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Abstract: Phase difference measurement of sinusoidal signals can be used for phase error calibration
of the spaceborne single-pass interferometric synthetic aperture radar (InSAR) system. However,
there are currently very few papers devoted to the discussion of phase difference measurement of
high-frequency internal calibration signals of the InSAR system, especially the discussion of sampling
frequency selection and the corresponding measuring method when the high-frequency signals are
sampled under the under-sampling condition. To solve this problem, a phase difference measurement
method for high-frequency sinusoidal signals is proposed, and the corresponding sampling frequency
selection criteria under the under-sampling condition is determined. First, according to the selection
criteria, the appropriate under-sampling frequency was chosen to sample the two sinusoidal signals
with the same frequency. Then, the sampled signals were filtered by limited recursive average filtering
(LRAF) and coherently accumulated in the cycle of the baseband signal. Third, the filtered and
accumulated signals were used to calculate the phase difference of the two sinusoidal signals using
the discrete Fourier transform (DFT), digital correlation (DC), and Hilbert transform (HT)-based
methods. Lastly, the measurement accuracy of the three methods were compared respectively by
different simulation experiments. Theoretical analysis and experiments verified the effectiveness of
the proposed method for the phase error calibration of the InSAR system.

Keywords: interferometric synthetic aperture radar (InSAR); phase error calibration; phase difference
measurement; under-sampling; coherent accumulation

1. Introduction

Phase difference measurement of sinusoidal signals [1–9] is one of the most important research
topics in applications such as phase error calibration of the spaceborne single-pass interferometric
synthetic aperture radar (InSAR) system [10–13], power system monitoring [14], radio frequency
communication [15], and laser ranging [16]. For the spaceborne single-pass InSAR system, a possible
interferometric phase error can arise from relative phase differences between the two receiver channels,
because the two signal receivers are not identical mechanically or thermally, and the signal path length
from receiving antenna to electronics is vastly different because of the 60 m baseline [12]. Therefore,
an internal calibration signal with common reference is distributed to the antennas over an optical
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fiber cable to the deployed antenna [10–13], and the phase difference of the internal calibration signals
(usually sinusoidal signals) received separately from the primary and secondary antennas needs to
be measured. More than that, the frequency of the calibration signal is generally high. For example,
the frequency of the calibration signal of the InSAR system on the Shuttle Radar Topography Mission
(SRTM) is as high as 263 MHz [10]. Due to the limitation of the A/D converter itself, the sampling
frequency cannot be made too high, so the signal can only be sampled by under-sampling [17].

Regarding the phase difference measurement of sinusoidal signals, many different methods have
been proposed, including discrete Fourier transform (DFT) [18,19], digital correlation (DC) [20], Hilbert
transform (HT) [21], least squares (LS) [22], independent component analysis (ICA) [23], and zero
cross detection (ZCD) [24] based methods. In Reference [18], considering the negative frequency
contribution, a new DFT-based algorithm for phase difference measurement of extreme frequency
signal is proposed. The phase difference calculation formula under different windows is deduced in
detail. Compared with the traditional DFT-based phase difference measurement algorithm, the new
algorithm has stronger spectral leakage suppression capability and higher precision. In Reference [19],
considering the spectral superposition of real signals, a new modulation and DFT-based estimation
method is proposed which obtains the phase difference by combining the estimated signal frequency
and four DFT samples of the modulated signal. However, the above DFT-based phase difference
measurement methods have a drawback in that a complete sampling cycle is required for calculation.
In Reference [20], an all-digital phase measurement method based on cross-correlation analysis is
proposed, and the measurement errors caused by sampling quantization, intrinsic white noise, and
non-whole-cycle sampling are analyzed. This method is named the digital correlation (DC)-based
method in this paper. In Reference [21], a phase difference estimation method based on data expansion
and HT is proposed. This method obtains the phase difference estimation by data expansion, HT,
cross-correlation, autocorrelation, and weighted phase averaging which can suppress the end effect of
the HT effectively. In Reference [22], a new algorithm for phase difference measurement of sinusoidal
signals based on LS is proposed. The algorithm uses digitized samples of the input signal and can
determine the amplitude and phase of the two signals simultaneously. Compared with the DFT-based
method, this algorithm not only has the advantages of good filtering characteristics and high precision,
but also filters out high-frequency components, direct current components, and white noise and can
adjust the length of the data window according to the requirements of accuracy and calculation speed.
In Reference [23], a robust phase difference measurement method is proposed which uses ICA to
separate sinusoidal signals and noise and has strong robustness and accuracy. The ZCD-based method
proposed in Reference [24] has a relatively simple principle and is relatively easy to implement in
hardware and software, but it is susceptible to interference from noise and harmonics and has poor
real-time performance.

However, there are currently very few papers devoted to the discussion of phase difference
measurement of high-frequency internal calibration signals of the InSAR system, especially the
discussion of sampling frequency selection when the high-frequency signals are sampled under the
under-sampling condition. Under such conditions, the initial phases of the sampled signal and the
original high-frequency internal calibration signal will be the same, opposite or irrelevant which
is different from the general situation. Therefore, the selection of the sampling frequency becomes
very important.

In response to the problems mentioned above, the phase difference measurement of high-frequency
sinusoidal signals is discussed in this paper, and the corresponding sampling frequency selection
criteria under the under-sampling condition is also determined. According to the previous analysis, the
DFT-based method is the classical frequency domain measurement method which can be realized by
fast Fourier transform (FFT) and can effectively suppress the influence of random noise and harmonics.
The DC-based method is the classical time domain measurement method which has a strong ability to
suppress random noise; the HT-based method can make real-time measurement of phase difference,
and, with the progress of the computer and signal processing technology, the method will continue
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to overcome the difficulty in instrument design and improve the measurement accuracy. In view of
the advantages and representativeness of these three methods, we chose to apply them to the phase
difference measurement of high-frequency signals in the phase error calibration of the InSAR system
and analyzed and compared them. The specific application process was as follows: Firstly, according
to the selection criteria, the appropriate under-sampling frequency was chosen to sample the two
sinusoidal signals with the same frequency. Then, the sampled signals were filtered by the limited
recursive average filtering (LRAF) and coherently accumulated in the cycle of the baseband signal.
Thirdly, the filtered and accumulated sampled signals were used to calculate the phase difference of
the two sinusoidal signals by using the DFT-, DC-, and HT-based methods. Lastly, the measurement
accuracy of the three methods were compared, respectively, by the different simulation experiments.
The experimental results showed that the proposed method in this paper is suitable for the phase
difference measurement of the high-frequency internal calibration signals in the InSAR system and can
improve the accuracy of the phase difference measurement results.

2. Selection of Sampling Frequency

In this section, the selection criteria of the sampling frequency for the sinusoidal signal under the
under-sampling condition is deduced by mathematical formulas and diagrams.

Considering a sinusoidal signal s(t) and its mathematical expression:

s(t) = A cos(2π f t + ϕ) (1)

where A is the unknown amplitude, f the frequency, t the time, and ϕ the unknown initial phase
(−π < ϕ ≤ π). Assuming that the sinusoidal signal is sampled with the frequency fs, it can be known
from the Nyquist sampling theorem that fs must be greater than or equal to 2 f to accurately recover the
original signal. Especially when it is necessary to measure the phase difference between two sinusoidal
signals, fs must be much larger than 2 f . However, when the signal frequency itself is very high, as
the signal frequency increases, the sampling frequency will also become higher and higher. When
the sampling frequency is high to a certain extent, it will be difficult to achieve under the existing
equipment and technical conditions, which makes it difficult to sample the high frequency signal.
Therefore, it is necessary to reduce the sampling frequency according to the band-pass sampling
theorem [25], that is, to use the under-sampling method to sample the signal. Next, we will discuss the
selection of the sampling frequency and its value range.

The spectrum of the signal s(t) is shown in Figure 1a, where ω means the angular frequency, f is
the frequency of the signal, the vertical upward arrow represents the amplitude spectrum, and the
solid black dot represents the phase spectrum. Figure 1b is the spectrum of the sampled signal ss(t).
The spectral expression of the sampled signal, ss(t), is as follows:

Ss(ω) =
(
πe− jφδ(ω+ 2π f ) + πe jφδ(ω− 2π f )

)
∗

fs
+∞∑

n=−∞
δ(ω− n · 2π fs)

= π fse− jφ
+∞∑

n=−∞
δ(ω+ 2π f − n · 2π fs)+

π fse jφ
+∞∑

n=−∞
δ(ω− 2π f − n · 2π fs)

(2)
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Figure 1. Signal spectrum schematic: (a) Original signal spectrum; (b) signal spectrum after sam-
pling; (c) signal spectrum after low-pass filtering (case 1); (d) signal spectrum after low-pass filter-
ing (case 2). 
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Obviously, in order to avoid spectral aliasing of the sampled signal, the following condition 
must be met between the sampling frequency, sf , and the signal frequency, f : 

, 1, 2,3,sf nf f n− + ≠ =   (3)

That is: 

2 , 1, 2,3,
2s

f ff n
n n

≠ = =   (4)

After passing through a filter with a gain of 1 sf  and a passband range of 0 0.5 sf , the rest 
is the spectrum of the baseband signal. At this time, there may be two cases, as shown in Figure 1c,d, 
where the part marked with “1n” is the result of shifting the spectrum of the original signal to the 
right by n times, and the part marked with “2n” is the result of shifting the spectrum of the original 
signal by n times. 

(1) In the case shown in Figure 1c, the condition as follows must be met: 
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Figure 1. Signal spectrum schematic: (a) Original signal spectrum; (b) signal spectrum after sampling;
(c) signal spectrum after low-pass filtering (case 1); (d) signal spectrum after low-pass filtering (case 2).

Obviously, in order to avoid spectral aliasing of the sampled signal, the following condition must
be met between the sampling frequency, fs, and the signal frequency, f :

− f + n fs , f , n = 1, 2, 3, · · · (3)

That is:

fs ,
2 f
n

=
f

n/2
, n = 1, 2, 3, · · · (4)

After passing through a filter with a gain of 1/ fs and a passband range of 0 ∼ 0.5 fs, the rest is the
spectrum of the baseband signal. At this time, there may be two cases, as shown in Figure 1c,d, where
the part marked with “1n” is the result of shifting the spectrum of the original signal to the right by n
times, and the part marked with “2n” is the result of shifting the spectrum of the original signal by
n times.

(1) In the case shown in Figure 1c, the condition as follows must be met:

0 < f − n fs < 0.5 fs, n = 1, 2, 3, · · · (5)

That is:
f

n + 0.5
< fs <

f
n

, n = 1, 2, 3, · · · (6)

The resulting baseband signal spectrum at this time is:

Y(ω) = πe− jφδ(ω+ 2π f − 2πn fs) + πe jφδ(ω− 2π f + 2πn fs) (7)

The reconstructed baseband signal after inverse Fourier transform is:

y(t) = cos(2π( f − n fs)t + ϕ) = cos(2π f0t + ϕ0) (8)

where f0 is the frequency of y(t) and ϕ0 is the initial phase of y(t). Then, as can be seen from
Equation (8): {

f0 = f − n fs
ϕ0 = ϕ

(9)
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That is to say, the initial phase of the baseband signal, y(t), is the same as the initial phase of the
signal s(t).

(2) In the case shown in Figure 1d, the condition as follows must be met:

0 < − f + n fs < 0.5 fs, n = 1, 2, 3, · · · (10)

That is:
f
n
< fs <

f
n− 0.5

, n = 1, 2, 3, · · · (11)

The resulting baseband signal spectrum at this time is:

Y(ω) = πe− jφδ(ω− 2π f + 2πn fs) + πe jφδ(ω+ 2π f − 2πn fs) (12)

The reconstructed baseband signal after inverse Fourier transform is:

y(t) = cos(−2π( f − n fs)t−ϕ) = cos(2π f0t + ϕ) (13)

As can be seen from Equation (13): {
f0 = − f + n fs
ϕ0 = −ϕ

(14)

That is to say, the initial phase of the baseband signal, y(t), is opposite to the initial phase of the
signal, s(t).

From the above analysis, the following conclusions can be drawn: high-frequency sinusoidal
signals can be reconstructed based on the frequency and initial phase of the low frequency baseband
signal, and the phase difference of the two sinusoidal signals with the same frequency can be measured
by selecting the sampling frequency that satisfies the conditions of Equations (6) or (11).

3. Signal Processing Based on Limited Recursive Average Filtering and Coherent Accumulation

In this section, the signal processing process based on limited recursive average filtering (LRAF)
and coherent accumulation (CA) under under-sampling conditions is discussed. For a detection system,
the preprocessing of the collected signals is an essential part in the whole measurement process. If
we want to measure the phase difference, the collected signals should be preprocessed to eliminate
the effects of the noise to some extent. In order to minimize the influence of the noise on the phase
difference measurement, the preprocessing step used in this paper is divided into two parts: LRAF
and CA.

3.1. Signal Sampling

For the case where the frequency of the calibration signal in the InSAR system is high,
under-sampling should be selected to sample the signal according to the band-pass sampling
theorem [25]. Therefore, the two sinusoidal signals with the same frequency can be sampled by
selecting the appropriate sampling frequency according to the selection criteria described in Section 2.
Here, we assume that the sampling frequency satisfies the condition in Equation (6), the total length of
the sampled signal is N points, the number of sampling points in the baseband signal’s period is N0,
and the relationship between N and N0 is N = m ·N0 (m is a positive integer). Then, the two sampled
signals are:

ŝ1(kT) = A1 cos(2π( f0 + n fs)kT + ϕ1) + n1(kT)
= A1 cos(2π f0kT + 2πnk + ϕ1) + n1(kT)
= A1 cos(2π f0kT + ϕ1) + n1(kT), k = 0, 1, 2, · · · , N

(15)
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ŝ2(kT) = A2 cos(2π( f0 + n fs)kT + ϕ2)++n2(kT)
= A2 cos(2π f0kT + 2πnk + ϕ2) + n2(kT)
= A2 cos(2π f0kT + ϕ2) + n2(kT), k = 0, 1, 2, · · · , N

(16)

where T is the sampling period (T = 1/ fs), n1(kT) and n2(kT) are the noises of the two receiving
channels, and the physical meaning of other parameters are shown in the explanation part of Equation (1)
in Section 1.

3.2. Limited Recursive Average Filtering

There are many ways to remove signal noise, including the seasonal model method, autoregressive
summation moving average model method, limited recursive average filtering method, etc. In this paper,
the LRAF method was used to deal with high-frequency interference. In this method, Nw sampling
points continuously obtained from each receiving channel were treated as a queue; then, the abnormal
sampling points with clearly distorted amplitudes were deleted according to the preset threshold,
and then the remaining sampling points in the queue were arithmetically averaged. The calculated
arithmetic average value was taken as the new sample value of the sampling point at the center of the
queue, so that the filtering function was implemented. The process was done point by point. When a
new sampling point was obtained, it was placed at the end of the queue, and the sampling point at the
beginning of the original queue (first in first out, FIFO) was discarded, and then the same operation as
before was performed.

The specific steps for performing the LRAF process on s1(kT) and s2(kT) are as follows:

(1) Observing the characteristics of the sampling signals from the two receiving channels, determining
the maximum allowable amplitude difference among adjacent sampling points, respectively,
recorded as the threshold values Ath1 and Ath2;

(2) The length a of the queue, Nw, is determined based on the total number of samples in a baseband
signal period;

(3) From the first sampling point, the limited average filtering is performed point by point. The
queue corresponding to the ith sampling point is [i−Nw/2, · · · , i, · · · , i + Nw/2], the abnormal
sampling points whose amplitudes are clearly distorted are deleted according to Ath1 and Ath2,
then the remaining sampling points in the queue are arithmetically averaged, and then the
calculated arithmetic average value is taken as the new sample value of the ith sampling point.

3.3. Coherent Accumulation

Coherent accumulation refers to the addition or accumulation of the signal-to-noise ratio equal to
the signal-to-noise ratio of a single pulse multiplied by the pulse number of the pulse train. In this
paper, a pulse was equivalent to a signal with a baseband period length. Theoretically, CA improves
the signal-to-noise ratio by a factor of N (N is the number of accumulated pulses). By coherently
accumulating the filtered signal with the period T0(T0 = N0/ fs) of the baseband signal, y(t), more
Gaussian noise can be further filtered out, i.e.,:

ŝ1a(kT) = A1 cos(2π f0kT + ϕ1) + A1 cos(2π f0(k + N0)T + ϕ1)

+ · · ·+ A1 cos(2π f0(k + (m− 1)N0)T + ϕ1) + n1a(kT),
k = 0, 1, 2, · · · , N0 − 1

(17)

ŝ2a(kT) = A2 cos(2π f0kT + ϕ2) + A2 cos(2π f0(k + N0)T + ϕ2)

+ · · ·+ A2 cos(2π f0(k + (m− 1)N0)T + ϕ2) + n2a(kT),
k = 0, 1, 2, · · · , N0 − 1

(18)

Most of the noise interference was already filtered out at this time, so the filtered signals, ŝ1a(kT)
and ŝ2a(kT), can be directly used for the next processing step: phase difference measurement.
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4. Phase Difference Measurement

At present, the measurement methods used to estimate the phase difference between two
sinusoidal signals can be divided into two categories. The first category is the model-based parametric
measurement algorithm, such as the LS, HT, and correlation analysis methods. The second is the
model-based non-parametric measurement algorithm, such as the DFT method. In this paper, the DFT,
DC, and HT methods were used to measure the phase difference of the signals that were processed by
LRAF and CA, and the performance of these methods are compared and analyzed in Section 5. Below
we introduce the three methods separately.

4.1. DFT-Based Method

Among the many phase difference measurement methods, the DFT-based method is widely
used because of its physical meaning, simple implementation, high measurement accuracy, and fast
response speed. This method can transform the signal from the time space to frequency domain
and can effectively suppress the influence of random noise and harmonics. The DFT operations are
performed on the accumulated signals s1a(kT) and s2a(kT) separately, so that the initial phases ϕ1 and
ϕ2 of the two sinusoidal signals can be obtained by:

ϕ1 = ∠
{
DFT(ŝ1a(nT))

∣∣∣
k=1

}
= ∠

{(
N0−1∑
n=0

ŝ1a(nT)e− j 2π
N0

nk
)∣∣∣∣∣∣

k=1

}
(19)

ϕ2 = ∠
{
DFT(ŝ2a(nT))

∣∣∣
k=1

}
= ∠

{(
N0−1∑
n=0

ŝ2a(nT)e− j 2π
N0

nk
)∣∣∣∣∣∣

k=1

}
(20)

Then, the phase difference between the two sinusoidal signals is obtained based on the initial
phase of the two sinusoidal signals:

ϕ = ϕ2 −ϕ1 (21)

4.2. DC-Based Method

The DC is a digitized version of the correlation analysis method. In the DC-based method,
because the correlation between the noise signal and the effective signal is very small, the method
has a good noise suppression ability. Using correlation analysis to calculate the phase difference is
considered to be one of the optimal phase difference calculation methods which has the advantages of
fast calculation speed, strong anti-noise interference ability, and high accuracy. In this method, the
phase difference is obtained by sampling the two noised sinusoidal signals in a full cycle and then
performing cross-correlation operations on them. The analytical expression for the cross-correlation
operation of the two signals is as follows:

Rxy(τ) =
1

T0

∫ T0

0
ŝ1a(t)ŝ2a(t + τ)dt (22)

where Rxy(τ) is the correlation coefficient of the two signals ŝ1a(t) and ŝ2a(t), τ is the time delay between
the two signals, T0 is the period of the baseband signal y(t). Ideally, the signal and noise are not
related to each other, and the noises of the two receiving channels are also uncorrelated. Therefore,
when τ = 0, the correlation coefficient Rxy(τ) will reach the maximum value, and its expression can be
simplified as:

Rxy(0) =
A1A2

2
cos(ϕ2 −ϕ1) (23)
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Thus, the phase difference between the two sinusoidal signals is:

ϕ = ϕ2 −ϕ1 = arccos
(

2Rxy(0)

A1A2

)
(24)

4.3. HT-Based Method

The HT-based method can make real-time measurement of the phase difference and improve the
measurement accuracy. The HT technology was successfully applied to the instantaneous frequency
measurement of signals very early, but its application to phase difference measurement is rarely seen.
The phase difference measurement method based on HT can make real-time measurements of phase
difference, and with the progress of computer and signal processing technology, the method will
continue to overcome the difficulty in instrument design and improve the measurement accuracy.
Therefore, it is more suitable for intelligent detection equipment and other modern detection equipment.

Suppose that the HT of s1a(kT) and s2a(kT) are y1(t) and y2(t), respectively, and let:

z1(t) = s1a(kT) × y2(t) (25)

z2(t) = s2a(kT) × y1(t) (26)

z = z1(t) − z2(t) (27)

r1(t) = s1a(kT) × s2a(kT) (28)

r2(t) = y1(t) × y2(t) (29)

r = r1(t) + r2(t) (30)

At last, the phase difference between the two sinusoidal signals can be obtained by:

ϕ = ϕ2 −ϕ1 = arctg
z
r

(31)

5. Experiments and Results

In order to verify the effectiveness of the method proposed in this paper, some experiments were
carried out using simulated data. The parameters used in the experiments are shown in Table 1.

Table 1. Parameters used in the experiments.

Parameters Value Size

signal-to-noise ratio (SNR) 2 dB
signal frequency ( f ) 200 MHz

sampling frequency ( fs) 33 MHz
total length (N) 10,240

number of points in one baseband signal period (N0) 1024
amplitude of signal 1 (A1) 0.25
amplitude of signal 2 (A2) 0.2

initial phase of signal 1 (ϕ1) 30◦

initial phase of signal 2 (ϕ2) 45◦

One of the two simulated sinusoidal signals with noise is shown in Figure 2a. Figure 2b shows
the zoomed-in view of one cycle of Figure 2a. Figure 2c is one cycle of the signal filtered by LRAF, and
Figure 2d is one cycle of the signal filtered by CA. Comparing Figure 2c,d with Figure 2b, respectively,
it can be seen that both the LRAF and CA have obvious filtering effects, because the noise is greatly
weakened, but the effect of CA is better than the LRAF.
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phase difference measurement errors by the DFT, DC, and HT-based methods before and after the 
LRAF and CA are shown in Figure 3. Figure 3a shows the measurement error of the conventional 
DFT-based method, Figure 3b shows the measurement error of the DFT-based method after perform-
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urement error of the DC-based method after performing the LRAF, and Figure 3f shows the meas-
urement error of the DC-based method after performing the CA. Figure 3g shows the measurement 
error of the HT-based method, Figure 3h shows the measurement error of the HT-based method after 
performing the LRAF, and Figure 3i shows the measurement error of the HT-based method after 
performing the CA. It can be seen from Figure 3a–c that the preprocessing of the received signal had 
the most obvious effect on the DFT-based method for the measurement accuracy improvement, and 
the coherent accumulation had a significant effect which reduced the error by five times, but the 
LRAF had no effect at all. However, the contribution of these two filtering strategies to the DC- and 
HT-based methods was not as obvious as the DFT-based method. From Figure 3d–i, we know that 
the phase difference measurement accuracy of the DC- and HT-based methods had only a certain 
degree of improvement after the LRAF and CA completed, and the degree of improvement for the 
two methods was similar. 

Figure 2. Comparison of the signals before and after limited recursive average filtering and coherent
accumulation: (a) simulated sinusoidal signal with noise; (b) zoomed-in view of one cycle of (a); (c)
one cycle of the filtered signal by limited recursive average filtering (LRAF); (d) one cycle of the filtered
signal by coherent accumulation (CA).

Ten thousand phase difference measurement simulation experiments were carried out, and the
phase difference measurement errors by the DFT, DC, and HT-based methods before and after the LRAF
and CA are shown in Figure 3. Figure 3a shows the measurement error of the conventional DFT-based
method, Figure 3b shows the measurement error of the DFT-based method after performing the
LRAF, and Figure 3c shows the measurement error of the DFT-based method after performing the CA.
Figure 3d shows the measurement error of the DC-based method, Figure 3e shows the measurement
error of the DC-based method after performing the LRAF, and Figure 3f shows the measurement error
of the DC-based method after performing the CA. Figure 3g shows the measurement error of the
HT-based method, Figure 3h shows the measurement error of the HT-based method after performing
the LRAF, and Figure 3i shows the measurement error of the HT-based method after performing
the CA. It can be seen from Figure 3a–c that the preprocessing of the received signal had the most
obvious effect on the DFT-based method for the measurement accuracy improvement, and the coherent
accumulation had a significant effect which reduced the error by five times, but the LRAF had no effect
at all. However, the contribution of these two filtering strategies to the DC- and HT-based methods
was not as obvious as the DFT-based method. From Figure 3d–i, we know that the phase difference
measurement accuracy of the DC- and HT-based methods had only a certain degree of improvement
after the LRAF and CA completed, and the degree of improvement for the two methods was similar.
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Figure 3. Phase difference measurement error by discrete Fourier transform (DFT)-, digital correlation
(DC)-, Hilbert transform (HT) based methods before and after the limited recursive average filtering
and coherent accumulation: (a) measurement error of the traditional DFT method; (b) measurement
error of the DFT method after performing the limited recursive average filtering; (c) measurement
error of the DFT method after performing coherent accumulation; (d) measurement error of the
traditional DC method; (e) measurement error of the DC method after performing the limited recursive
average filtering; (f) measurement error of the DC method after performing coherent accumulation;
(g) measurement error of the HT method; (h) measurement error of the HT method after performing
the limited recursive average filtering; (i) measurement error of the HT method after performing the
coherent accumulation.

Figure 4 shows the effect of the preprocessing on the performance of the DFT-, DC-, and HT-based
phase difference measurement methods under different SNRs. In this experiment, the total number
of accumulation cycles was 10, and the SNR varied from 1 dB to 50 dB. Figure 4a,b shows the mean
and standard deviation of the measurement error of the phase difference which is measured by the
DFT-based method after adding different preprocessing steps, respectively. It can be seen from the
two figures that, when the SNR varies from 1 dB to 50 dB, the mean and standard deviation of the
measurement error gradually decreased and approached zero at last. However, the measurement
accuracy was not improved after the two received signals were filtered by the LRAF, but it was greatly
improved after the two received signals were filtered by the CA. More than that, the measurement
error of the phase difference was almost negligible when the SNR was greater than 12 dB. Therefore,
we can conclude that the CA is very helpful for the performance improvement of the DFT-based phase
difference measurement method if the SNR of the signal is poor, while LRAF does not make much
sense. Figure 4c,d shows the mean and standard deviation of the measurement error of the phase
difference which is measured by the DC-based method after adding different preprocessing steps,
respectively. Figure 4e,f shows the mean and standard deviation of the measurement error of the
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phase difference which is measured by the HT-based method after adding different preprocessing
steps, respectively. From Figure 4c–f, we know that the phase difference measurement accuracy of
the DC- and HT-based methods is better than the DFT-based method, but it has only a certain degree
of improvement after the LRAF and CA are completed, and the degree of improvement for the two
methods is similar. Similar to the DFT-based method, the measurement error of the phase difference is
almost negligible when the SNR is greater than 12 dB. Therefore, we can conclude that LRAF and CA
do not contribute much to the performance improvement of the CA- and HT-based phase difference
measurement methods. In general, when the signal-to-noise ratio of the signal is greater than 12 dB, the
phase difference measurement can be directly performed using the DFT-, DC-, and HT-based methods.

1 

Figure 4. The effect of the preprocessing on the performance of the DFT-, DC-, and HT-based
phase difference measurement methods with different SNR: (a) mean of the measurement error of
the DFT-based method; (b) standard deviation of the measurement error of the DFT-based method;
(c) mean of the measurement error of the DC-based method; (d) standard deviation of the measurement
error of the DC-based method; (e) mean of the measurement error of the HT-based method; (f) standard
deviation of the measurement error of the HT-based method.
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Figure 5a,b show the mean and standard deviation of the phase difference measurement error
with a SNR of 2 dB and an accumulative cycle number from 1 to 100, respectively. As can be seen from
Figure 5a,b, the mean and standard deviation of the phase error also become smaller and smaller as
the accumulative cycle number increases, and even negligible when the accumulative cycle number is
greater than 20.
 

2 

 
Figure 5. Effects of the different accumulation cycles on each method: (a) mean of measurement error;
(b) standard deviation of measurement error.

Table 2 shows the mean and standard deviation of the measurement error by different phase
difference measurement methods with a SNR of 2 dB and an accumulative cycle number of 10. As
can be seen from the table, the measurement accuracy was improved after LRAF and CA compared
with the direct measurement of the phase difference of the original sinusoidal signal. However, it can
also be seen that LRAF had no effect on the DFT-based method but had an effect on the other two
phase difference measurement methods; CA can greatly help improve the accuracy of various phase
difference measurement methods and has the most obvious effect on DFT method. However, it can be
seen that LRAF had no effect on the DFT-based method but had an effect on the other two methods; CA
is helpful for improving the measurement accuracy of various phase difference measurement methods
and had the most obvious effect on the DFT-based method.

Table 2. The mean and standard deviation of the measurement error by different phase difference
measurement methods.

Measurement
Methods Measurement Error Original

Signal LRAF Only CA Only LRAF and CA

DC-based method
Mean (◦) −0.0281 −0.0276 −0.0235 −0.0217

Standard deviation (◦) 0.6852 0.6391 0.6348 0.6292

DFT-based method
Mean (◦) −0.0644 −0.0601 −0.0365 −0.0305

Standard deviation (◦) 1.9611 1.9578 0.6257 0.6252

HT-based method
Mean (◦) −0.0451 −0.0426 −0.0357 −0.0361

Standard deviation (◦) 0.7114 0.6447 0.6374 0.6278

6. Discussion

According to the experimental results in Section 5, both LRAF and CA can effectively filter out
noise, but the effect of CA is much better than LRAF. We think that this is mainly because CA makes
use of the consistency of the waveform of each period of the sinusoidal signal, but LRAF only uses the
method of finding the local average of the adjacent sampling points, and the filtering effect is limited.
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Secondly, both LRAF and CA can help the DFT-, DC-, and HT-based phase difference measurement
methods improve their measurement accuracy, but they are not very helpful for the DC- and HT-based
methods. The main reason may be that the DC- and HT-based phase difference measurement methods
themselves have a strong ability to suppress random noise.

Third, when the SNR is small, both LRAF and CA have obvious filtering effects on the signal, but
when the SNR is large, the preprocessing has no effect on the measurement accuracy. That is because
LRAF and CA only play the role of filtering or suppressing noise; the noise in the signal is relatively
small when the SNR is relatively large, so there is no noise that can be filtered even with LRAF and CA.

Fourth, the number of CA cycles has a great influence on the phase difference measurement results.
The higher the number of cycles, the more obvious the filtering effect and the higher the accuracy of
the corresponding phase difference measurement. This is in line with the law: the larger the number of
samples, the more accurate the measurement results.

In addition, it is worth mentioning that the effects of LRAF and CA were only verified on the DFT-,
DC-, and HT-based phase difference measurement methods in this paper, so further work can be done
in the future to verify them on other phase difference measurement methods, such as the least squares
(LS) method, independent component analysis (ICA) method, and zero cross-detection (ZCD) method.

7. Conclusions

In order to solve the phase difference measurement problem of the high-frequency internal
calibration signal of the InSAR system, a phase difference measurement method based on LRAF and
CA under under-sampling conditions was proposed in this paper, and the sampling frequency selection
criteria under the under-sampling condition were determined. Experimental results confirmed the
validity of the method. Through theoretical analysis and experiments, the conclusions obtained in this
paper are as follows:

(1) The sampling frequency used to under-sample high-frequency sinusoidal signals should meet
the conditions in Equations (6) or (11).

(2) Both LRAF and CA can effectively filter out noise, but the effect of CA is much better than LRAF.
(3) Both LRAF and CA can help the DFT-, DC-, and HT-based phase difference measurement

methods improve their measurement accuracy, but they are not very helpful for the DC- and
HT-based methods.

(4) When the SNR is small (<12 dB under the simulation condition of this paper), both LRAF and CA
have obvious filtering effects on the signal, but when the SNR is large, the preprocessing has no
effect on the measurement accuracy.

(5) The number of CA cycles has a great influence on the phase difference measurement results. The
higher the number of cycles, the more obvious the filtering effect and the higher the accuracy of
the corresponding phase difference measurement.

In summary, the phase difference measurement method proposed in this paper is suitable for the
phase difference measurement of the high-frequency internal calibration signal of the InSAR system for
phase error calibration. This method can effectively filter out noise in the sinusoidal signal, improve
the phase difference measurement accuracy of the sinusoidal signal, and greatly reduce the phase error.
The simulation experiments in Section 5 demonstrate the effectiveness of the proposed method.
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