2.3. TD3 Theoretical Calculations

In order to begin the simulation process, some input parameters had to be calculated. These
parameters were established using the microneedle structure, which was validated by us, as seen in
Figure 3, and in a previous study involving different simulation scenarios [7,12]. For not generating
pain at the time of insertion in the patient, the chosen dimensions were wholly oriented, in addition to
allowing the passage of fluid through the microneedle into the skin [12]. The length of the microneedle
is that necessary for the tip to reach the segment of skin called the epidermis, ultimately crossing the
layer called the stratum corneum. According to Davis et al., in 2005 [16], as well as Roxhed et al., in
2007 [18], the force to pierce the skin at this scale ranges between 0.5 N and 1.5 N, while also generating
transverse forces between 0.5 N and 0.8 N that tend to bend the microneedle. Figures 4 and 5 show an
analysis was carried out to determine the structural behavior of the microneedles under the conditions
of the skin insertion process. The axial force to be used in the analysis is 1 N, while the transverse force
is 0.5 N. During these simulations, it is intended to observe the combined efforts, called Von-Misses,
and the total deformation in both cases. Davis et al. employed laser micromachining for the fabrication
of the hollow metal microneedles [16], and the dimensions indicated are consistent with the dimensions
analyzed in this study and previous studies [12], where they concluded that drug delivery experiments
using a 16-microneedle array inserted into the skin of diabetics reduced the blood glucose level by 47%.Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 
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The microneedles will be the structure wherewith the fluid is transdermally delivered. Therefore,
it is highly essential to calculate the necessary variables like mass flow, volumetric flow, and fluid
velocity in this first structure in order to obtain the initial, or input, parameters for the suction and
discharge CFD simulations [6]. In a previous study, the time window was found to complete the dosing
process and the dose-volume, which were 6 min and 0.4 mL, respectively [17,19]. The volumetric flow
(Q) is calculated in Equation (1) and for a single needle as shown in Equation (2).

Dose = 0.4ml/6min = 6.67× 10−2cm3/min, (1)
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Q =
6.67× 10−2cm3/min

38
= 1.75× 10−3cm3/min = 2.92× 10−5cm3/S, (2)

Once Q has been determined, the mass flow (
•
m) will be the input parameter in simulations, which

is calculated using both Q and the fluid density (ρ), as seen in Equation (3). The reported value for
insulin [19] was 1.24 gr/cm3.

•
m = Q× ρ, (3)

3. TD3 Computational Fluid Dynamics (CFD) Approach

3.1. Microneedle CFD

The simulation is set up and solved to obtain the pressure contours that are required over the
microneedle top, or inlet, to achieve the desired characteristics related to volumetric flow rate and
fluid velocity. The last two parameters are compared with those theoretically calculated to confirm the
correct physics development. The mesh is conformed by the microneedles inner volume, where the
inlet boundary condition is set as a mass flow. The outlet boundary condition is set as a pressure outlet
setting, and it has a zero magnitude, reflecting atmospheric pressure. This suggests that laminar flow
will be predominant in all of the domains because we are describing a microfluidics flow. However,
we calculated Reynolds’s number in order to confirm this premise, obtaining a value of 120. As shown
in Figure 6, 1670 Pa is the required pressure on the microneedle top to ensure a Q magnitude of 2.92 ×
10−5 cm3/s and a fluid velocity of 0.055 m/s inside the microneedle (Figure 7).Sensors 2019, 19, x FOR PEER REVIEW 7 of 11 
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Keeping in mind that we are dealing with laminar flow, as Reynolds’s number indicated before,
we obtained the parabolic velocity profiles as seen in Figure 7.
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3.2. TD3 Discharge CFD

Using the results of the microneedle CFD simulation, the TD3 discharge simulation was designed
to obtain the pressure, which has to be exerted by the membrane right into the lower chamber so the
fluid could be able to achieve the desired characteristics. In the prior simulation,

•
m was set to 3.63 ×

10−5 gr/s due to the single microneedle criteria, but this time as we are dealing with the entire array, so
this value has been set to 1.39 × 10−3 gr/s. As shown in Figure 8, the red dotted line indicates the flow
direction, which begins in the orifice controlled by the microvalve moving across the microchannel
structure and ending in the microneedle tip. In order to achieve the required Q, the pressure in
the lower chamber, which is exerted by the membrane, has to be 2560 Pa [12]. The shallow fluid
compressibility allows us to ensure that the pressure generated in the upper chamber will be entirely
transmitted to the lower chamber. The velocity right at the outlet in the microneedle couplings, as
shown in Figure 9, does not differ too much compared with the microneedles inlet velocity shown in
Figure 7.Sensors 2019, 19, x FOR PEER REVIEW 8 of 11 
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3.3. TD3 Suction CFD

For the simulation of the suction movement of the micropump, the pumped volume (Vp) is
ensuring that the lower chamber stroked volume stays below 30% of the dead volume (Vo) [9], in order
not to schematize the operation of the membrane on a value that would lead it to have more significant
wear. The prior fact means that the lower chamber volume is 1.2 × 10−3 cm3. Due to the total of 0.4 mL
in 6 min, the time window of the entire dosing goal (Q), was 1.12 × 10−3 cm3/s.

The actuation frequency (F) was selected based on a previous study that corresponded to the
volumetric flow, (6.6 Hz) [13]. The pumped volume, which the membrane will regulate, was calculated,
as shown in Equation (4). The pumped volume will correspond to 1.7 × 10−4 cm3, which corresponds
to 14% of the dead volume.

Q = VP × F, (4)

The inlet parameter for this simulation will be
•
m, calculated with the prior Q and the insulin

density through Equation (3), resulting in a 1.39 × 10−3 gr/s magnitude. With this simulation, we
seek to determine the negative pressure, or suction, the membrane must exert in the lower chamber
to achieve 1.12 × 10−3 cm3/s in all three micropumps. As shown in Figure 10, the red dotted line
represents the fluid flow starting in the pyramid valves inlets and then flowing directly to the lower
chamber due to the generated suction. The simulation results established that the negative pressure,
or suction, the membrane must exert to achieve the desired flow condition is 116 Pa, in accord with
values previously reported in 2015 [14], as shown in Figure 11. The inlet velocity produced by the
mentioned pressure effect is 0.06 m/s.
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4. Conclusions

A novel TD3 MEMS design was CAD modeled and analyzed under normal operating conditions.
The conclusions are summarized below. Ensuring a 30% lower chamber stroked volume, the membrane
operation frequency will not need to exceed 6.6 Hz. The micropump device is capable of dosing 2.92 ×
10−5 cm3/s in a 6.6 Hz membrane pumping frequency configuration with a fluid velocity of 0.055 m/s.
CFD simulations showed that during the discharge action, the membrane would have to exert 2560 Pa
of pressure on the lower chamber in order to ensure a 3.63 × 10−5 gr/s mass flow. During the suction
action, the membrane will have to exert 116 Pa of negative pressure to be able to refill the 14% stroked
volume of the lower chamber at a 1.39 × 10−3 gr/s mass flow rate.

The discharge pressure and suction pressure values of 2.56 KPa and 116 Pa, respectively, as well
as the expansion volume and dead volume, 4.2 × 10−4 cm3 and 1.2 × 10−3 cm3, respectively, will serve
as a starting point for the next stage of the project-oriented design of the actuator PZT membrane.
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