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Abstract

:

Freezing of gait (FOG) is a serious gait disturbance, common in mid- and late-stage Parkinson’s disease, that affects mobility and increases fall risk. Wearable sensors have been used to detect and predict FOG with the ultimate aim of preventing freezes or reducing their effect using gait monitoring and assistive devices. This review presents and assesses the state of the art of FOG detection and prediction using wearable sensors, with the intention of providing guidance on current knowledge, and identifying knowledge gaps that need to be filled and challenges to be considered in future studies. This review searched the Scopus, PubMed, and Web of Science databases to identify studies that used wearable sensors to detect or predict FOG episodes in Parkinson’s disease. Following screening, 74 publications were included, comprising 68 publications detecting FOG, seven predicting FOG, and one in both categories. Details were extracted regarding participants, walking task, sensor type and body location, detection or prediction approach, feature extraction and selection, classification method, and detection and prediction performance. The results showed that increasingly complex machine-learning algorithms combined with diverse feature sets improved FOG detection. The lack of large FOG datasets and highly person-specific FOG manifestation were common challenges. Transfer learning and semi-supervised learning were promising for FOG detection and prediction since they provided person-specific tuning while preserving model generalization.
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1. Introduction


Parkinson’s disease (PD) is a progressive neurodegenerative condition that presents numerous life-altering symptoms, including the characteristic upper-limb trembling [1]. In moderate to advanced PD, locomotion can deteriorate into a flexed upper body posture with small shuffling steps, an anteriorly-shifted centre of mass, decreased walking speed, poor balance, increased gait variability, and freezing of gait (FOG) [2,3,4,5,6].



A FOG episode is a complex and highly-variable phenomenon defined as a “brief, episodic absence or marked reduction of forward progression of the feet despite the intention to walk” [7]. Freezing is often described as the sensation of having one’s feet glued to the floor with an inability to initiate the next step, and becomes increasing common as PD progresses [2,8]. Although typically lasting only a few seconds [9], freezes can lead to falls [10,11,12]. Since FOG can occur multiple times a day, most commonly between doses when medication is wearing off [11,13], FOG related fall risk is an ever-present concern. Fall-related injury, reduced mobility, fear of future falls, and decreased independence are all linked to FOG and can contribute to a reduced quality of life [14,15,16,17,18].



FOG occurrences are difficult to anticipate and may not manifest during clinic visits [3]. Therefore, assessing and adjusting FOG treatments can be challenging for medical professionals. In-home monitoring and automatic freeze-detection systems have been developed [19,20] and used to objectively track freezes over extended periods; however, these systems do not prevent or reduce freezing occurrences. Cueing devices that provide an external stimulus have emerged for preventing imminent or overcoming occurring FOG episodes [21,22]. Continuous stimuli include auditory (e.g., a rhythmic tone), visual (e.g., lines projected on the floor in front of the person), or tactile (e.g., a vibrating device on the skin). As an alternative to continuous cueing, some cueing systems detect an occurring freeze and provide a cue to help the person resume normal walking [23,24,25,26]. If FOG could be predicted, a cue could be provided before the event to prevent the freeze from occurring [27,28].



Accurate and automatic FOG detection and prediction are essential for long-term symptom monitoring or preemptive mitigation via cueing. Wearable sensors are vital for FOG detection and prediction systems, to ensure unrestricted daily use in a person’s chosen environment. The complexity of FOG symptoms and its highly-variable manifestations have led to the creation of systems with numerous sensors on various body parts and a wide array of FOG detection methods, ranging from simple thresholds to machine-learning approaches. While good results have been reported, automatic and reliable FOG detection and prediction is far from resolved. Previous review of the state of the art technology in this field has shown the widespread use and effectiveness of wearable sensors in FOG detection [26]. To help guide further research, the current paper presents and up-to-date review of the state of the art of FOG prediction, and provides further details on the study populations, classification methods, and features used. The current state of the art is also assessed to highlight current challenges and limitations in FOG detection and prediction using wearable sensors. The outcomes from this review provide guidance on current knowledge and identify knowledge gaps that need to be filled to advance wearable-sensor-based assistive technologies that can improve the lives of people with PD.




2. Materials and Methods


A literature review was performed by searching the Scopus, PubMed, and Web of Science databases. Keywords included “sensor” or “device” or “wearable”, “Parkinson”, “freeze” or “freezing”, “detect”, or “predict”. The final search was performed on April 16, 2019. Results were curated using the Mendeley Desktop software (v. 1.19.4) (Elsevier, Amsterdam, the Netherlands).



Duplicates were removed and the results were pooled for screening, using article title, abstract, and keywords to determine relevance. Following screening, the remaining documents were reviewed in full.



Eligibility for analysis was based on:




	
Use wearable sensor data as input (direct from sensor or wearable sensor datasets).



	
Involve people with PD, or data from people with PD, who experience FOG.



	
Primary goal of detecting or predicting FOG. Articles were not included if they examined cueing using a FOG detection method developed in previous research and reported in another article, or if they only classified individuals as freezers or non-freezers, rather than detecting freezing episodes.








Articles were excluded if they were not published in English, if they were not full texts (abstract only publications were excluded), or if they lacked adequate descriptions and explanations of the detection or prediction methods (i.e., training and testing methods not described, important variables not defined, results not presented).



Eligible articles were used to extract, where available, the following characteristics: population, data collection location and summary, sensor type and location, FOG detection and prediction method (i.e., classifier or machine-learning algorithm), features, whether feature extraction and selection were used, classification performance, and evaluation in real-time.



Article characteristics included:




	
Population: The number of participants in the study, i.e.: healthy controls (HC), people with FOG symptoms (FOG-PD), people with no FOG symptoms (NFOG-PD), and FOG symptom status unknown or not reported (UFOG-PD); the number of PD participants who froze during data collection, medication state during data collection (ON or OFF), number of FOG episodes.



	
Data collection location and summary: Whether data collection was performed in a laboratory setting or in the participant’s home. Summary of walking tasks performed.



	
Sensor type and location: The type and number of sensors used, sensor location on the body.



	
FOG detection method: Methods used to detect and predict FOG, i.e., general approach (e.g., machine-learning model), model training method (person-specific: trained using data from a single person; or person-independent: trained using data from multiple people and not customized for an individual), whether the data was windowed, window length, and extent of detection (i.e., detection performed on each data point, window, or FOG event, etc.). Where multiple methods were attempted, the method with the best performance or research focus was reported.



	
Feature extraction and feature selection: Features are variables calculated from sensor data. Feature selection uses feature ranking, filtering, or other techniques to produce an appropriate feature subset with fewer redundant features. Reporting features that performed best in FOG detection or comparing detection performance of different features after model testing was not considered as feature selection.



	
Classifier performance: Sensitivity, specificity, other performance metrics reported.



	
Real-time: Reporting the detection of a FOG episode as it occurs. In this review, real-time refers to detection using a live wearable-sensor data stream.








Feature analysis included:




	
Feature Name: Feature name or a short description if not named in the cited article.



	
Sensor Type: The type of sensor to calculate the feature: accelerometer (Acc), gyroscope (Gyro), force sensitive resistor (FSR), electromyography (EMG), electroencephalogram (EEG), galvanic skin response (GSR), goniometer, telemeter, or camera-based motion capture (CBMC) (included if used with wearable-sensor).



	
Sensor Location: Body location where the sensor was placed.



	
Feature Description: Brief explanation of the feature.



	
Source: Articles that used the feature as input for FOG detection or prediction.









3. Results


The initial search provided 323 documents. An additional 10 articles that did not appear in the search but were referenced by other articles were included, resulting in 333 articles. After removing duplicates, 178 documents were available (Figure 1). Following screening and eligibility assessment, 74 articles were included in the review: 68 on FOG detection, seven on FOG prediction, and one article in both categories.



Study characteristics related to population, data collection location and summary, sensor type and location, FOG detection method, feature extraction and selection, classifier performance, and whether analysis was performed in real time are presented in Table 1. Features extracted from wearable sensor data are presented in Table 2. Table 3 presents a summary of the top machine-learning methods from studies that compared different machine-learning classifiers for FOG detection using wearable sensors.




4. Discussion


4.1. FOG Detection


FOG detection methods vary in complexity, with the simplest models directly comparing wearable sensor variables to thresholds [29,41,44,46,53,63,73,123]. Threshold methods tended to have poorer detection performance but faster processing time, making them potentially useful in real-time systems [24,70,77,79,92,93]. To improve classification performance, features that can better differentiate between FOG and typical PD gait have been used, such as Fourier transforms [29,34,35,41,44,53,65,69,78], wavelet transforms [51,56,63,71,79,83,91,92,93,96], k-index [59,60,61,62,72,73], freezing of gait criterion (FOGC) [46], freezing of gait detection on glasses (FOGDOG) [70], R-index [94], and the widely-used freeze index [29].



To further improve FOG detection performance, multiple features and machine-learning (ML) techniques have been used, such as neural networks [36,38,55,66,76,80,85,86,88,89,91], decision trees [25,39,42,45,52,54,58,85], random forests, [39,42,43] naïve Bayes [42,43], nearest neighbor [42], and support vector machines [64,71,74,75,81,83,86]. In addition, anomaly detection [20] and unsupervised machine learning have been attempted [87], but not extensively explored.



The best performing classifiers for FOG detection were convolutional neural networks, support vector machines, random forest, and AdaBoosted decision trees (Table 3).



4.1.1. Decision Trees


Decision trees are a series of binary selections that form branches resembling a tree structure. More complex decision trees can improve performance. For example, random forest classifiers use multiple decision trees, where the final decision is the majority vote of the individual trees. Boosting can also improve performance. AdaBoosting (adaptive boosting) repeatedly retrains the classifier, placing increasing importance on incorrectly classified training examples [124,125]. LogitBoosting (logistic boosting) [126], RUSBoosting [127], and RobustBoosting [128] are extensions of AdaBoosting that can further improve performance [85]. Decision trees for FOG detection included ensembles of trees and boosting techniques [42,43,85], with performance results ranging from 66.25% to 98.35% for sensitivity and 66.00% to 99.72% for specificity [25,39,42,43,45,52,54,58,85].




4.1.2. Support Vector Machines (SVM)


Support vector machines are binary (two class) classifiers that trace a plane to separate data points from each class. New data points are then classified based on their side of the plane. If data points are not easily separable, a kernel can transform the data into a dimension that is linearly separable [125]. SVM for FOG detection achieved 74.7%–99.73% sensitivity and 79.0%–100% specificity [64,71,74,75,81,83,86].




4.1.3. Neural Networks


Neural networks (NN) are made up of interconnected layers of nodes inspired by the structure of neurons in the brain [129]. NN have been frequently used in FOG detection and prediction studies. For FOG detection, model performance achieved 72.2%–99.83% sensitivity and 48.4%–99.96% specificity [36,38,55,66,76,80,85,86,88,89,91]. Neural networks for FOG prediction tended to perform slightly worse, up to 86% sensitivity, 80.25% specificity, and 89% precision [96,97,99].



Different NN subtypes have been used in FOG detection and prediction, such as convolutional [85,90] and recurrent [97,100] NN. Convolutional neural networks (CNN) have become popular in numerous applications, including medical image analysis, in part due their ability to recognize local patterns within images and because feature selection prior to implementation is not required [130,131]. CNN performed well for FOG detection [85], achieving 91.9% sensitivity and 89.5% specificity. Recurrent NN have recently been used for FOG prediction due to their applicability to time-series data [97,100]. Recurrent neural networks (RNN) utilize previous data in addition to current inputs during classification [132], thus giving the network “memory” to help recognize sequences [133]. A long short-term memory network (LSTM), a type of RNN, was used for FOG prediction [100], achieving over 90% accuracy when predicting FOG 5 s in advance.




4.1.4. Unsupervised and Semi-Supervised Models


Since freezing manifests differently for each person, person-specific models outperformed person-independent models [42,58,74,86] (with some exceptions as in [53]). However, in practice, it is difficult to obtain enough data to develop a model for an individual. To address this small dataset problem, unsupervised learning has been attempted. These methods do not rely on experts labelling FOG episodes. Instead, clustering techniques are used to define the classes [87], or an anomaly detection approach is used to define the normal class and then identify abnormalities (such as FOG) that do not conform to that class [45,90]. Unsupervised FOG detection approaches are appealing since they do not require data labelling; however, few studies have used unsupervised FOG detection, and unsupervised models performance has been worse than supervised models [90].



Recently, transfer learning, which uses a previously-trained network as a base and adapts the model to a new task [100], and semi-supervised learning, which uses both labeled and unlabeled data during training [69,88,89], have been used to create partly personalized FOG detection methods without large amounts of data. In [100], transfer learning trained a neural network using group data before adding an additional network layer that was trained using an individual’s data. Semi-supervised learning methods [69,88,89] use labeled data to train a base classifier before updating in an unsupervised manner. This reduces the need for labeled data and preserves the generalization ability from a multiple person data set, while allowing person-specific tuning. Semi-supervised learning theoretically combines the advantages of both supervised and unsupervised learning. When applied to FOG detection, performance achieved 89.2%–95.9% sensitivity [69,88,89] and 93.1%–95.6% specificity [69,88,89]. Although the methods are promising, due to a current shortage of studies, the value of these methods for FOG detection remains unclear.




4.1.5. Limitations and Challenges of FOG Detection


FOG detection and prediction is affected by the participant’s medication state (ON and OFF), with substantial effects on motor control, gait patterns, and physical abilities. Freezing occurs more frequently in the OFF state than the ON state. In the OFF state, smaller shuffling steps are common, whereas in the ON state, many people can walk fairly normally. A machine-learning model trained during a person’s optimal medication state may perform worse if the medication wears off and their unassisted gait changes. Given that medication is needed in PD management, medication state is crucial contextual information for FOG detection and prediction research.



With machine-learning algorithms becoming more prevalent, larger FOG detection and prediction datasets are needed for model development. FOG studies ranged from 1 to 32 participants, with most studies having more than 10 participants. Studies involving few participants may not adequately validate a FOG detection method, especially when machine-learning algorithms are involved. Data augmentation techniques [85] or additional testing with more participants are required. On the other hand, large participant pools may not guarantee unbiased datasets since some participants freeze many times during data collection, while others may not freeze at all. For example, in [48], only 6 of 20 participants froze during data collection, which may lead to person-biased models that over-represent the few individuals with FOG data. Difficulty in participant recruitment and FOG unpredictability are therefore challenges that may limit the availability and quality of training data.



Following data collection, FOG episodes are typically visually identified and labelled. Visual FOG identification is currently the gold standard. These labels are ground truth for detection method validation. Even though FOG is a well-defined clinical phenomenon [7], the criteria for defining the beginning and end of FOG episodes [24,25,98] was not defined in some articles. Differing FOG definitions make comparison between studies problematic. Published datasets can provide consistent ground truth FOG labelling. The Daphnet [24] (10 participants) and CuPiD [101] (18 participants) datasets provide consistent input but fewer than 250 FOG episodes; thus, dataset size may be an issue for machine learning, especially if deep learning is used [85].



When evaluating a classification system, ideally, different data are used for training and testing, as in [25,38,51,55,56,64,66,67,85,96,97,99,100], in order to prevent model performance overestimation that can occur when the model is evaluated using data used in model training. Cross-validation is often used when the dataset size is limited, as done in [24,31,32,33,39,42,43,45,52,54,58,74,75,81,86,87,88,89,90,98]. For FOG research, leave-one-person-out cross-validation was the most common. In this method, model training used data from all but one participant, model testing used data from the remaining participant, the process was repeated for each participant, and the performance results were averaged. Other studies, often more preliminary in nature, used ad hoc optimization to tune parameters and set thresholds [34,44,48,59,60,61,62,63,95]. This approach, although useful for initial system assessment, is not a good indicator of classifier performance, and should be followed by a more robust evaluation scheme, such as cross-validation.



Feature calculation from wearable sensor data is typically done using data windows. Window lengths ranged from 0.2 to 32 s [36,48,92,93], with the most common window length being 1 s. Long windows with many sample points are desirable for calculating frequency-based features involving the discrete Fourier transform, since the number of sample points in the input signal will determine the output frequency bin resolution. However, long windows decrease the temporal resolution and do not permit distinguishing short events within the window. In addition, long windows with many data points may be slower to process and may introduce unwanted lags between data acquisition and classification for detection or prediction. Studies comparing multiple window lengths found that, in general, 1–4 s windows are preferable [42,44,48,57,63,64].



FOG detection studies used different performance metrics. For example, a FOG detection system used to trigger a real-time cue during walking might emphasize freeze onset detection. This detection system might attempt to classify every data point or window as FOG or no freeze, and be evaluated using the number of correctly classified instances [24,31,32,33]. In contrast, a long-term monitoring system may treat each freeze occurrence as a binary event and evaluate whether the FOG event was successfully detected [74,75]. Experimental procedures and underlying definitions, such as ignoring FOG shorter than 3 s [43] or calculating specificity with data from participants without FOG [64], also varied between studies. Differences in evaluation metrics and procedures make FOG detection method comparisons more difficult.



To help compare future FOG detection and prediction studies, researchers should include study population details; including, sex, PD severity, number of participants, the number and duration of FOG episodes (ideally for each person), and medication state during testing. Methodologically, the FOG labelling criterion, detailed detection method, validation method, and basis upon which the performance evaluation metrics are calculated should be clearly stated.





4.2. FOG Prediction


The FOG prediction studies varied in approach and performance, with most being somewhat preliminary and focusing less on performance and more on understanding the intricacies of FOG prediction. In addition to FOG detection study considerations (e.g., dataset size, medication state, FOG definitions, contextual or study-specific performance metric definitions), FOG prediction studies must define the pre-FOG class using data before freeze onset. FOG prediction is typically done by training a machine-learning model to recognize data from the pre-FOG class. Six of the seven FOG prediction studies selected a pre-FOG segment duration that ranged from 1 s [45,96,100] to 6 s [45]. Since the transition from walking to FOG is subtle, labelling the start of pre-FOG from visual observation is difficult. Instead, a FOG episode is visually identified, and data prior to the FOG are selected using a single fixed duration. Three studies used a 5 s period [96,97,99]; one study used a 2 s period [98]; one used 1,3 and 5 s periods [100]; and one used 1–6 s periods, in 1 s increments [45]. The seventh study [95] used an assumed 3 s period before FOG for feature selection; then, a person-specific, multivariate Gaussian-distribution-based anomaly-detection model was created and manually tuned for each participant.



Optimal pre-FOG segment duration is difficult to determine. If the pre-FOG segment is assumed to be a linear degradation of gait leading to FOG (threshold theory [134]), data closest to the freeze would resemble FOG, and data farther from the freeze would resemble typical PD walking. For a two-class classifier (pre-FOG, typical PD walking), short pre-FOG segments are preferred, since data are closer to FOG onset and likely more distinct from typical walking [100].



A short pre-FOG segment may not be ideal when using a three-class classifier consisting of typical PD walking, pre-FOG, and FOG classes as in [45], which found that very short pre-FOG segments made it difficult to distinguish between the pre-FOG and FOG classes. Longer pre-FOG segments improved pre-FOG classification but greatly reduced FOG and typical walking classification accuracy. The best performing pre-FOG segment duration differed across participants, and likely between individual FOG episodes for the same person [45]. The observation that a single pre-FOG duration is inadequate is also supported by [95,98]. For this reason, a person-specific or episode-specific pre-FOG duration may help to reduce overlap with the walking class and increase class purity (contain only pre-FOG data), thus improving pre-FOG detection performance.




4.3. Features Used in FOG Detection and Prediction


A variety of features have been used in FOG detection and prediction. While most FOG detection and prediction features were previously established in non-PD applications [135,136,137,138], custom features were created to detect FOG, namely, freezing of gait criterion (FOGC) [46,47], freezing of gait detection on glasses (FOGDOG) [70], k value [59,60,61,62,72,73], R value [94], freeze index [29], K freeze index [67], and multichannel freeze index [67]. Time domain features, such as maximum acceleration amplitude within a window [40,41] or rotation about a single axis [98], are relatively simple and fast to compute. Gait-based features such as cadence [49], stride duration [35,50,71], and step length [35,71,77], as well as statistical features including mean [42,45,52,54,57,58,71,74,75,77,80,81,95], standard deviation [42,45,52,54,57,58,71,74,75,77,80,81,88,89,95,98], and root mean square [45,48,54,78,86] are also calculated from time domain data. Frequency domain features include freeze index (FI) [29], which was the most widely-used frequency domain feature [23,24,25,29,31,32,33,34,42,44,49,53,54,64,65,69,71,77,78,80,86,88,89,98], peak amplitude and corresponding frequency [40,41,64], standard deviation in frequency domain [50,57,64,74], spectral density centre of mass [50,57,66,74,80,81,86,96], and power of the signal in specific frequency bands [24,25,31,32,33,34,40,42,52,54,58,75,80]. While Fourier transforms are typically used to convert signals from the time domain to frequency domain, Fourier transform limitations have led to increased usage of wavelet approaches [51,56,63,71,79,83,91,92,93,96].



A feature set can be more representative of the wide range of FOG manifestations. Studies that combined time and frequency domains features [96] had better performance than either type of feature individually. Time domain features can account for gait parameters such as step length [35,71,77] cadence [49], asymmetry [45], and peak limb angular velocity [88,89], whereas frequency domain features can capture more subtle patterns characteristic of FOG, such as trembling in specific frequency bands [29]. The best performance is typically achieved with multiple features.



The choice of features is very important, especially for real-time systems, where, in addition to classification performance considerations, classification speed is critical. For example, the calculation of stride duration at the end of the stride (approximately 1 s) could result in the delayed detection of a FOG event. Other features such as step length, cadence, cadence variation, stride peaks and FOGC may share this limitation, depending on the feature calculation method. Features extracted from appropriately-sized windowed data do not have this problem, since the features can be calculated as soon as the data window is available. The feature availability to the classifier is determined by the step size of the sliding window and calculation delay. All of the window-based features in Table 2 could be used in a real-time application, given sufficient processing power. However, an excessive number of features or complex features requiring many calculation stages may induce unacceptable delays when computing power is limited, as in many wearable systems. Using a minimal number of easily-calculated features is desirable; however, too few or overly-simple features may adversely impact classification performance. To address the delicate balance of classification performance versus classification speed, feature selection algorithms can be used to determine the best features from a larger set, as implemented in [45,51,55,56,58,66,67,76,80,83,86,95,96,98,99]. Algorithms such as the Relief-F or correlation-based approaches can be used to rank features according to their relevance so that the least relevant can be eliminated [139]. The most used feature selection methods in this review were paired t-tests [86,98], mutual information [45,58,67,95], and the Wilcoxon sum rank test [55,66,76,96]. The topic of feature selection is broad and encompasses numerous methods that can be used to improve classifier models. Given the diversity of features in the literature for detecting and predicting FOG, the best feature or feature set has yet to be determined. For future studies, it is generally suggested to begin with multiple features that can then be tuned or eliminated using feature section methods to produce a set of optimal features.





5. Conclusions


Based on 74 freezing of gait detection and prediction articles, this review reported details of the participants, walking task, sensors, features extracted, detection and prediction methods, and performance. The continued development of high-performing FOG detection methods is important for long-term monitoring and real-time cueing, and together with development of FOG prediction systems, is important for implementation in gait-assist systems. While FOG detection methods have been steadily increasing in performance, important challenges remain. Small FOG datasets may limit the machine-learning models that can be used, especially for deep learning. Sets of diverse features in both the time and frequency domains have helped to represent the inconsistent nature of FOG. The adoption of transfer learning, and semi-supervised learning models, built upon the established FOG detection methods, could add an element of personalization while preserving the robust generalization of person-independent models, thus making them promising approaches for future FOG detection and prediction research.
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Figure 1. Diagram of article selection process. 
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Table 1. Characteristics of FOG detection studies and FOG prediction studies, using wearable sensors.
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Source

	
Studied Population

	
Walking Task Performed

	
Sensor Type and Location

	
FOG Detection Method

	
Features

	
Classifier Performance

	
Real Time






	
Moore 2008 [29]

	
11 FOG-PD (7 froze), ON and OFF, 46 episodes

	
Lab, straight walking, 180° turns, narrow doorways, obstacle avoidance.

	
IMU (1) left shank

	
Freeze index (FI) with person- specific thresholds. 6 s windows, detection based on FOG episode occurrences.

	
E

	
Detected 89.1% of episode occurrences, 10% false positives

	
No




	
Zabaleta 2008 [30]

	
4 FOG-PD, ON and OFF

	
Lab, sit to stand, 90° and 180° turns, figure-eight, doorway navigation, obstacle avoidance.

	
IMU (6) heels, shanks, thighs

	
Multivariate linear discriminant analysis, frequency-based features. Person-specific, detection based on classification of individual 3 s windows.

	
E

	
Area under ROC curve. Average of all participants: 0.937

	
No




	
Jovanov 2009 [23]

	
4 HC, 1 UFOG-PD

	
Lab, sit to stand and walking.

	
IMU (1) right knee

	
FI [29], 0.32 s windows (64 samples at 200 Hz).

	
E

	
-

	
Yes




	
Bachlin 2009–2010 [24,31,32,33] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions to start, stop, and turn 360° in both directions. Simulated ADL (walk to room, return with glass of water)

	
Acc (3) left shank, left thigh, lower back

	
FI [29] with additional energy threshold to reduce false positives due to standing. 4 s windows with 0.5 s shift each step. Detection performance based on classification of windows with a 2 s tolerance.

	
E

	
Person-independent threshold:

Sensitivity: 73.1%

Specificity: 81.6%

	
Yes




	
Bachlin 2009 [34] *

	
10 FOG-PD (8 froze) 237 episodes

	
Lab, straight walking, 180° turns, randomly given instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Same methods as [24]. Improved offline through person-specific thresholds. Detection performance based on classification of windows with a 2 s tolerance.

	
E

	
Sensitivity: 88.6%

Specificity: 92.8%

	
No




	
Delval 2010 [35]

	
10 HC, 10 NFOG-PD, 10 FOG-PD (5 froze), OFF, 20 episodes

	
Lab, 2 km/h treadmill, objects unexpectedly dropped on belt in front of participant.

	
CBMC, goniometers (2) knees

	
Compared stride features (e.g., step duration, step distance), and FI to person-independent thresholds, using 4.1 s windows.

	
E

	
Sensitivity: 75–83%

Specificity: >95%

	
No




	
Djuric-Jovicic 2010 [36]

	
4 FOG-PD

	
Lab, sit to stand, straight walking through doorway, 180° turn, return to seat.

	
IMU (6) feet, shanks, thighs

	
Energy thresholds to detect movement, combined with NN for FOG detection. 0.2 s and 1.0 s windows. Classification performance based on number and duration of false detections.

	
E

	
Classification error up to 16%

	
No




	
Popovic 2010 [37]

	
9 FOG-PD (7 froze), ON, 24 episodes

	
Lab, sit to stand, straight walking through doorway, 180° turn, return to seat.

	
FSR in-shoe insole, Acc (6) feet, shanks, thighs

	
FSR signals to create single person-specific “normal step”. Pearson’s correlation coefficient (PCC) calculated for FSR signal of entire trial, then compared to a threshold.

	
E

	
-

	
No




	
Cole 2011 [38]

	
2 HC, 10 UFOG-PD, 107 episodes

	
Lab, unscripted ADL in mock apartment.

	
Acc (3) shin, thigh, forearm, EMG (1) shin

	
Stand vs sit detection, NN for FOG detection. Person-independent model, 2 s windows, detection performance calculated per 1 s segments.

	
E

	
Sensitivity: 82.9%

Specificity: 97.3%

	
No




	
Tsipouras 2011 [39]

	
5 HC, 6 NFOG-PD, 5 FOG-PD

	
-

	
Acc (6) wrists, legs, chest, waist, Gyro (2) chest, waist

	
C4.5 decision tree, random forest, using 2 s windows.

	
E

	
Accuracy:

Decision tree: 95.08%

Random forest 96.11%

	
No




	
Niazmand 2011 [40]

	
6 FOG-PD (varying severity)

	
Lab, walk with 180° turns, with and without walking aid. Walking, 180° and 360° turns (both directions), doorways.

	
Instrumented pants, Acc (5) waist, thighs, shanks

	
Multi-stage, person-independent, threshold-based classification, identifies suspicious movement, then frequency feature for classification, using 2 s windows.

	
E

	
Sensitivity: 88.3%

Specificity: 85.3%

	
No




	
Zhao 2012 [41]

	
8 FOG-PD (6 froze), 82 episodes

	
Lab, 5-8 min random instructions (stand, walk, stop, turn).

	
Instrumented pants, Acc (5) waist, thighs, shanks (as in [40])

	
Time series, acceleration peaks detection (1.5 s windows) and frequency features via FFT (4 s windows), compared to person-independent thresholds.

	
E

	
Sensitivity: 81.7%

	
No




	
Mazilu 2012 [42] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, randomly given instructions and simulated ADL.



	
Acc (3) left shank, left thigh, lower back

	
AdaBoosted decision tree classifier best among several. Compared window sizes 1–4 s, 1 s was ideal. Detection performance based on classification of individual windows.

	
E

	
Person-specific:

Sensitivity: 98.35% Specificity: 99.72%

Person-independent:

Sensitivity: 66.25%

Specificity: 95.38%

	
No




	
Tripoliti 2013 [43]

	
5 HC, 6 NFOG-PD, 5 FOG-PD, ON and OFF, 93 episodes

	
Lab, rise from bed, walking tasks including doorways, 180° turns, and ADL.

	
Acc (4) ankles, wrists, IMU (2) waist, chest

	
Random forest classifier, 1 s windows. Person-independent detection performance based on classification of individual windows.

	
E

	
Sensitivity: 81.94%

Specificity: 98.74%

	
No




	
Moore 2013 [44]

	
25 FOG-PD (20 froze), OFF, 298 episodes

	
Lab, TUG.

	
IMU (7) Lower back, thighs, shanks, feet

	
FI thresholds [29]. Compared different sensor locations, person-independent thresholds and window lengths. Detection performance based on classification of FOG episode occurrences and percentage of time frozen.

	
E

	
Lower back sensor,

10 s window:

Sensitivity: 86.2%

Specificity: 82.4%

	
No




	
Mazilu 2013 [45] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Person-specific decision tree, tested different feature sets and supervised vs unsupervised feature selection using principal component analysis (PCA). Detection performance based on classification of individual 1 s windows.

	
E, S

	
Unsupervised:

Sensitivity: 77.7%

Specificity: 87.56%

Supervised:

Sensitivity: 69.42%

Specificity: 87.76%

	
No




	
Coste 2014 [46]

	
4 UFOG-PD, 44 episodes

	
Lab, corridor walk with dual task.

	
IMU (1) shank

	
Freezing of gait criterion (FOGC) feature, based on cadence and stride length, incorporating person-specific thresholds. Detection performance based on classification of FOG episode occurrences.

	
E

	
Sensitivity: 79.5%

	
No




	
Sijobert 2014 [47]

	
7 UFOG-PD, 50 episodes

	
Lab, corridor walk with dual task.

	
IMU (1) shank

	
FOGC [46], with person-specific thresholds. Detection performance based on classifying FOG episode occurrences. FOG episodes labeled as Green (n = 19, slight gait modification with no fall risk), Orange (n = 12, gait modification with fall risk) or red (n = 19, FOG – blocked gait).

	
E

	
Correctly identified 26 of 31 FOG (orange and red)

	
No




	
Kwon 2014 [48]

	
20 FOG-PD (6 froze), ON, 36 episodes

	
Lab, repeated straight walk with 180° turns.

	
Acc (1) in shoe heel

	
Root mean square (RMS) of acceleration compared to person-specific threshold. 0.2–10 s windows. 3–4 s windows recommended.

	
E

	
Minimum of sensitivity or specificity: 85.8%

	
No




	
Pepa 2014 [49]

	
18 UFOG-PD, ON

	
Lab, 3 TUG variations: standard, with cognitive dual task, with manual dual task.

	
Acc (1) smartphone worn on belt at hip

	
Fuzzy logic model using frequency features, person-specific thresholds, 2.56 s windows. Detection performance based on classification of windows (sensitivity, specificity) and FOG episode occurrences (sensitivity) – distinction not indicated in results.

	
E

	
Sensitivity: 89%

Specificity: 97%

	
No




	
Djuric-Jovicic 2014 [50]

	
12 FOG-PD, OFF

	
Lab, sit to stand, walk with 90° and 180° turns, multiple doorways.

	
IMU (2) shanks, FSR in-shoe insoles

	
Each stride is compared to a “normal” stride using spectral power, stride duration, and shank displacement. Custom rule-based method classified each stride based on person-specific thresholds.

	
E

	
FOG with tremor:

Sensitivity: 99%

Specificity: 100%

FOG complete stop:

Sensitivity: 100% Specificity: 100%

	
No




	
Assam 2014 [51] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Wavelet decomposition for feature extraction and conditional random fields for classification. Train/test for each person individually (person-specific model), compared 2.5, 4 and 8 s windows. Results for 3 participants, separately.

	
E, S

	
Best single participant results, with 4s window:

Sensitivity: 65%

Precision: 61.9%

	
No




	
Mazilu 2014 [25]

	
5 FOG-PD, 102 episodes

	
Lab, walking with turns and doorways.

	
IMU (2) ankles

	
Person-independent decision tree classifier (C4.5), multiple frequency-based input features, 2 s windows. Detection performance based on classifying FOG episode occurrences.

	
E

	
99 of 102 FOG detected

	
Yes




	
Mazilu 2015 [52] **

	
18 FOG-PD (11 froze), 182 episodes

	
Lab, walking tasks with cognitive and manual tasks.

Straight walking, 180° and 360° turns, narrow spaces, hospital circuit with elevator, unexpected stops start, and turns.

	
IMU (2) wrists

	
Decision tree classifier (C4.5), features from wrist data, 3 s windows, person-specific detection performance based on classifying FOG episode occurrences.

	
E

	
Person-specific:

Sensitivity: 90%

Specificity: 83%

	
No




	
Zach 2015 [53]

	
23 FOG-PD (16 froze), OFF, 166 episodes

	
Lab, self-paced, fast walking, short steps, short fast steps, 360° turns both directions.

	
Acc (1) lower back

	
FI [29] compared to person-specific and person-independent thresholds, 2 s windows, detection performance based on classifying FOG episode occurrences.

	
E

	
Person-independent threshold:

Sensitivity: 75%

Specificity: 76%

	
No




	
Kim 2015 [54]

	
15 FOG-PD (9 froze), 46 episodes

	
Lab, hospital hallway, straight walk with 180° turns, also with dual tasks.

	
IMU (1) (smartphone) ankle, pants pocket, chest pocket, waist

	
Adaboosted, person-independent, decision tree using 4 s windows. Compared different sensor locations, found waist best.

	
E

	
Smartphone on waist:

Sensitivity: 86%

Specificity: 91.7%

	
No




	
Handojoseno 2015 [55]

	
4 FOG-PD, OFF

	
Lab, TUG with 180° or 540° turns in both directions.

	
EEG, head

	
Person-independent NN to detect FOG during turning, 0.256 s windows, 1 s samples (117 normal turning, 224 FOG turning).

	
E, S

	
Sensitivity: 74.6%

Specificity: 48.4%

	
No




	
Venu 2016 [56] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Wavelet decomposition used sub-band energies as features, continuous random field used for detection. 4 s windows.

Person-independent detection performance based on classifying FOG episode occurrences.

	
E, S

	
Average of 3 participants test set:

Sensitivity: 90.3%

Precision: 95.8%

	
No




	
Martin 2016 [57] ****

	
6 FOG-PD, ON and OFF

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and false positive test intended to create shaking resembling FOG (e.g., brushing teeth).

	
Acc (1) left hip

	
Different methods, feature sets, and window sizes compared. Best results from SVM. Detection performance based on classification of individual 1.6 s windows.

	
E

	
Sensitivity: 91.7%

Specificity: 87.4%

	
No




	
Mazilu 2016 [58] **

	
18 FOG-PD (11 froze), 184 episodes

	
Lab, walking tasks with cognitive and manual tasks.

Straight walking, 180° and 360° turns, narrow spaces and hospital circuit with elevator, unexpected stops start, and turns.

	
IMU (2) wrists

	
Decision tree classifier (C4.5) similar to [52], but fewer features and evaluation of single wrist input. 3 s windows, detection performance based on classifying FOG episode occurrences.

	
E, S

	
Person-specific:

Sensitivity: 85%

Specificity: 80%

Person-independent:

Sensitivity: 90%

Specificity: 66%

	
No




	
Lorenzi 2016 [59,60,61,62]

	
16 UFOG-PD

	
Lab, walking through doorway, 180° turns.

	
IMU (2) shanks, IMU (1) side of head

	
Compared headset (combined with NN) and shin mounted IMUs. Shin method using custom k-index feature compared to person specific thresholds performed best.

	
E

	
From shin system:

Sensitivity: 94.5%

Specificity: 96.7%

	
No




	
Rezvanian 2016 [63] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Continuous wavelet transform computed ratio of frequency ranges, compared to person-independent threshold. Compared different window lengths, suggested 2 s windows for future real-time implementation.

	
E

	
Window 2 s:

Sensitivity: 82.1%

Specificity: 77.1%

Window 4 s:

Sensitivity: 84.9%

Specificity: 81.01%

	
No




	
Ahlrichs 2016 [64] ***

	
20 FOG-PD (8 froze) ON and OFF, 209 episodes

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and a false positive test intended to create shaking resembling FOG (e.g., brushing teeth).

	
Acc (1) waist

	
Person-independent SVM (linear kernel), best results with 3.2 s windows. Classified windows aggregated over 60 s and degree of confidence calculated and compared to threshold to determine whether a FOG episode was present during aggregation period.

	
E

	
Sensitivity: 92.3%

Specificity: 100%

	
No




	
Capecci 2016 [65]

	
20 FOG-PD (16 froze), ON, 98 episodes

	
Lab, TUG test, cognitive or manual dual task.

	
IMU (1) smartphone at waist

	
Cadence and modified freeze index extracted and compared to person-specific thresholds. Detection performance based on classification of individual 3.56 s windows.

	
E

	
Sensitivity: 87.57%

Specificity: 94.97%

	
No




	
Ly 2016 [66]

	
7 FOG-PD, OFF

	
Lab, TUG.

	
EEG, head

	
Person-independent NN, compared different features and number of EEG channel inputs. Data divided into 1 s segments (343 effective walking and 343 freezing).

	
E, S

	
Using all 32 channels:

Sensitivity: 72.2%

Accuracy: 71.46%

	
No




	
Pham 2017 [20] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Anomaly detection approach. Acceleration and spectral coherence features calculated for incoming window and “normal” reference. Person-independent thresholds used to classify FOG, “normal” reference updated with each non-FOG window. Detection performance based on classification of individual 0.6 s windows.

	
E

	
Sensitivity: 87%

Specificity: 94%

	
No




	
Pham 2017 [67] *

	
Development: 10 FOG-PD (8 froze),

Test: 24 FOG-PD (OFF)

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

Test: TUG, 180° and 540° turns in both directions.

	
Acc (3) left shank, left thigh, lower back

IMU (7) foot, shank, thigh, lower back/hip

	
Development data from Daphnet*, test data from [68]. Several new features (including multichannel freeze index) presented and evaluated, detection used anomaly score compared to person-independent threshold to classify individual 3 s windows.

	
E, S

	
Freeze index using hip sensor X-axis:

Sensitivity: 89%

Specificity: 94%

	
No




	
Pham 2017 [69] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Freezing index and spectral coherence features used to generate average value used as threshold for FOG detection. Participant independent averages automatically updated during use. Detection performance based on classification of 0.6 s windows.

	
E

	
Sensitivity: 89.2%

Specificity: 95.6%

	
No




	
Ahn 2017 [70]

	
10 HC, 10 FOG-PD, OFF, 42 episodes

	
Lab, TUG and 10 m walk tests.

	
IMU (1) in smart glasses

	
Custom FOG detection on glasses feature (FOGDOG), incorporated stride length and cadence, with person-specific thresholds, 1 s windows. Detection performance based on classifying FOG episode occurrences

	
E

	
For PD participants:

Sensitivity: 97%

Specificity: 88%

	
Yes




	
Tahafchi 2017 [71]

	
2 FOG-PD

	
Lab, 6 min of walking turning and stepping in place.

	
EMG + IMU units (6) thighs, shanks, feet

	
SVM with Gaussian kernel, multiple time series and frequency features. 1 s windows.

	
E

	
Sensitivity: 90%

Specificity: 92%

	
No




	
Suppa 2017 [72]

	
28 FOG-PD (25 froze), 152 episodes (102 OFF, 50 ON)

	
Lab, simulated home environment, TUG passing into narrow hall, turning both directions.

	
IMU (2) shins

	
k index from shin-mounted sensor compared to person-specific thresholds [59], with additional analysis of ON vs. OFF states.

	
E

	
Sensitivity: 93.41%

Specificity: 98.51%

	
No




	
Kita 2017 [73]

	
32 UFOG-PD (25 froze)

	
Lab, straight walking, through doorway, with 180° turn, and return.

	
IMU (2) shanks

	
Improvements on k index in [59], including new Kswing, K’ features. Person-specific performance based on percentage of time frozen per trial.

	
E

	
Sensitivity: 93.41%

Specificity: 97.57%

	
No




	
Rodriguez-Martin 2017 [74] ***, ****

	
21 FOG-PD, ON and OFF, 1321 episodes

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and a false positive test intended to create shaking resembling FOG (e.g., brushing teeth).

	
IMU (1) left hip

	
SVM (radial basis function kernel), compared person-independent and person-specific models, using 3.2 s windows. Detection performance based on classifying FOG episode occurrences.

	
E

	
Person-independent:

Sensitivity: 74.7%

Specificity: 79.0%

Person-specific:

Sensitivity: 88.09%

Specificity: 80.09%

	
No




	
Rodriguez-Martin 2017 [75] ***, ****

	
12 PD-FOG, 106 episodes

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and a false positive test intended to create shaking resembling FOG (e.g., brushing teeth).

	
IMU (1) left hip

	
Same detection algorithm as [74], also using 3.2 s windows. Detection performance based on classifying FOG episode occurrences.

	
E

	
Sensitivity: 82.08%

Specificity: 97.19%

	
Yes




	
Ly 2017 [76]

	
6 FOG-PD

	
Lab, TUG.

	
EEG, head

	
Person-independent Bayesian NN, to detect FOG during turns. Similar to [55], with addition of S-transform. Data divided into 1 s samples (204 normal turning, 204 FOG turning).

	
E, S

	
Sensitivity: 84.2%

Specificity: 88.0%

	
No




	
Pepa 2017 [77]

	
20 UFOG-PD

	
Lab, TUG, with cognitive or manual dual task, sit, lay on bed, stand up and maintain upright posture, and run on a treadmill if able.

	
IMU (1) smartphone at waist

	
Fuzzy inference system compared to person-specific thresholds to detect periods of walking and FOG. 2.56 s windows (256 samples at 100 Hz). Detection performance based on classifying FOG episode occurrences, duration of FOG also examined.

	
E

	
FOG detection performance using ANOVA.

	
Yes




	
Wang 2017 [78]

	
9 UFOG-PD, OFF

	
Lab, gait initialization, narrow aisle, turning and dual tasks. One participant performed ADL in their home.

	
Acc (1) lower back

	
FI and RMS of acceleration. Both compared to person-specific thresholds and combined with an OR statement. Detection performance calculated as percent time frozen per trial.

	
E

	
Sensitivity: 90.8%

Specificity: 91.4%

	
No




	
Punin 2017 [79]

	
1 HC, 1 NFOG-PD, 6 FOG-PD, OFF, 27 episodes

	
Lab, stair climb and descent, straight walking and 180° turns.

	
IMU (1) right ankle

	
Discrete wavelet transform, compared to person-independent threshold. Detection performance based on classifying FOG episode occurrences.

	
E

	
Sensitivity: 86.66%

Specificity: 60.61%

	
Yes




	
Saad 2017 [80]

	
5 FOG-PD ON, 64 episodes

	
Lab, straight walking, 180° turn, manual dual task or narrowed walking path. Clinic circuit including unscripted stops, starts, turns and doorways.

	
Acc (2) foot, shin, Goniometer (1) knee, Telemeters (IR proximity sensors) (2) upper and lower medial shank

	
Time and frequency domain features extracted from 2 s windows. Best features for each sensor identified. Person-independent, NN with Gaussian activation function used for detection.

Defined average performance as mean of the fraction of FOG correctly identified and the fraction of non-FOG correctly identified.

	
E, S

	
Average of all participants:

Performance: 87%

	
No




	
Sama 2018 [81] ****

	
15 FOG-PD, ON and OFF

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and a false positive test intended to create shaking resembling FOG (e.g. brushing teeth).

	
IMU (1) left hip

	
Compared multiple classifiers and feature sets, best results with SVM, using 1.6 s windows (64 samples at 40 Hz). Person-independent detection performance based on classifying FOG episode occurrences

	
E

	
Sensitivity: 91.81%

Specificity: 87.45%

	
No




	
Prateek 2018 [82]

	
16 UFOG-PD (8 froze), 58 episodes

	
Lab, walking backwards, 180° turns, stepping over a board, walk a figure-eight loop, walk between sets of chairs placed close together.

	
IMU (2) heels

	
Detect instances of zero velocity or trembling, then, a point process filter computed probability of FOG based on foot position, orientation, and velocity. Detection performance based on classifying FOG episode occurrences, duration of FOG also examined.

	
E

	
Person-specific model, detected 47/58 FOG episode occurrences.

Accuracy: 81.03%

	
No,




	
Ashour 2018 [83] *

	
4 participants from Daphnet

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
SVM (linear kernel). Used infinite feature ranking [84] to reduce feature set. Person-specific detection performance based on classifying FOG episode occurrences.

	
E, S

	
1 patient top ranked (30 features) Accuracy: 94.4%

	
No




	
Camps 2018 [85] ****

	
21 FOG-PD, ON and OFF

	
Participant’s home, 180° turns, doorways, walking outside, dual tasking and a false positive test intended to create shaking resembling FOG (e.g., brushing teeth).

	
IMU (1) left hip

	
1D CNN, 2.56 s windows stacked to combine current and previous windows. Person-independent detection performance based on classification of windows. Replicated other FOG detection methods and compared performance of models and feature sets.

	
-

	
CNN:

Sensitivity: 91.9%

Specificity: 89.5%

	
No




	
Oung 2018 [86] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Probabilistic NN, using time domain features (117) and frequency features (126), 4 s windows. Also examined SVM with RBF kernel. Person-specific and person-independent models compared.

	
E, S

	
Person-specific:

Sensitivity: 99.83%

Specificity: 99.96%

Person-independent:

Sensitivity: 87.71%

Specificity: 87.38%

	
No




	
Li 2018 [87]

	
10 FOG PD, OFF, 281 episodes

	
Lab, straight walking (10 m and 100 m), 180° turns, narrow spaces.

	
Acc (1) lower back

	
Person-independent, unsupervised approach (training data not labelled). Mini batch k means clustering algorithm using acceleration entropy, 1 s windows. Once the centre of the FOG and non-FOG classes were found, new data were classified based on which centre was closest.

	
E

	
Sensitivity: 92.4%

Specificity: 94.9%

	
No




	
Mikos 2018 [88,89]

	
25 people, no other description provided (23 froze), 221 episodes

	
Lab, TUG and random walking.

	
IMU (2) ankles

	
Semi-supervised approach. NN, base training person-independent. Then unsupervised training during use improved performance.

	
E

	
Sensitivity: 95.9%

Specificity: 93.1%

	
Yes




	
Rad 2018 [90] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Probabilistic anomaly detection approach using denoising autoencoder. Person-independent model trained to recognize normal gait (trained using non-FOG data), 1 s windows. Compared CNN trained using non-FOG (unsupervised) and FOG (supervised) data for comparison.

	
-

	
Proposed model:

AUC: 77%

Supervised model:

AUC: 84%

	
No




	
El-Attar 2019 [91] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (1) left shank

	
Combined 1D discrete wavelet transform with FFT features, and used NN for classification. Person-specific detection performance based on classifying FOG episode occurrences.

	
E

	
Accuracy: 96.3%

	
No




	
Punin 2019 [92,93]

	
1 HC, 1 NFOG-PD, 6 FOG-PD, 27 episodes

	
Lab, straight walking, 180° turns, stair climbing.

	
IMU (2) back of ankles (distal posterior shank)

	
Discrete wavelet transform, signal energy compared to person-independent threshold using 32 s windows (256 samples at 8 Hz), updated every second. Detection performance based on classifying FOG episode occurrences.

	
E

	
Sensitivity: 60.61%

Specificity: 86.66%

	
Yes




	
Mazzetta 2019 [94]

	
7 PD with varying disease severity, tested ON and OFF

	
Simulated apartment, TUG turning both ways, narrow hallways and doorways.

	
IMU/EMG devices shanks (tibialis anterior, gastrocnemius medialis)

	
Multi-stage thresholds using gyroscope and surface EMG. Gyro signal and threshold used to identify beginning and end of each step, then custom R feature compared to person-independent threshold distinguished FOG. Detection performance based on classifying individual steps.

	
E

	
False positive rate 5%

False negative rate 2%

	
No




	
FOG Prediction




	
Mazilu 2013 [45] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
Assumed duration of pre-FOG class (1–6 s). 3 class decision tree classifier (pre-FOG, FOG, not FOG) and 1 s window for feature extraction. Person-specific, prediction performance based on classification of individual windows.

	
E, S

	
1 participant with assumed 3 s pre-FOG

F1-score: 0.56

	
No




	
Mazilu 2015 [95] **

	
11 FOG-PD

	
Lab, walking with cognitive and manual tasks: straight, 180° and 360° turns, narrow spaces and hospital circuit involving elevator, unexpected stops start and turns.

	
Electrocardio-gram (1) (ECG) chest, galvanic skin response (1) (fingertip)

	
Assumed Pre-FOG duration (3 s) used for feature selection. Feature extraction used 3 s window. Multivariate Gaussian distribution used in anomaly detection model. Person-specific model for each individual. Instead of pre-defined pre-FOG length, model decision threshold set manually. Prediction based on number of FOG episode occurrences.

	
E, S

	
SC data predicted 132/184 (71.3%) of FOG episode occurrences on average 4.2 s in advance, 71 false positives.

	
No




	
Handojoseno 2015 [96]

	
16 FOG-PD, 404 episodes

	
Lab, TUG.

	
EEG, head

	
Person-independent NN trained with 462, 1 s data segments for each class, tested on 172 segments. Extracted multiple frequency-based features using FFT and wavelets, multilayer perceptron NN for classification. Defined pre-FOG as data between 5 s and 1 s prior to FOG.

	
E, S

	
Sensitivity: 86%

Precision: 74.4%

	
No




	
Zia 2016 [97] *

	
3 chosen randomly from Daphnet

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (1) left shank

	
Person-specific layered recurrent NN. Detection applied to the 5 s prior to FOG. One participant had best results, trained on 9 episode occurrences, tested on 15.

	
-

	
Best participant:

Sensitivity: 30%

Precision: 89%

	
No




	
Palmerini 2017 [98] **

	
18 FOG-PD (11 froze), 180 episodes

	
Lab, walking with cognitive and manual tasks: straight, 180° and 360° turns, narrow spaces and hospital circuit involving elevator, unexpected stops start and turns.

	
IMU (3) ankles, lower back

	
Assumed pre-FOG as 2 s before FOG. Features extracted from 2 s windows. Linear discriminant analysis to classify pre-FOG vs normal gait windows. Person-independent model.

	
E, S

	
Sensitivity: 83%

Specificity: 67%

	
No




	
Handojoseno 2018 [99]

	
16 FOG-PD

	
Lab, TUG.

	
EEG, head

	
Person-independent NN trained with 462, 1 s data segments for each class, tested on 172. Predict FOG by classifying data segment 5 s prior to freeze with Bayesian NN.

	
E, S

	
Sensitivity: 85.86%

Specificity: 80.25%

	
No




	
Torvi 2019 [100] *

	
10 FOG-PD (8 froze), 237 episodes

	
Lab, straight walking, 180° turns, random instructions and simulated ADL.

	
Acc (3) left shank, left thigh, lower back

	
LSTM and RNN with 2 transfer learning approaches. Found best performance with LSTM, trained network then added person-specific final layer. Examined set pre-FOG duration: 1, 3 and 5 s.

	
-

	
Predicted FOG up to 5 s in advance with >90% accuracy

	
No








* Daphnet dataset originally collected by Bachlin et al. [24] (n = 10, 8 froze during testing). A total of 237 FOG episodes (8 participants OFF, 2 ON who claimed to freeze often while ON). Accelerometers on left shank, left thigh, and lower back. ** CuPiD dataset originally collected by Mazilu et al. [101] (n = 18, 11 froze during testing). 180 FOG episodes (ON/OFF state not mentioned in original article, subsequently reported ON state [58]). [52] reported 182 FOG episodes and [58] 