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Abstract: Objective: Suboptimal insulin dosing in type 1 diabetes (T1D) is frequently associated with
time-varying insulin requirements driven by various psycho-behavioral and physiological factors
influencing insulin sensitivity (IS). Among these, physical activity has been widely recognized as a
trigger of altered IS both during and following the exercise effort, but limited indication is available for
the management of structured and (even more) unstructured activity in T1D. In this work, we present
two methods to inform insulin dosing with biosignals from wearable sensors to improve glycemic
control in individuals with T1D. Research Design and Methods: Continuous glucose monitors (CGM)
and activity trackers are leveraged by the methods. The first method uses CGM records to estimate IS
in real time and adjust the insulin dose according to a person’s insulin needs; the second method uses
step count data to inform the bolus calculation with the residual glucose-lowering effects of recently
performed (structured or unstructured) physical activity. The methods were tested in silico within the
University of Virginia/Padova T1D Simulator. A standard bolus calculator and the proposed “smart”
systems were deployed in the control of one meal in presence of increased/decreased IS (Study 1)
and following a 1-hour exercise bout (Study 2). Postprandial glycemic control was assessed in terms
of time spent in different glycemic ranges and low/high blood glucose indices (LBGI/HBGI), and
compared between the dosing strategies. Results: In Study 1, the CGM-informed system allowed
to reduce exposure to hypoglycemia in presence of increased IS (percent time < 70 mg/dL: 6.1%
versus 9.9%; LBGI: 1.9 versus 3.2) and exposure to hyperglycemia in presence of decreased IS (percent
time > 180 mg/dL: 14.6% versus 18.3%; HBGI: 3.0 versus 3.9), tending toward optimal control. In
Study 2, the step count-informed system allowed to reduce hypoglycemia (percent time < 70 mg/dL:
3.9% versus 13.4%; LBGI: 1.7 versus 3.2) at the cost of a minor increase in exposure to hyperglycemia
(percent time > 180 mg/dL: 11.9% versus 7.5%; HBGI: 2.4 versus 1.5). Conclusions: We presented and
validated in silico two methods for the smart dosing of prandial insulin in T1D. If seen within an
ensemble, the two algorithms provide alternatives to individuals with T1D for improving insulin
dosing accommodating a large variety of treatment options. Future work will be devoted to test the
safety and efficacy of the methods in free-living conditions.

Keywords: continuous glucose monitors; activity trackers; smart insulin dosing; type 1 diabetes

1. Introduction

In health, blood glucose (BG) levels are maintained within a safe range (typically 70–180 mg/dL)
by a complex neurohormonal network that acts toward minimizing hypoglycemia (i.e., BG < 70 mg/dL)
and attenuating exposure to hyperglycemia (i.e., BG > 180 mg/dL). Insulin is the primary regulator of
glucose homeostasis, and the glucose and insulin subsystems interact via feedback control signals to
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quickly respond to glycemic perturbations (e.g., following meals) and bring BG to the pre-perturbation
level [1]. In type 1 diabetes (T1D), the sophisticated mechanisms regulating glucose homeostasis
are degraded because of the autoimmune destruction of insulin-producing pancreatic β-cells, which
renders internal insulin secretion practically absent [2]. Consequently, individuals with T1D are unable
to endogenously counteract BG perturbations and need to rely on exogenous insulin to control their
BG levels.

The treatment of T1D is generally based on insulin replacement strategies driven by frequent
BG monitoring. Insulin therapy commonly implements multiple daily insulin injections, combining
short- and long-acting insulin analogs, or continuous subcutaneous insulin infusion, where insulin
pumps are programmed to almost continuously deliver small amounts of insulin, augmented by larger
doses around meals [3]. To inform insulin dosing decisions, sparse self-monitoring of capillary glucose
(SMBG) or continuous (i.e., up to every five minutes) monitoring of interstitial glucose (CGM) provide
alternatives to individuals with T1D for monitoring their BG levels [4,5].

Despite the improving accuracy of BG monitoring devices [5,6] and the growing development
of decision support systems [7,8], suboptimal insulin replacement remains common in T1D, leading
to excess mortality and complication rates that are still significantly higher when compared to the
general population [9,10]. In fact, the quality of glycemic control in individuals with T1D is heavily
dependent on multiple daily treatment decisions by the patients accounting for a variety of factors
influencing insulin demand (e.g., circadian rhythms, physical activity, and psychological stress). The
main mediator of time-varying insulin requirements is insulin sensitivity (IS), a metabolic parameter
describing how sensitive the body is to the action of insulin, which summarizes into a single number the
effect of increasing plasma insulin on the enhancement of glucose uptake and inhibition of endogenous
glucose production [11–13]. In order to compensate for systematic intraday IS variations, physicians
periodically review SMBG or CGM traces to adjust basal rate, insulin-to-carbohydrate ratio (CR),
and correction factor (CF) profiles. Early research is trying to automatize this task by developing
algorithms for titrating individual therapy parameters, including learning approaches with structured
SMBGs [14–18] and CGM-based decision support systems capable of providing feedbacks to clinicians
regarding suggested therapy changes [7,19–21].

While systematic IS variations can be compensated through optimally tuned time-varying
treatment parameters, superimposed IS fluctuations triggered by acute, non-systematic events are more
challenging to handle and further complicate insulin dosing. Among the various psycho-behavioral
and physiological factors shown to influence insulin requirements [22–26], physical activity remains a
major trigger of altered IS both during and following the exercise bout [27–32]. Due to the relevant BG
changes accompanying exercise sessions, the American Diabetes Association has released guidelines
suggesting that people with T1D adjust their insulin dose and carbohydrate intake to account for
physiological changes resulting from structured exercise bouts [33]. However, these guidelines are
neither intended to nor can provide optimal BG management for every person, since the optimal
timing, direction, and magnitude of treatment adjustment can vary by person and their respective
situations [31]. Moreover, the range of physical activity influencing BG metabolism in T1D is broader
than structured exercise, with even light, unstructured activity having a significant impact on BG
levels [34–37].

Whether triggered by a structured exercise session, a light walk, or a situation of increased
psychological stress, episodic IS changes represent a common source of imperfect insulin replacement,
typically leading to worsened quality of glycemic control and higher glucose variability (GV). However,
“smart” bolus calculators informed by estimated time-varying insulin needs could allow for the
tailoring of prandial insulin doses to the metabolic state of a person, therefore mitigating the impact of
IS fluctuations on GV and quality of glycemic control.

In this work, we present an ensemble of two methods developed by our group to optimize insulin
dosing in individuals with T1D by informing the standard insulin bolus calculation with signals
collected in real-time from wearable sensors. The first method relies on CGM data from minimally
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invasive glucose sensors and uses an estimate of the subject’s current IS state to modulate the insulin
dose; the second method uses physical activity data from ubiquitous activity trackers to inform the
bolus calculation with recently performed (structured or unstructured) physical activity. The design of
two methods driven by different biosignals aims at accommodating the variety of treatment options
offered to individuals with T1D, providing an alternative to people not using a CGM system. While
human clinical trials are needed to test the safety and efficacy of the designed smart bolus calculators
in real-life scenarios, here we present the results from an in-silico validation of the methods within the
University of Virginia (UVA)/Padova T1D simulation platform [38]. Specific scenarios are built to test
the algorithms within their domain of application, and the smart systems are compared to standard
bolus therapy in terms of postprandial GV and quality of glycemic control.

2. Research Design and Methods

2.1. CGM Data to Inform Insulin Dosing

In presence of highly informative CGM measurements and insulin records, real-time IS assessments
can be obtained and leveraged to inform insulin dosing [7]. Specifically, we developed a method to
estimate IS that relies on CGM data and a linear time-invariant model of glucose-insulin dynamics
embedded within an optimally tuned Kalman filter (KF). The KF implementation allows to track IS in
real time by estimating a new IS value every five minutes, as a new CGM data point becomes available.
Insulin pump records (basal/bolus and meal information) are needed to reconstruct the KF inputs
through models of subcutaneous insulin transport and meal absorption. The smart insulin bolus is
then computed by modulating a standard bolus with the ratio of usual IS estimated from historical
data, and a real-time IS assessment computed on demand at the time of the bolus administration. In
a real-life scenario, the IS tracking algorithm can be run on CGM and insulin records gathered over
several weeks (e.g., four) of home monitoring; a 24-hour median IS profile can then be built for each
person, which is representative of his/her usual intraday pattern of sensitivity to insulin action. The
profile embeds IS fluctuations driven by circadian rhythms and systematic behavioral habits, and
is assumed to be compensated for by individual insulin treatment parameters routinely optimized
by treating physicians. After computing the IS profile, indicating with B the standard bolus, the
IS-informed insulin dose (BIS) is calculated in real time as

B = CHO
CR +

BG−BGTGT
CF − IOBBOL

BIS = ISPRF
ISRT

(
CHO
CR −

BG−BGTGT
CF

)
+ IOBBAS

( ISPRF
ISRT
− 1

)
− IOBBOL

(1)

where CHO is the amount of meal carbohydrates, BG is the prevailing CGM value at mealtime, BGTGT

is the glycemic target, IOBBOL/BAS is the insulin on board (IOB) from bolus (BOL) and basal (BAS)
injections, and ISRT/PRF are the IS estimates computed in real time (RT) and drawn for the profile at a
comparable time of day (PRF). Based on the design of the IS-informed bolus calculator, the system
administers a larger insulin dose if an IS level lower than usual is detected, while the bolus is reduced
in presence of heightened IS; of note, if the real-time IS estimate equals the estimate from the profile,
then BIS naturally converges to B.

2.2. Physical Activity Data to Inform Insulin Dosing

This method uses physical activity data collected at frequent intervals to inform the bolus decision
with changes in insulin needs due to recently performed physical activity. In this work, step count
traces are used to track the amount of physical activity performed over time; however, the method
could be easily adjusted to work with any other activity-related signal (e.g., heart rate). Given step
count data, an indicator of accumulated physical activity can be calculated at any time of day as a
weighted sum of previously walked steps; this indicator is referred to as activity on board (AOB) and
translates the prolonged glycemic impact of physical activity into a single number quantifying the
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residual glucose-lowering effects of previously performed activity. Leveraging the AOB concept, the
physical activity-informed insulin bolus is computed at the time of a standard meal (e.g., breakfast,
lunch, dinner) by adjusting the standard bolus based on the deviation between real-time AOB and
routine AOB for the corresponding meal calculated from historical data. In a real-life scenario, the
routine AOB profile is a representation of the physical activity that a person usually accumulates
by the time of each standard meal and can be obtained by evaluating several weeks of step count
data collected through a pedometer or an off-the-shelf activity tracker. The AOB profile embeds the
glycemic impact of systematically performed, routine activity, which is assumed to be accounted for
by individual insulin treatment parameters. Therefore, the activity-informed insulin dosing method
adjusts the insulin bolus only when the accumulated physical activity deviates from the daily routine.
After extracting the AOB profile value for the standard meal associated with a certain bolus B, the
physical activity-informed insulin dose (BPA) is calculated as:

BPA = B−
AOBRT −AOBPRF

AF
(2)

where AOBRT is the real-time AOB assessment, AOBPRF is the routine AOB from the profile previously
computed for the corresponding standard meal, and AF is the subject-specific activity factor, which
converts the AOB deviation from profile into insulin unit equivalents and can be optimized for each
person based on historical data. As mentioned for the CGM-driven method, based on the design of the
physical activity-informed bolus calculator, the system administers a larger insulin dose if a person
has been less active than usual in the hours preceding a certain meal, while the bolus is reduced if the
person has been more active than usual.

2.3. Multi-Source Smart Insulin Dosing

The ensemble of the two presented methods is designed to accommodate the variety of treatment
options available to individuals with T1D. As shown in Figure 1, in presence of highly informative
CGM data, a precise estimate of IS can be obtained in real time and used to inform the insulin dose. On
the other hand, for patients not using a CGM device and relying on SMBG therapy, a simple activity
tracker can be sufficient to mitigate the effects of the main trigger of altered IS, i.e., physical activity.
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2.4. Simulation Studies

Two simulation studies were run within the UVA/Padova T1D Simulator [38], respectively
designed to test each of the proposed smart bolus calculators. The two studies are described below.

Study 1: CGM-Informed Bolus Calculator

A single-meal scenario was simulated for 100 virtual adults under three IS conditions: (a) nominal
IS; (b) increased IS; and (c) decreased IS. The IS variation was simulated for each subject randomly
sampling from a normal distribution centered around the subject’s nominal IS value with a 40%
coefficient of variation. For scenarios (b) and (c), the same simulation was repeated twice, and the
meal was bolused according to the standard or smart bolus calculator, defined above as B and BIS,
respectively. Postprandial glycemic control was assessed for the increased/decreased IS scenarios and
the two meal bolusing strategies in terms of percent time in different glycemic ranges (i.e., < 70 mg/dL
and > 180 mg/dL) and low/high BG indices (LBGI/HBGI – GV indicators introduced in [39–41] and
described below). The glycemic outcomes were then compared between the two runs of simulations (i.e.,
standard versus smart bolus calculator) and against the optimal control achieved in the nominal case.

Study 2: Step Count-Informed Bolus Calculator

A 31-hour study was run in the same population of 100 virtual adult subjects. Across the study,
subjects received three meals (breakfast-lunch-dinner) at 07:00, 13:00, and 19:00, respectively containing
40, 70, and 60 grams of carbohydrates. At 16:00, a 1-hour moderate-intensity exercise bout was
simulated, which was designed to alter the subject’s IS level for up to 12 hours following the bout [27].
For each virtual adult, a step count profile was generated according to the average number of steps per
minute reported in resting and running conditions [42]. No steps were assumed to happen overnight,
between 21:00 and 06:30; in the resting state (i.e., from 06:30 to 21:00, except from exercise), an average of 8
steps/minute was assumed; during exercise, an average of 140 steps/minute was simulated. Inter-subject
variability during rest and exercise was generated according to uniform distributions centered around
the reported average step counts, with 35% and 10% variability, respectively. Throughout the entire
simulation, hypoglycemia treatments were administered at BG < 60 mg/dL during rest and BG <

80 mg/dL during exercise; after a hypoglycemic event, BG was checked every 20 minutes and treatment
was repeated if hypoglycemia was not resolved. For each subject, the simulation was repeated twice,
deploying the standard or step count-informed bolus calculator for the control of the dinner meal.
Postprandial glycemic control was then assessed in terms of percent time spent in different glycemic
ranges, as well as LBGI and HBGI, and compared between the two sets of simulations.

2.5. Glycemic Risk Indices: LBGI and HBGI

LBGI and HBGI are previously introduced GV measures designed to aggregate the frequency and
extent of low and high BG events, respectively, into single numbers [39–41]. The computation of LBGI
and HBGI requires a symmetrization of the BG range based on a logarithmic transformation, which
is then used to associate a measure of hypoglycemic or hyperglycemic risk to each collection of BG
measurements. In formulas, the BG risk function is defined as follows

r(BG) = 10·1.5092
·

{
[log(BG)]1.084

− 5.381
}2

(3)

with low-BG and high-BG risk functions further defined as

rLOW(BG) =

{
r(BG), if BG < 112.5 mg/dL
0, if BG ≥ 112.5 mg/dL

(4)

rHIGH(BG) =

{
0, if BG < 112.5 mg/dL
r(BG), if BG ≥ 112.5 mg/dL

(5)
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which allow to define LBGI and HBGI as

LBGI =
1
N

∑N

i=1
rLOW(BGi) (6)

HBGI =
1
N

∑N

i=1
rHIGH(BGi) (7)

where the average extends to all the BG samples within the considered collection of measurements.
By this definition, a higher LBGI may indicate a large number of mild hypoglycemic events, a small
number of significant events, or a combination of both; and the same applies to HBGI with respect to
hyperglycemia.

3. Results

Throughout this section, results obtained with the use of the standard bolus calculator are reported
in light gray, while results obtained with the use of either proposed smart system are reported in
dark gray.

Study 1: CGM-Informed Bolus Calculator

IS was estimated in the hours preceding the controlled meal to determine the value of ISRT; ISPRF

was considered to be the IS value estimated for each subject in the nominal IS scenario. Performances
of the standard and smart bolus calculator in presence of decreased/increased IS are shown in Figure 2,
as compared to the glycemic control achieved with optimal therapy parameters in the nominal IS
case. In presence of higher sensitivity, the IS-informed bolus calculator allowed to achieve a relevant
reduction in exposure to hypoglycemia (percent time < 70 mg/dL: 6.1% versus 9.9%; LBGI: 1.9 versus
3.2), without increasing hyperglycemia (percent time > 180 mg/dL: 9.9% versus 8.9%; HBGI: 2.1 versus
1.9). Likewise, when the sensitivity was lower than usual, the smart system decreased exposure to
hyperglycemia (percent time > 180 mg/dL: 14.6% versus 18.3%; HBGI: 3.0 versus 3.9), without relevant
increase to hypoglycemia (percent time < 70 mg/dL: 1.4% versus 0.8%; LBGI: 0.7 versus 0.3). This is
observable also in Figure 3, where the average BG profiles are shown for the different scenarios and
prandial insulin dosing policies. From both figures, it is visible how the use of the smart system allows
to handle IS fluctuations, improving the quality of postprandial glycemic control and tending toward
the performance of optimal insulin therapy parameters.
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achieved in nominal IS conditions (black circle).
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Study 2: Step Count-Informed Bolus Calculator

Each subject’s AOBRT was computed at the time of the dinner meal and compared to the AOBPRF

value previously calculated assuming that the subject did not perform the 1-hour exercise session. A
population value for AF was used, set to 3000 steps/U. Figure 4 shows the envelope of the postprandial
BG traces obtained following a dinner bolus administered based on the standard or smart bolus
calculator; Figure 5 presents a summary of postprandial GV metrics. As visible from the figures, the
use of the smart bolus calculator reduced postprandial hypoglycemia (percent time < 70 mg/dL: 3.9%
versus 13.4%; LBGI: 1.7 versus 3.2) at the cost of a minor increase in exposure to hyperglycemia (percent
time > 180 mg/dL: 11.9% versus 7.5%; HBGI: 2.4 versus 1.5). In addition, the use of the smart system
allowed to reduce the number of hypoglycemia treatments administered following dinner from 35
to seven.
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Figure 5. Study 2 results: Summary of postprandial GV indices obtained with the use of the standard
(light gray) and smart (dark gray) bolus calculator following a 1-hour aerobic exercise session.

4. Conclusions

Suboptimal insulin dosing in T1D is at the root of individuals’ inability to reduce GV and achieve
good glycemic control, therefore representing a source of long-term complications. The periodic review
of glycemic profiles computed manually by treating physicians or automatically through learning
methods and ad hoc algorithms [7,14–21], allows for the optimization of insulin treatment parameters
to account for systematic intraday IS patterns. However, insulin requirements in T1D are highly
variable and impacted by several physiological and psycho-behavioral factors affecting IS [22–26].
Among these, physical activity remains a major challenge for individuals with T1D [28–32], with
aerobic exercise having a delayed impact on individuals’ sensitivity to insulin action lasting for several
hours past the conclusion of the activity bout [27].

In this work, we presented two methods developed at the University of Virginia to inform insulin
dosing in individuals with T1D based on biosignals easily collectable through wearable sensors. The
first method relies on highly informative data from CGM systems; using CGM records and a model
of glucose–insulin interaction embedded within an optimally tuned KF, the method allows to track
IS on demand and inform the bolus calculation with the real-time assessment of a person’s insulin
requirements. The second method does not use glycemic profiles and relies on physical activity data
collected from ubiquitous activity trackers to inform the bolus calculation. Specifically, the method
tracks the amount of physical activity performed by a person in the hours before a meal and adjusts
the prandial insulin dose taking into account the remaining glucose-lowering effects of previously
performed structured and unstructured physical activity (here measured in terms of step count). The
two methods serve different needs, and the aim of this paper is not to compare their performance.
On the contrary, if considered within an ensemble, the two methods provide smart insulin dosing
alternatives to individuals with T1D accommodating a wide range of treatment strategies: in presence
of CGM data, the first method offers an accurate estimates of a person’s insulin needs and can
inform the bolus calculation to compensate for IS variations triggered by many psycho-behavioral and
physiological factors; on the other hand, for patients not using a CGM device and relying on SMBG
therapy, the use of a simple activity tracker can be leveraged to inform insulin dosing and mitigate the
effects of structured and unstructured physical activity on GV and quality of glycemic control. The
methods, as tested in silico within the UVA/Padova T1D Simulator, showed promising performance in
terms of improved postprandial glycemic control compared to standard bolus calculation.

The major limitation of the current study is inevitably related to the limited intra- and inter-subject
variability provided by the UVA/Padova Simulator. Therefore, the mandatory next step entails testing
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the proposed technology in real-life scenarios within human clinical trials. In addition, both methods
proposed here rely on the patient’s therapy parameters. In simulation, optimal CR, CF, and basal rates
are available for each virtual subject; however, in a real-life application, assuming optimal therapy
parameters may not be plausible. Therefore, further analyses will be needed to assess the robustness of
the proposed algorithms to suboptimal CR/CF configurations and the possibility of combining the
techniques with ad hoc optimizers of insulin therapy parameters.
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