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Abstract: In this paper, we analyzed the accuracy and precision of AprilTag as a visual fiducial
marker in detail. We have analyzed error propagation along two horizontal axes along with the
effect of angular rotation about the vertical axis. We have identified that the angular rotation of
the camera (yaw angle) about its vertical axis is the primary source of error that decreases the
precision to the point where the marker system is not potentially viable for sub-decimeter precise
tasks. Other factors are the distance and viewing angle of the camera from the AprilTag. Based on
these observations, three improvement steps have been proposed. One is the trigonometric correction
of the yaw angle to point the camera towards the center of the tag. Second, the use of a custom-built
yaw-axis gimbal, which tracks the center of the tag in real-time. Third, we have presented for the
first time a pose-indexed probabilistic sensor error model of the AprilTag using a Gaussian Processes
based regression of experimental data, validated by particle filter tracking. Our proposed approach,
which can be deployed with all three improvement steps, increases the system’s overall accuracy and
precision by manifolds with a slight trade-off with execution time over commonly available AprilTag
library. These proposed improvements make AprilTag suitable to be used as precision localization
systems for outdoor and indoor applications.

Keywords: robot sensing and perception; sensor modelling; localization

1. Introduction

Localization capability is the backbone of many robotic systems as it helps determine the state of
the robot at a given time instance [1]. Many essential subsystems of an autonomous mobile system
take localization as an input for developing maps or plan navigation strategies [2]. The nature of the
application determines the level of localization accuracy required. Localization accuracy is commonly
measured by comparing it with the ground truth at any given time instance. Therefore, the ground
truth itself must be of superior accuracy to minimize the error in measuring localization accuracy.
In robotics, there exist several ways of generating ground truth. A standard method for generating
ground truth for localization is with the help of high precision motion caption cameras (MoCap) [3].
This system is considered to be the benchmark for many indoor localization systems worldwide.
MoCap setup contains multiple cameras calibrated at known positions, fuse the data to track a known
marker at high accuracy. For indoor applications, another commonly used method is the use of fiducial
or visual marker-based localization systems. This method is quite popular because of the readiness to
use it. For many applications, fiducial markers’ relative ease of use makes them the primary method
for localization [4]. Besides being used for outdoor applications, GPS is the most popular source
for ground truth verification [5]. Although it is globally consistent, nominal GPS systems do not
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provide adequate accuracy for tasks that demand sub-meter localization accuracies such as robot
navigation, obstacle avoidance or structural inspection in confined environments. Some high-end GPS
methodologies such as D-GPS and RKT-GPS have an accuracy of 0.1 meters or less but they are quite
expensive and are hard to setup. In outdoor environments, the deployment of fiducial marker-based
systems are also possible but they have limitations on operating distance and field-of-view.

AprilTag is one of the most commonly used fiducial markers that can be used both indoors and
outdoors for ground truth generation in 6-DOF, but with limitations [6]. We have precisely identified
these limitations and have explained the source of these limitations with statistical error models.
The proposed research has established that both distance and orientation of viewing camera from the
target tag effects accuracy. However, uncorrected orientation uncertainty is a more significant source of
accuracy degradation. AprilTag’s accuracy is maximum when the viewing camera is pointed towards
the center of the tag. Moreover, in the current implementation of the AprilTag localization system,
this source of error is left unaddressed. As a result, the system suffers from a loss of performance,
which is rectifiable. The proposed research has filled this gap (only for 2D) via an empirical analysis of
the AprilTag system. Furthermore, a data-driven probabilistic sensor model has also been proposed,
which works both in indoor and outdoor environments.

In this paper, we have proposed techniques to overcome this limitation and to increase the
accuracy even for wider horizontal viewing angles. The proposed technique consists of three
approaches. One is a geometric soft correction to the displacement angle from the center of the tag.
Second is a active correction to the angular displacement using a custom-built gimbal which detects the
tag in real-time and physically keeps the camera viewing angle towards the center of the AprilTag
horizontally. The third is a proposal of a probabilistic sensor error model of the AprilTag by using
Gaussian Processes (GP) based regression of experimental data. The forward sensor model is directly
usable in a standard Baye’s filter for localization, mapping, SLAM or exploration algorithms [2].
We have used these approaches in combination and a detailed comparison is also presented to
determine how different approaches have improved the overall precision. For example, in an ideal
scenario, we have improved the accuracy from 4.4 cm to 0.8 cm in the x-axis and 2.56 cm to 0.54 cm in
the y-axis. Moreover, other than the accuracy, improvement in the precision has also been achieved
from 112 cm2 to 0.29 cm2 for the x-axis and 14 cm2 to 0.60 cm2 for the y-axis over a target distance
of 70 cm. All the AprilTag measurements used in data error comparisons are raw and without
modifications.

In Section 2, an overview of the related work on visual marker systems has been discussed.
This section describes different fiducial markers, their techniques and their applications. Section 3
illustrates the problem set up and the evaluation of AprilTag as a localization system. In this
section, the implementation methodology of AprilTag is briefly discussed, then details regarding
transformations required for trajectory generation is discussed. Then the error measurement setup is
explained along with the method for taking measurements and lately identification of the AprilTag’s
shortcomings. Section 4 discusses the reasons behind the identified shortcomings and proposes
improvement techniques. Lately, a detailed comparison of all the proposed improvement approaches
is presented. Afterward, a probabilistic sensor model for AprilTag has been proposed by using the
Gaussian Processes (GP) regression along with the experimental verification of the proposed sensor
model by implementing trajectory tracking using particle filter both in a laboratory setup and in
an outdoor environment. Lastly, Section 5 concludes the whole paper with the identification of future
work required.

2. Related Work

A visual fiducial system uses 2D coded information embedded on a tag to give the position and
the orientation of the marker to the camera. The 2D coded information also distinguishes between
one marker from the other. Distinct fiducial systems are being used in robotics applications for pose
estimation. All are best known for their use in augmented reality applications to support vision-based
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tracking [7]. Table 1 shows an overview of different commonly used fiducial markers in robotics
application along with their key features.

Table 1. Commonly used different fiducial markers with key features.

Tag Names Key Features

ARToolkit [8] Use solid black outline for quick and robust detection.
Multi-ring Marker [9] Use color rings instead of black marker for more robust detection.

TRIP [10] Use a 2D circular mark for location identification.
ARTag [11] Robustness marker detection against different lightening conditions.

ARToolKitPlus [12] ARToolKit algorithm has been optimized for embedded devices.
Fourier-Tag [13] Use robust tag encoding scheme using the phase spectrum of a 1-D signal (gray-scale).
RUNE-Tag [14] Use perspective properties of circular dots for high accuracy and robustness.
CircularTag [15] Use circular nature and non-linear optimization to further increase accuracy.

AprilTag [6] Use stronger digital encoding, robust against different lighting conditions and occlusions.

In 2011, Olson [6] showed that AprilTag surpasses its predecessors in terms of detection rate,
inter-coding Hamming distance, scale and angular-accuracy. Olson has also addressed the accuracy
issues of AprilTag related to tag-detection percentage along with the camera distance from the tag.
However, the results are not extensive enough to use them in creating a perfect sensor model for
AprilTag and missed some necessary details which follow in the next sections. Nonetheless, because
of more robustness and accuracy of AprilTag [6], many researchers have preferred it over any other
visual fiducial markers so far. In 2017, Sagitov et al. [16] compared ARTag, AprilTag and CALTag for
occlusions and showed that AprilTag is robust against small occlusions.

One of the advantages of AprilTag is the utilization as a low-cost localization solution in
augmented reality and robotics applications. The setup requires only a monocular camera and a printed
AprilTag on a paper. As a result, researchers prefer fiducial markers over other high-end localization
systems. C Feng et al. [17] have used AprilTag as spatial indices for operations like navigation
and inspection inside a building for engineering, construction and management related tasks. They
have placed AprilTags on different parts of the building, which direct users with operation-specific
information when seen through a mobile camera. Li et al. [18] combine the fiducial marker with inertial
sensors to have an improved position and pose tracking of hand-held augmented reality system. They
achieved an accuracy of 1.77 cm for the position and 4.15◦ for orientation estimation. Some researchers
have used AprilTag as a landmark and track it in robotics applications. Wang et al. [19] and Wang [20]
have proposed a vision-based vehicle tracking system in which an unmanned aerial vehicle (UAV)
tracks a ground vehicle by using AprilTag attached to a ground vehicle. Ling et al. [21] have used
AprilTag attached over a water vessel, to autonomously land an unmanned aerial vehicle (UAV) over
it. Similarly, Zhang et al. [22] have used an identical approach to land the aerial vehicle over land
using AprilTag. Later, a similar work regarding the autonomous landing of a quadrotor using AprilTag
is done by Reference [23]. Tang et al. [24] have proposed an algorithm to fuse the data from multiple
cameras and a 2D laser scanner. They have used an array of AprilTags as a target for calibration and
employ a non-linear optimization technique to estimate a single camera intrinsic parameters out of
multiple cameras and later fuse them with 2D laser scanner data to have an improved position and
pose estimate.

Another advantage of AprilTag is for the accurate evaluation of individual localization systems or
algorithms. Ramirez [25] has made a dataset for visual odometry and localization in which he used
AprilTags as landmarks for accuracy evaluation. Parkison et al. [26] have used AprilTag to evaluate the
position and pose of a micro aerial vehicle (MAV) for automated indoor RFID inventorying. Raina et al.
[27] have used multiple AprilTags as a ground truth evaluation system for 3D pose estimation in a
cluttered environment. Maragh [28] has used AprilTag to control the position and angular velocity of
a rotating body using PD control. She has also demonstrated the upper limit of the angular velocity of
a moving object for the robust detection of AprilTag. Similarly, Zake et al. [29] have used AprilTag
measurements as a ground-truth value to compare the output of the proposed pose-based visual
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serving technique for cable-driven robots. Florea et al. [30] have used AprilTags to localize a drone
and other multiple waypoints as they have proposed a sensor fusion technique for localization by
using numerical P systems. Researchers have also used AprilTags for modeling the dynamics of
different physical systems. Britto et al. [31] have used fiducial marker AprilTag to estimate the position
and orientation of an unmanned underwater vehicle (UUV), later used in the dynamic model of the
underwater system. Fuchs et al. [32] have used AprilTag for the kinematic modeling and trajectory
generation of a trailer attached to a truck using Kalman Filter [33]. Nissler et al. have used AprilTag for
the robot to camera calibration to get the exact pose of each robot part in the camera frame of reference
for precise operations. Mueggler et al. [34] have used multiple AprilTags to precisely estimated the
position of an aerial vehicle in a swarm rescue operation. They have successfully demonstrated in a
laboratory setup because localization from AprilTags has played an integral part in the completion
of the task. Xie et al. [35] have used AprilTag to find the pose and extrinsic of multi-camera and
multi-LiDAR system. They have shown that by using AprilTags in calibration process improves the
overall robustness and accuracy of an autonomous driving platform. Later Nissler et al. [36] have
used single and multiple AprilTags with a high-end camera to estimate the position and orientation
of a manipulator in an industrial environment. They have shown that the use of AprilTag can help
increase the precision tasks of a manipulator. Similarly, De et al. [37] have used AprilTag for the pose
estimation in visual-inertial navigation of a real-time MAV application in an indoor environment.

The disadvantage of using AprilTag as a localization system may result in erroneous localization
due to multiple factors. These factors include configurations such as viewing angle, distance and
camera rotation around its axis. Though AprilTag has been used in many applications ranging from
virtual reality to tracking and localization, there are not many studies related to a systematic analysis of
how the inaccuracy propagates over different distances and viewing angles. A similar study regarding
the accurate evaluation of a similar fiducial marker (ARToolKit) has been conducted by Abawi et
al. [38]. They have experimentally calculated the accuracy of ARToolKit, which is a similar fiducial
marker as AprilTag but far less robust and accurate, as demonstrated by Reference [6]. They have
given a conclusion that ARToolKit is accurate for short distances and for viewing angle between 40◦

and 80◦. Furthermore, Wang et al. [39] have also proposed improvements in AprilTag but those
improvements are limited to improving tag detection and lowering computational utilization and
called it Apriltag 2. In 2017, Jin et al. [40] showed that the AprilTag pose output is inaccurate and
noisy. They have proposed that by adding depth information along with the RGB information of
the tag improves the overall pose accuracy. They have used an RGB-D camera to detect an AprilTag
in an indoor setup. However, the proposed method fails outdoors as the RGBD camera does not
work outdoors in direct sunlight. Zhenglong et al. [41] have used multiple AprilTags to estimate
the pose of a flying quadrotor better. They have experimented in an indoor environment by laying
multiple AprilTags on the floor and have flown a multirotor with a down-looking camera. A Kalman
Filter with a constant velocity model has been used to estimate a more accurate pose by fusing poses
from multiple AprilTags. It is shown that it has improved the overall pose estimation and matched
it with a Motion Capture (MoCap). However, for a large outdoor environment, it is not possible to
lay multiple AprilTags on the ground beneath a flying robot all the time for pose correction, so this
makes the proposed approach not suitable for a large outdoor environment. In 2019, Kayhani et al.
[42] have proposed that the raw AprilTag pose is not accurate enough for autonomous operations and
has improved the accuracy of an indoor multi-copter by fusing pose data from multiple AprilTags
with the help of an Extended Kalman Filter.

Some researchers have evaluated the pose accuracy of the AprilTag in indoor environments and
have improved it by using multiple tags along with data fusion techniques such as Kalman Filtering.
Though they have improved the detected pose accuracy by fusing data from multiple tags, their
proposed setup can only be possible in small indoor environments. For a large outdoor environment,
it is still an open question. Moreover, AprilTags can be used for ground-truth analysis in many
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autonomous applications such as self-driving cars [43]. Hence, improving AprilTag accuracy to the
point where it serves as a ground-truth solution, especially outdoors, is still an open challenge.

3. Problem Setup and System Evaluation

3.1. AprilTag Working Principle

As described in the earlier section, AprilTag also uses an embedded 2D-coded marker for tag
detection and to differentiate it from the other tags. The visual marker tag can be of any size with
a square dimension. The tag is printed on a white background with a black outline square. Inside
the square is an embedded black bar-code. AprilTag [6] uses a unique detection algorithm for fast,
robust detection and to minimize the effect of small occlusions. Figure 1 shows the algorithmic steps
of AprilTag. In the first step, it computes the magnitude and direction of a gradient at every pixel in
an image that contains the AprilTag. Afterward, these calculated gradients are grouped into clusters
called components based on similar gradient attributes using a graph-based method. By using a
weighted least square technique, a line is fitted on every component such that the direction of the
gradients determines the direction of the fitted line. Moreover, gradient direction determines the
direction of the line segments. Hence each line has a dark side on its left and a lighter side on its
right. Furthermore, after identifying all lines, possible quad shapes are detected, as shown in step 3 of
Figure 1. The quad shape with a valid code scheme is extracted out. Also, a 6-DOF pose of the tag
in the camera frame of reference is returned by using homography and intrinsic estimation over an
extracted tag.

  

Input image: AprilTag 
(Class 36H10)

Step 1: Detection of line 
segments using the least 
square method on 
clusters of similar pixel 
gradients. 

Step 2: Based upon the 
gradient direction, all 
possible quads are 
detected in an image.

Step 3: A quad with a 
valid code scheme is 
extracted to detect the 
pose.

Step 4: A pose of 
AprilTag in camera frame 
of reference is returned 
using homograph and 
intrinsic estimation. 

Figure 1. Figure shows four steps of AprilTag detection algorithm with an input image of AprilTag of
class 36H10.

3.2. Trajectory Generation

In all robotics applications, odometry is key to every operation. Odometry includes all the
positions and poses of a moving robot along its timestamp. As discussed in the literature survey,
AprilTag is widely used for odometry generation of robots both in indoor and outdoor applications. It is
illustrated in the previous section, AprilTag returns a single pose in 6-DOF relative to the camera frame
of reference. Moreover, as the camera mounted on a robot changes its position along with the motion of
a robot, it produces a series of posses from AprilTag at each time instance. Each pose shows the position
of a robot along the moving robot trajectory at a particular time instance. Furthermore, to have a
continuous trajectory we proposed a standard transformation technique between any two consecutive
poses as shown in Figure 2. Suppose, we get a 6-DOF pose from an AprilTag in camera frame of
reference, hence the camera attached frame, described in the Tag frame of reference τ = (x̄, ȳ, z̄) at
instance i, is given by the homogeneous transformation:
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Tτ
i =

[
Ri di
0 1

]
4×4

, di =
[

pix piy piz

]T

Ri =

cφcθ cθsψsφ− cψsθ cψcθsφ + sψsθ

cφsθ cψcθ + sψsφsθ −cθsψ + cψsφsθ

−sφ cφsψ cψcφ

 .

(1)

In Equation (1), the input angles are in camera frame of reference such as ‘θ’ is the rotation about
zi-axis and represents the roll motion of the camera, ‘φ’ is the rotation about yi-axis and represents the
yaw motion of the camera and ‘ψ’ is the rotation about xi-axis and represents the pitch motion of the
camera where i = 0, 1, 2, ...n. pix , piy , piz are the displacements in x-axis, y-axis and z-axis respectively
in camera frame of reference. To have a trajectory in a single frame of reference, we need to find
transformation Ti+1

i from point pi to pi+1.

Ti+1
i = Ti+1

τ ×
(

Ti
τ

)−1
, where (T)−1 =

[
RT −RTd
0 1

]
. (2)

In practice, AprilTag is detected at 10 HZ and the trajectory becomes almost continuous due to
slow camera movement.

x̄

ȳ

z̄ (pointing outwards)

z0x0

z1x1y0

y1

z2

x2

y2

T τo

T τ1
T τ2

T τn

T 1
o

T 2
1

AprilTag

Camera

zn

xn

yn

Figure 2. Trajectory using AprilTag detections. The trail of the transformation frame centers that
constitute the trajectory is depicted in blue for various time instances. Here, pix ,piy and piz of
Equation (1) (although not shown in the figure) depict the position of AprilTag in xi-axis, yi-axis
and zi-axis in the respective camera frame of reference.

3.3. Error Measurements Setup

To analysis, the accuracy and precision of AprilTag, raw readings from AprilTag’s native
implementation have been compared with the readings of a high precision localization system called
Vicon MX− F40, also known as “Motion Caption (MoCap)” [3]. MoCap consists of 16 high frame-rate
cameras placed at the different known positions in an indoor environment. The system optically
tracks a passive marker in 6-DOF with the sub-centimeter precision. It also has the capability of
tracking multiple passive markers. This system is considered as a benchmark for all indoor localization
problems. Multiple monocular cameras which are calibrated at known positions, fuse the optical
tracking data of a marker to track at good accuracy as shown in Figure 3.
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Camera

Passive marker

AprilTag

AprilTag

Motion Capture (MoCap) cameras

Figure 3. Motion Capture (MoCap) setup at LUMS Biomechanics lab for AprilTag comparison.

AprilTag technology requires accuracy to the centimeter for the analysis, which is why we used a
Motion Capture System (MoCap) for ground truth measurements. As described earlier, MoCap is an
optical system that detects a passive marker; hence, a passive marker has been mounted above the
camera to detect the position and orientation of the camera. For AprilTag localization, the measurement
process has been made simple by making the origins of both AprilTag and MoCap frame of references
aligned. Also, the camera is placed over a robotic platform that moves randomly around and the
mounted camera has a constant motion of maximum 30◦ around its yaw axis to include maximum
noise possible at a given nominal reference point. Table 2 shows the overall performance of the MoCap
for estimating the robot’s position on the ground. Column 1 ‘xr’ and column 2 ‘yr’ in Table 2 show
the nominal positions of reference points from which the measurements have been taken. Column
3 ‘N’ represents the total number of readings taken at a specific reference point, column 4 ‘µx̄’ and
column 5 ‘µȳ’ shows the accuracy of the MoCap as the reported mean value in both x-axis and y-axis
respectively. Lastly, column 6 ‘σ2

x̄ ’ and column 7 ‘σ2
ȳ ’ shows the precision of the MoCap in the form of

variances reported in x-axis and y-axis respectively.

Table 2. Measurement from Motion Capture (MoCap).

Nominal Reference Points Motion Capture (MoCap) Readings

xr(cm) yr(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 217 0.7062 30.3437 0.003110 0.003120
6 30 195 6.9367 29.5193 0.004890 0.000590
−6 30 193 −3.9230 30.1210 0.045800 0.003080
0 50 204 2.9902 50.0462 0.09500 0.014700

15 50 202 17.7118 49.6042 0.009490 0.002650
−15 50 205 −12.0469 50.8171 0.000168 0.000242

0 70 217 3.2683 70.0810 0.002380 0.000267
20 70 199 23.3681 69.4768 0.000210 0.000197
−20 70 212 −16.8097 70.9505 0.037100 0.001090

Moreover, Figure 4 shows the error plot for both x̄-axis and ȳ-axis of MoCap. In Figure 4,
the horizontal axis shows the x̄ and ȳ component of MoCap measurements in the left and right
plot respectively and the vertical axis shows the accuracy after subtracting mean value from the
measurements. Besides, the measurements are taken at different distances from the AprilTag in ȳ-axis,
this information is coded in three colors such as red represents a distance of 30 cm, blue represents a
distance of 50 cm and the green represents a distance of 70 cm. Plots in Figure 4 show that x̄ component
of MoCap measurements are more effected by viewing distance then ȳ component. Further, as we
move towards either the left or right side from the center of the tag, accuracy decreases.
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Figure 4. Accuracy plot for Motion Capture (MoCap).

For the theoretical point of reference in experiments, we have used an error measurement
markings to get a rough estimation regarding the position of the camera from the AprilTag, as
shown in Figure 5. The design of the measurement experiments is illustrated in Figure 6, which shows
how the readings have been taken to observe the actual inaccuracy caused by the various parameters
such as distance and camera viewing angle. For the rest of the paper, analysis measurements are
in a plane only, namely x-axis x, z-axis z and yaw angle φ in the camera frame of reference. The
output of the measurements is represented in a 3-DOF AprilTag frame of reference τ with variables
x̄, ȳ and θ̄. In Figure 6, crosses represent the locations of the robot from which the readings are noted.
This measurement technique is common for both the MoCap and the AprilTag data recordings for
evaluation. These positions are obtained from the nominal reference points marked on an error
measurement setup. The error measurement setup consists of a large paper sheet marked with angles
and distances from the origin of AprilTag. At every nominal measurement point on error measurement
setup, viewing yaw angle φ of the camera can be different. When the camera is pointing directly
towards the center of the AprilTag, the yaw angle is 90◦. If the camera is pointed towards the right side
of the center, the yaw angle is 90+ φ and for left, the yaw angle is 90− φ. We have taken measurements
at 9 nominal points: three exactly in front of the tag and three on either side. The reason for selecting
specific measurement points is to include maximum uncertainty in measurements for the viewing
angles and the distances. Moreover, due to the limited field of view of the camera and the workspace
environment, we keep the nominal points to 9 points. These points are uniformly covering each side
and the face of the tag. Raw measurements at different angles and distances from AprilTag have been
plotted and compared against the ground truth measured by MoCap.

  

Figure 5. Photographs from different views of the AprilTag error measurement setup. (Left): Shows
the top-down view of the error measurement setup. (Middle): Shows the placement of the camera in
front of the AprilTag over error measurement setup. (Right): Shows the side view of the measurement
recording process.
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x̄

ȳ

AprilTag

20cm

30cm

40cm
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60cm

70cm

10cm 20cm 30cm−10cm−20cm−30cm

90− φ 90 + φ

Center of

AprilTag

φ = 90◦
+φ−φ

Camera

Camera yaw angle ′φ′

Camera position

Monocular Camera

φ Angle around y-axis (yaw)

Figure 6. Error measurement setup showing measurement positions and yaw angles of the camera to
AprilTag placed at the origin.

It is observed that the ideal scenario for AprilTag accuracy is when the camera is pointing towards
the center of the tag or camera z-axis lies toward the center of AprilTag. Figure 7 shows the plots
from raw measurements when the camera z-axis lies toward the center of AprilTag. The center of the
tag is taken as (x̄, ȳ) = (0, 0) in AprilTag frame. These measurements are of the best accuracy that
one can achieve from AprilTag and are used later as a reference. Similarly, Figure 7 also shows blue
readings for which the camera z-axis does not lie towards the center of AprilTag. It can be seen that
blue readings incur large inaccuracy when the camera is wider.

0.00 4.0 6.0-4.0-6.0

70

72

68

2015100500 25

70

72

68

-20 -15 -10 -05 00-25

70

68

72

x̄ in centimeters

ȳ
(c

m
)

shows reading when AprilTag center does not lie on camera z-axis
shows reading when camera z-axis lies on the center of AprilTag

ȳ
(c

m
)

ȳ
(c

m
)

Figure 7. Multiple raw AprilTag readings plotted for ideal (green) and worst (blue) scenarios. Mean
ground-truth (MoCap) readings are plotted as red crosses.

Table 3 summarizes the statistics of the measurements when the camera is pointing towards the
center of the tag. For all readings, the yaw angle φ = 90◦ means it is directed towards the center of
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AprilTag. First two columns ‘xr’ and ‘yr’ show the x-axis and y-axis of nominal reference points where
we wanted to place the camera. Third column ‘x̄’ and forth columns ‘ȳ’ show ground truth values on
the desired reference points using MoCap. Fifth column ‘N’ represents total number of readings taken
at that reference point (xr, yr). Sixth column ‘µx̄’ and seventh column ‘µȳ’ give the mean in x̄-axis
readings and ȳ-axis. The eighth column ‘σ2

x̄ ’ and ninth columns ‘σ2
ȳ ’ show variances in x̄-axis and

ȳ-axis respectively. We get an average mean error of around 1.0 cm for x̄ and around 0.40 cm error for ȳ
over a variable distance of ±6 cm, ±15 cm and ±70 cm in x̄-axis and 30 cm, 50 cm and 70 cm in ȳ-axis.

Table 3. Measurement stats with camera z-axis pointed towards the center of AprilTag.

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 0.0166 30.020 110 −0.2420 30.1510 0.002000 0.000170
6 30 7.0161 30.010 115 7.0161 29.8573 0.000040 0.000040
−6 30 −5.9798 29.92 80 −5.9798 30.4293 0.000035 0.002080
0 50 0.102 49.960 107 0.7571 50.0819 0.000930 0.000002

15 50 14.952 50.69 113 16.9141 49.4206 0.000090 0.000030
−15 50 −14.98 49.90 103 −16.9185 49.4014 0.000090 0.000034

0 70 0.003 70.05 134 1.3080 70.0264 0.007390 0.000014
20 70 20.06 70.06 144 22.3574 69.0718 0.000310 0.000092
−20 70 −20.01 70.02 151 −21.7560 69.5979 0.000240 0.000063

Figure 8 shows the mean error plot for the Table 3 using nominal reference points. We can see
that the error is minimum for both x̄ and ȳ exactly in front of AprilTag. As we move along the left or
right side, the error increases. Another notable finding is that the error increases as we increase the
camera distance from the AprilTag along ȳ-axis.
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Figure 8. Error plot with camera’s z-axis pointed towards the center of AprilTag. (Left): Error plot for
x̄-axis. (Right): Error plot for ȳ-axis.

Instead of pointing the camera towards the center of AprilTag, if we fix the camera such that
its z-axis never points towards the center of the AprilTag, one gets the worst readings in terms of
accuracy no matter which side of the tag the camera is located. To empirically analyze this concept,
an experiment is performed in which measurements are taken at fixed measurement points with the
varying camera yaw angle φ ranging from 70◦ to 110◦. Figure 9 shows the data plot of AprilTag with
changing camera yaw angle ‘φ’. Here, the spread of data around a measurement reference point is in
a circular path distributed almost evenly on both sides. Other than the plot representation, Table 4
shows the statistics of the reported data in terms of mean and variance in both measurement axis.
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As shown in Table 4, the variance (σ2
x̄ , σ2

ȳ ) and mean (µx̄, µȳ) values of both x̄ and ȳ have increased
manifold especially when x̄ = ±20 cm and ȳ = 70 cm.
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Figure 9. Plot for measurements with changing camera yaw angle ‘φ’ for 70◦ ≤ φ ≤ 110◦.

Table 4. Measurement stats with AprilTag center does not lie on the z-axis of the camera (changing
camera yaw angle ‘φ’).

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 0.7062 30.3437 152 −1.1162 30.1501 9.47 0.16
6 30 6.9367 29.5193 182 5.4598 29.4149 14.0 0.56
−6 30 −3.9230 30.1210 162 −6.4092 29.6787 14.0 1.07
0 50 2.9902 50.0462 133 −1.3508 49.1515 76.0 1.51
15 50 17.7118 49.6042 144 13.8889 48.8854 84.0 6.87
−15 50 −12.0469 50.8171 186 −15.5709 48.3046 57.0 7.43

0 70 3.2683 70.0810 163 −0.0285 68.3890 194.0 2.61
20 70 23.3681 69.4768 149 23.4214 67.4216 154.0 14.0
−20 70 −16.8097 70.9505 140 −24.4433 67.4337 112.0 14.0

Additionally, Table 4 shows the mean value of all the measurements taken at a particular reference
point with changing camera yaw angle ‘φ’. As Figure 9 shows, that the data spread is distributed
almost evenly around the reference point along a circular path. In other words, it shows that for a
particular reference point, as the camera yaw angle ‘φ’ changes, the reporting position also changes
along the circular path of the distribution. Considering, the spread of data distribution is almost
same on either side of the reference point, hence we get the mean values (µx̄, µȳ) relatively near to the
measurement reference point itself. To further analyze the worst possible case of camera yaw angle
‘φ’, a similar experiment has been conducted with camera yaw angle ‘φ’ fixed to 110◦. Table 5 shows
the statistical analysis of the experiment with the camera yaw axis fixed at ‘φ’=110◦. Table 5 shows
that the inaccuracy has increased in the mean values (µx̄, µȳ) especially in x̄-axis. This is because the
resulting measurements at ‘φ=110◦’ lie at the farthest sides of the circular spread shown in Figure 9.
Moreover, Figure 10 shows the error plot for Table 5 against the ground truth(MoCap). It shows that
the error is minimum at x̄ = 0 but increases significantly as we move along the sides. For ȳ = 70 cm,
the error is around 16 cm for x̄ = ±20 cm whereas at x̄ = 0 cm, the error is only around 2 cm.
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Figure 10. Error plot with camera yaw axis ‘φ’ fixed at 110◦. (Left): Error plot for x̄-axis. (Right): Error
plot for ȳ-axis.

Table 5. (Worst scenario) Measurement stats with fixed camera yaw angle ‘φ’ at 110◦.

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) φ(deg) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 110 0.020 30.001 113 −1.2057 30.5027 0.000230 0.000003
10 30 110 10.07 30.01 154 −0.3694 30.7558 0.021100 0.003230
−10 30 110 −9.67 30.06 178 −0.5791 31.1269 0.000101 0.000021

0 50 110 0.100 50.071 147 −0.8202 50.5234 0.001350 0.000004
15 50 110 14.960 50.100 120 −1.9371 51.8464 0.000210 0.000046
−15 50 110 −14.91 49.97 117 −2.2290 52.4599 0.000165 0.000034

0 70 110 0.03 70.01 184 1.1841 70.4607 0.013600 0.000015
20 70 110 20.10 69.98 102 0.3113 71.4872 0.000750 0.000039
−20 70 110 −20.08 70.05 128 −1.8619 72.1167 0.000425 0.000018

Based on raw AprilTag measurements, the following shortcomings are identified in the current
AprilTag implementation.

Distance from Tag:

It is observed that the accuracy decreases over distance as we move the camera away from the
tag. As shown in Tables 3 and 5, we can see the mean and variance for both x̄ and ȳ are increasing
with increase in distance from the tag in z-axis.

Viewing Angle:

From multiple experiments, it is understood that the accuracy also decreases as the camera
position changes from front to sideways. In the ideal scenario (Table 3), though the camera is pointing
toward the center of the AprilTag at all the points, the error is less for x̄ = 0 as compared to x̄ 6= 0. This
error increases as we increase x̄. Table 5 shows a similar pattern.

Yaw Angle of the Viewing Camera:

Previous extensive experiments show that the main source of inaccuracy is the frame inconsistency
caused due to motion and significantly reduces the performance. The reason is that AprilTag fiducial
system is coded in such a way that the output frame of reference is dependent upon the yaw angle φ

orientation of the camera attached to the moving body. As the orientation of the moving body changes,
the output frame also changes, making it hard to have a consistent frame of reference. At any given
point, in x and z camera coordinates, change in yaw angle φ causes the generation of a new origin
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hence making a new frame of reference for every yaw angle. The new origin is the intersecting point
of the AprilTag face plane with a straight line ‘z-axis’ from the center of the camera. So the current
distance is reported under newly formed origin. Though the resulting output is relatively accurate
in its respective frame of reference, the overall accuracy of all the yaw angles φ combined against
a constant frame of reference is inaccurate. Figure 9 shows the plot of AprilTag reporting at fixed
measurement points with varying yaw angle φ ranging from 70◦ to 110◦. Variance and mean readings
of both x̄ and ȳ have also increased many folds as shown in Table 4 especially when x̄ = ±20 cm and
ȳ = 70 cm.

4. Improvement Techniques

Based on the measurement analysis of the AprilTag system, the following improvement techniques
have been proposed.

4.1. Passive Correction for Frame Consistency

As illustrated in Section 3.3, the key source of inaccuracy in AprilTag readings is the misalignment
of the camera z-axis with the center of the tag. When the camera follows a certain trajectory,
its orientation may change over time, which causes inconsistency between two consecutive frames.
To solve this problem, we propose a passive-orientation correction. Also referred to as a “Soft Yaw Axis
Correction (SYAC)” technique. In this technique, the geometry of the whole setup is modified in a way
that the axis (z-axis) passing through the center of the camera always points towards the tag’s origin
that is, (x̄, ȳ) = (0, 0). Figure 11 shows the drawing for trigonometric correction. The solid triangle
shows the original geometry without any correction in the camera frame of reference. The hypotenuse
of a solid triangle z, which emerges from the camera center, should touch the center of tag. That ideal
line is called z̄, depicted as a dotted line in Figure 11. Moreover, φ is known, the angle ώ that aligns
the dotted triangle hypotenuse with the center is calculated. By using simple trigonometry, z̄ and ώ is
calculated as:

ώ = φ− tan−1
(

z sin φ

x + z cos φ

)
, (3)

z̄ =
√
((z sin φ))2 + ((x + z cos φ))2. (4)

Once z̄ and ώ are known, x̄ Equation (5), ȳ Equation (6) and θ̄ Equation (7) are derived which
eventually improves the accuracy.

x̄ = x + x́ = x + z cos φ, (5)

ȳ = z sin φ, (6)

θ̄ = arctan
(

ý
x + x́

)
= arctan

(
z sin φ

x + z cos φ

)
. (7)

Figure 12 shows the data scatter plot after applying this passive correction technique. It can be
seen that the spread of the transformed data is decreased and Table 6 shows decreased variance both
in x̄ and ȳ axis. By zooming point (x, z) = (0.20, 0.70), it can be observed that the original readings
are displaced only after applying the correction, making them more closely to the reference point.
At camera yaw angle of 110◦, it is almost 40 cm off the true position in x̄-axis and 2 cm in ȳ-axis. After
applying the correction, the error in x̄-axis is reduced to 5 cm and in ȳ-axis to 1 cm. Similarly, at yaw
angle, 70◦ in x̄-axis, the error is reduced from 26 cm to 4 cm.
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ȳ
in

ce
nt

im
et

er
s

Raw AprilTag readings (inconsistent frames)
Applying SYAC on raw AprilTag readings (consistent frames)
Ground truth

(−20, 70) (20, 70)

(−15, 50) (15, 50)

(−10, 30)
(10, 30)

(0, 70)

(0, 50)

(0, 30)

Figure 12. A comparison plot for AprilTag raw readings and improved SYAC measurements with
changing camera yaw angle ‘φ’ for 70◦ ≤ φ ≤ 110◦. Blue circles show the clustering of the plotted data
around a ground truth point.

Table 6. Table showing measurement stats after applying Soft Yaw Axis Correction (SYAC) on raw
AprilTag data.

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 0.7062 30.3437 113 −0.5813 30.6166 0.31 0.11
6 30 6.9367 29.5193 154 6.4232 29.7444 0.27 0.31
−6 30 −3.9230 30.1210 178 −6.2826 30.5416 0.20 0.44
0 50 2.9902 50.0462 147 0.1930 51.3185 3.06 0.91
15 50 17.7118 49.6042 120 17.3150 49.5959 3.32 3.37
−15 50 −12.0469 50.8171 117 −16.2733 50.1972 1.12 5.04

0 70 3.2683 70.0810 184 1.8551 71.8400 30.0 3.37
20 70 23.3681 69.4768 102 24.8826 70.5867 12.0 13.0
−20 70 −16.8097 70.9505 128 −26.4522 69.1570 10.0 19.0
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To further extend the comparison, Figure 13 shows the improvement of AprilTag readings
concerning the camera yaw angle ’φ.’ The rotation of the camera around its yaw axis is limited to
five sampling angles that is, 70◦, 80◦, 90◦, 100◦ and 110◦. The rate of rotation for yaw angle ’φ’ is 10
degrees/sec. Hence, it takes the camera 5 seconds to sweep in one direction. Moreover, AprilTag
is being detected at 11 Hz; hence, we have approximately 11 readings at an individual yaw angle φ

during a single sweep. As Figure 13 shows that at each measurement angle ’φ,’ our proposed Soft
Yaw Axis Correction approach (SYAC) has significantly improved the accuracy of raw AprilTag. Red
cross (x̄, ȳ) = (20, 70) shows the ground-truth value for the whole experiment. As we can see from
the plot that the accuracy of AprilTag decreases as we increase the yaw axis angle ’φ’ of the camera.
The accuracy is worse when ’φ’ is either 110◦ or 70◦. As the camera yaw angle ’φ’ approaches 90◦,
which implies the camera’s z-axis points towards the center of the tag, accuracy increases. As a result,
Figure 13 shows data at ’φ = 90◦’ most accurate.
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Figure 13. An angle-wise comparison plot for AprilTag raw readings and improved SYAC
measurements with changing camera yaw angle ‘φ’ for 70◦ ≤ φ ≤ 110◦. Plot shows that our proposed
technique has significantly improved AprilTag raw measurements.

4.2. Active Correction with a Yaw Axis Gimbal

Another way to correct for misalignment of camera z-axis with the center of the tag is to
track and correct it in real-time using a yaw axis gimbal actively. The custom-built hardware
setup is proposed to achieve this, as shown in Figure 14. The tracking Algorithm 1 consists of a
Proportional-Integral-Derivative (PID) based action tracking controller working at 10Hz. The input
to the Algorithm 1 is a raw yaw angle of the camera ‘φ’ in the camera frame of reference reported by
native AprilTag implementation. As discussed in Section 3.3, the yaw angle of the camera ‘φ’ depends
upon the alignment of the camera z-axis with the center of AprilTag. If the camera z-axis lies on the
center of the AprilTag, ‘φ’ is equal to zero. As the face of the camera moves away from the center of
the AprilTag, ‘φ’ value changes and introduces inaccuracy. Moreover, the goal of the Active Correction
with a Yaw Axis Gimbal (ACYG) is to keep the z-axis of the camera aligned towards the center of the tag
by keeping angle ‘φ’ equals to zero. Significant improvement in the tag’s precision has been observed
with almost similar accuracy by using this technique. One of the problems with the Passive Correction
for Frame Consistency technique is that it does not align the camera center accurately towards the
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center of the tag if the yaw angle φ is too big. Therefore, active compensation in combination with
a passive correction ensures that the camera yaw angle does not become too big. Figure 15 shows
the effect of one-axis tracking gimbal in the combination of passive frame consistent Correction and
without passive frame consistent Correction. Data scatter plots show the accuracy has increased
significantly, especially in combination with SYAC. Tables 7 and 8 summarize the variances and mean
values while using yaw axis gimbal with raw AprilTag and with SYAC correction, respectively.

Figure 15 shows that though active correction has improved the overall accuracy. If this technique
is applied with a combination of passive correction (SYAC), the resultant readings are more accurate.
The reason behind this is that both the correction methods have their limitations. In Soft correction
(SYAC), sometimes the camera z-axis fails to align with the tag center if the measured yaw angle ’φ’ of
the viewing camera is too large. Moreover, in Active correction, the tag is being detected at 11 Hz and
the active correction is being done at 8 Hz to due system limitations. Hence, this results in the incursion
of inaccuracy in the active correction system. Henceforward, by using both correction techniques in
combination with each other improves the overall accuracy manifolds.

Figure 14. Yaw-axis gimbal hardware setup developed by the authors. A monocular camera
has been mounted on a Dynamixal stepper motor, which is controlled by an Arduino Mega 2560
controller. The controller is used as a slave ROS process in localization application. Housing is in a 3D
printed retrofit.
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Figure 15. Data scatter plot for geometrically consistent (SYAC) and non consistent frames(raw
AprilTag) with custom-built yaw axis gimbal.
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Table 7. Use of yaw axis gimbal on raw AprilTag system).

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 0.642 31.006 156 −2.7569 30.3124 3.39 0.07
6 30 6.71 29.820 144 5.8448 30.0716 1.65 0.08
−6 30 −5.89 29.851 126 −6.6391 29.8201 2.99 0.19
0 50 2.017 50.02 124 −2.9412 49.8801 6.92 0.08
15 50 16.90 51.13 115 15.9652 49.6746 4.71 0.49
−15 50 −14.42 49.63 144 −15.6127 49.4842 4.16 0.49

0 70 −2.10 68.90 149 −5.5017 70.0076 7.35 0.11
20 70 22.70 71.16 152 21.0146 69.8425 5.84 0.58
−20 70 −21.10 71.23 138 −21.7858 69.7444 5.92 0.56

Table 8. Use of yaw axis gimbal with consistent frames (SYAC).

Nominal Reference Points Ground Truth (MoCap) AprilTag Readings

xr(cm) yr(cm) x̄(cm) ȳ(cm) N µx̄(cm) µȳ(cm) σ2
x̄(cm2) σ2

ȳ(cm2)

0 30 0.642 31.006 156 −1.4932 30.6753 0.06 0.08
6 30 6.71 29.820 144 6.7595 29.7747 0.01 0.03
−6 30 −5.89 29.851 126 −5.5643 30.4668 0.05 0.17
0 50 2.017 50.02 124 −2.1262 50.1620 0.19 0.13

15 50 16.90 51.13 115 16.8541 49.2115 0.19 0.43
−15 50 −14.42 49.63 144 −14.8491 50.1751 0.10 0.42

0 70 −2.10 68.90 149 −4.3831 70.2868 1.63 0.05
20 70 22.70 71.16 152 21.9349 69.3702 0.71 0.43
−20 70 −21.10 71.23 138 −20.8403 70.5489 0.29 0.60

Algorithm 1 Active Camera Tracking of AprilTag Center.

Input: camera yaw angle ’φ’
Output: servo angle ’Γ’

1: KP ← Propotional gain depending upon z-axis value.
2: KI Integral gain depending upon z-axis value.
3: KD ← Propotional gain depending upon z-axis value.
4: ε← Initialize error with zero
5: T← 0.05 . Servo stopping threshold.
6: α← 0.008 . Smoothing factor.
7: ε← φ
8: if ε > T then
9: Integral← Integral + ε

10: else Integral← 0.00
11: end if
12: P← ε ×KP
13: I← Integral ×KI
14: D← (LastYawAngle − CurrentYawAngle) ×KD
15: Drive← P + I + D
16: Drive← Drive × α
17: if Drive > 90 then . To keep camera facing AprilTag
18: Drive← 90
19: else Drive < -90
20: Drive← -90
21: end if
22: Γ← CurrentServoAngle + Drive
23: LastYawAngle← CurrentYawAngle
24: CurrentServoAngle← Γ
25: return Γ
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4.3. Comparative Results

Following the extensive experimentation and dataset collection, comparative results have been
deducted to show the improvement more comprehensively. Table 9 shows the error comparison of
different approaches against AprilTag. Here error is represented as the difference between the reported
mean value and the ground truth both in x̄ and ȳ axis. Columns 1 and 2 show the ground truth
(MoCap) values of x̄ and ȳ, respectively, against which the standard error is compared. Columns 3 and
4, which are labeled as “Raw AprilTag readings (camera pointing towards tag’s center),” show the
error for the AprilTag system when the camera is always pointed towards the center of tag. Earlier
experiments have shown that this is the maximum possible accuracy one can achieve using AprilTag.
Moreover, columns 5 and 6 “Raw AprilTag readings (camera pointing away from tag’s center)” shows
the raw data from AprilTag when the camera z-axis is not aligned with the center of the tag resulting
in inconsistent frames induced by camera motion. Columns 7 and 8, which are labeled as “Applying
Soft Yaw Angle Correction (SYAC) on raw AprilTag readings,” shows mean error after applying the
proposed approach of Soft Yaw Angle Correction (SYAC) to make the inconsistent frames consistent.
Similarly, columns 9 and 10 labeled as “Applying Active Correction with Yaw Axis Gimbal on raw
AprilTag readings” show error after using custom build yaw axis gimbal on raw AprilTag system.
Lastly, columns 11 and 12, which are labeled as “Applying (SYAC + Active Yaw Axis Gimbal correction)
on raw AprilTag readings,” show an error when both proposed approaches of soft and active yaw axis
correction are applied in combination.

Additionally along with the accuracy, precision of the AprilTag system has also been increased
manifolds by our proposed approaches as shown in Figures 16 and 17. Figure 16 shows the resulting
precision of different approaches in cm for a nominal reference point of (x̄, ȳ) = (0, 70). We can see
that the spread of x̄ for raw AprilTag data with camera’s z-axis not pointing towards tag’s center is
around 13.9 cm while after applying Soft Yaw Angle Correction (SYAC) plus Active Yaw Axis Gimbal
Correction, it is decreased to 1.27 cm. Moreover for ȳ, the spread is decreased from 1.61 cm to 0.22 cm.
In addition, Figure 17 shows the similar analysis for nominal reference point of (x̄, ȳ) = (20, 70). Here
after applying Soft Yaw Axis Correction (SYAC) and Active Yaw Axis Gimbal Correction on AprilTag,
the precision has improved manifolds and the data spread for x̄ and ȳ is decrease from 12.04 cm to
0.84 cm and 3.74 cm to 0.65 cm respectively. Nonetheless, Motion Capture (MoCap) spread has also
been illustrated for both the nominal reference points for ground-truth analysis.

As mentioned earlier, the objective is to reduce the measurement error close to the ground
truth. Figure 18 shows the statistical analysis of accuracy by plotting Mean Root Square Error (RMSE)
achieved by the proposed approaches against the raw AprilTag. It shows that our proposed approaches
have significantly reduced the RMSE as compared to bare AprilTag results. Moreover, this error is
further reduced when both the proposed approaches are combined. The resulting error is significantly
close to ground-truth and the ideal scenario when the camera is pointing towards the center of AprilTag
hence achieving our objective.
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Table 9. Comparison of AprilTag against various proposed approaches.

Ground-Truth (cm) Error in Mean(µ) Using Different Approaches for AprilTag. (cm)

Motion Capture
System (MoCap)

Raw AprilTag
Readings (Camera
Pointing Towards

Tag’s Center)

Raw AprilTag
Readings (Camera

Pointing Away from
Tag’s Center)

Applying Soft Yaw
Angle Correction
(SYAC) on Raw

AprilTag Readings

Applying Active
Correction with Yaw
Axis Gimbal on Raw
AprilTag Readings

Applying (SYAC +
Active Yaw Axis

Gimbal Correction)
on Raw AprilTag

Readings

x̄ ȳ |x̄− µx̄| |ȳ− µȳ| |x̄− µx̄| |ȳ− µȳ| |x̄− µx̄| |ȳ− µȳ| |x̄− µx̄| |ȳ− µȳ| |x̄− µx̄| |ȳ− µȳ|
0.642 31.00 0.884 0.855 1.758 0.855 1.223 0.389 3.3989 0.693 2.135 0.330
6.71 29.82 0.3061 0.037 1.250 0.405 0.286 0.075 0.8652 0.251 0.049 0.045
−5.89 29.85 0.0898 0.578 0.519 0.172 0.392 0.690 0.7491 0.030 0.325 0.615
2.017 50.02 1.2599 0.0618 3.367 0.868 1.824 1.298 4.958 0.139 4.143 0.141
16.90 51.13 0.0141 1.709 3.011 2.244 0.415 1.534 0.934 1.455 0.045 1.918
−14.42 49.63 2.4985 0.228 1.150 1.325 1.853 0.567 1.192 0.145 0.429 0.545
−2.10 68.90 3.408 1.126 2.071 0.511 3.955 2.940 3.401 1.107 2.283 1.386
22.70 71.16 0.3426 2.088 0.721 3.738 2.182 0.573 1.685 1.317 0.765 1.789
−21.10 71.23 0.6559 0.432 3.343 2.596 5.352 0.873 0.685 0.285 0.259 0.518
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Figure 16. Comparison of resulting data spread (precision) from different approaches against the
ground truth (Mocap) at nominal reference point straight in front of AprilTag i.e., (x̄, ȳ) = (0, 70).
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Figure 18. Root Mean Square Error (RMSE) comparison of raw AprilTag against proposed approaches
and MoCap.

Furthermore, results from Table 9, Figures 16 and 17 have shown that we can achieve significant
improvements in the accuracy and precision of the AprilTag by the slight trade-off with execution
time. Table 10 shows an average execution time for a single input frame for different approaches.
Nevertheless, the raw implementation of AprilTag has the quickest execution time as compared to the
proposed approaches but the difference is not significant. As illustrated by Table 10, a combination
of both proposed methods (Passive yaw axis correction + Active correction with yaw axis gimbal)
can achieve a maximum operating frequency of approx. 4 Hz, which is acceptable for most of the
robotics applications.
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Table 10. Average execution time for different approaches.

Approaches Average Execution Time Per Input Image

Raw AprilTag implementation 90 ms
Passive yaw axis correction (SYAC) 130 ms

Active Correction with yaw axis gimbal 125 ms
(Passive yaw axis + Active gimbal) correction 255 ms

4.4. Probabilistic Sensor Model for AprilTag

The third contribution of this paper is the development of a forward probabilistic sensor model
p(Y|X) for the AprilTag. The model is based on the collected measurement data and works for all
the locations. These locations include both direct and indirect measurement points. Hence, it makes
the empirical analysis of the current work applicable to a probabilistic decision-theoretic framework.
With reference to Figures 2 and 11, the true state X of the robot is given by the tuple X = [x̄, ȳ, θ̄]T .
The measurement vector Y is also a triplet Y = [z, x, φ]T . The measurements are assumed to be a
nonlinear transformation of the true state, corrupted by some additive sensor noise, Y = F(X) + ε.
Explicitly, these relations can be written as:

z =
√
(z̄ cos θ̄ − x)2 + (z sin φ)2 + εz, (8)

x = z̄ cos θ̄ − z cos φ + εx, (9)

φ = arctan
(

z̄ sin θ̄

z̄ cos θ̄ − x

)
+ εφ. (10)

We are interested in finding the joint probability distribution of the measurement vector given
the true states p

(
z, x, φ|x̄, ȳ, θ̄

)
. In order to find the above mentioned probability, Bayes’ theorem is

applied to obtain:

p
(

x̄, ȳ, θ̄|z, x, φ
)
=

1
J

p
(
z, x, φ|x̄, ȳ, θ̄

)
p(x, z, φ), (11)

where J is a constant that can be factored out. Since we have no prior distribution p(x, z, φ), one can
use a Maximum Likelihood Estimator for a uniform prior, that is, a simple inversion of the model to
deduce the states from the measurements by using Equations (5)–(7).

Hence, if we have a model p
(
x̄, ȳ, θ̄|z, x, φ

)
for all states, we can use it to localize at even points

where we do not have measurement data. We achieve this using a Gaussian Process (GP) based
regression method [44] as follows. First we make a simplifying assumption that Y are not mutually
correlated. While this may not be factually true, we find below that this is sufficient for using the Tag
in practice. (The extension of the framework to correlated sensor measurements is a work in progress.)
Therefore, we focus on either of the measurement variable in Y as scalar nonlinear transformations
f (X). These are precisely the individual measurement equations given above. Using the notation
introduced in Reference [44], we are interested in finding the distribution p( f test

∗ |X, X∗, Y∗), where
f test
∗ is a stochastic process for which x̄, ȳ and θ̄ has a joint Gaussian distribution, X = (x̄, ȳ, θ̄)) is the

unknown test point where the distribution has to be calculated, X∗ are the ground truth points for
training data X∗ ∈ {(x̄i, ȳi, θ̄i)}N

i=1 and Y∗ ∈ {(x̄i, ȳi, θ̄i)}M
j=1 are the data collected in experiments as

output of AprilTag at training points X∗.
In GP regression, we have to define a covariance function (or Kernel function) whose parameters

(the so-called hyper-parameters) have to be tuned to best explain the data at hand. We have chosen
a squared exponential covariance function, which is widely used because of its smoothness and
differentiability:

k(xa, xb) = α exp
−|xa−xb |

2

2β (12)

where α and β are the hyper-parameters of the kernel function.
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The GP regression methodology makes the assumption that the training output Y∗ and test output
f test
∗ have a joint Gaussian distribution.(Once again, this is a simplifying assumption that may be

invalid in practice but works in practice.)[
Y∗
f test
∗

]
v N

(
0,

[
K(X∗, X∗) K(X∗, X)

K(X, X∗) K(X, X)

])
(13)

where K(X∗, X∗) is a N × N matrix defined by covariance function (kernel) evaluated at every training
point X∗ against each training point X∗. K(X, X) is an M×M matrix defined by kernel evaluated
at every test point X against each test point X. K(X∗, X) is an N ×M matrix formed by the kernel
evaluated at every training point X∗ against each test point X. Further details can be seen in a standard
references on GP (e.g., Reference [44]).

Here, we are only interested in incorporating the knowledge provided by the training data X∗
regarding distribution functions other than drawing random functions from prior knowledge. So we
will restrict the joint prior distribution to contain only those functions which agrees with the observed
data points Y∗ to get the posterior distribution over functions. In other words, we will reject all those
functions generated from prior that disagrees with the observations. In probabilistic terms, this can be
achieved by marginalizing the observations over the joint distribution to get the predicted distribution
as p( f test

∗ |X, X∗, Y∗) v N (µ, Σ), where

µ = K(X, X∗)(K(X∗, X∗) + σ2
A I)−1Y∗,

Σ = K(X, X)− K(X, X∗)(K(X∗, X∗) + σ2
A I)−1K(X∗, X)),

(14)

where σ2
A is the noise variance for the particular AprilTag measurement variable under consideration.

The process is repeated for all three measurement variables to regress the distribution for all
measurement-state pairs. The results of the regression have been summarized in Table 11.

Table 11. GP predicted distributions at unseen points against α = 0.01, β = 20000

Unknown Points Predictive Distribution Experimental Distribution

(x̄, ȳ, θ̄(cm,deg)) µ f test
∗

(cm) σ2
f test
∗

(cm2) µx∗ (cm,deg) σ2
x∗ (cm2)

(0,30,90) (0.4,30.9,95.3) (3.9 × 10−8, 2.2 ×
10−6, 2.6× 10−6)

(0.1,30.6,89.77) (6.1 × 10−4, 1.4 ×
10−4, 1.4× 10−8)

(10,30,100) (11.9,30.9,92.2) (1.3 × 10−5, 2.2 ×
10−6, 8.6× 10−6)

(10.4,29.5,70.57) (3.7 × 10−5, 4.7 ×
10−5, 4.7× 10−9)

(0,50,80) (0.4,49.9,88.56) (3.9 × 10−8, 3.0 ×
10−6, 2.2× 10−6)

(1.0,51.8,88.84) (7.5 × 10−4, 1.0 ×
10−5, 1.0× 10−9)

(−15,50,100) (−16.01,49.9,92.2) (3.3 × 10−5, 3.0 ×
10−6, 8.6× 10−6)

(−18.8,52.7,109.6) (1.1 × 10−4, 1.2 ×
10−5, 1.2× 10−9)

(20,70,100) (20.7,70.01,92.2) (1.9 × 10−4, 4.5 ×
10−6, 8.6× 10−6)

(22.1,67.0,72.1) (1.1 × 10−4, 1.1 ×
10−4, 1.1× 10−8)

(−20,70,100) (−21.3,70.01,92.2) (4.9 × 10−5, 4.5 ×
10−6, 8.6× 10−6)

(−26.1,78.0,109.8) (1.8 × 10−4, 2.4 ×
10−5, 2.4× 10−9)

4.4.1. Experimental Verification of Sensor Model

To verify the validity of our proposed AprilTag sensor model, we have used our sensor model in
various settings to estimate the state of a robot. We assume a standard odometry model in which robot
can rotate around its axis and can move forward [45]. We have performed both indoor and outdoor
experiments to validate our proposed sensor model.

For indoor experiment, at any time step t state vector Xt is given by Xt = [x̄, ȳ, θ̄]T , where x̄ shows
the movement of robot in x-axis, ȳ show is the movement in y-axis and θ̄ shows the rotation around
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robot‘s own axis. Our goal is to find p(Xt|Xt−1, ut, zt) where Xt−1 is the robot state in previous time
stamp, ut is the current input command and zt is the current sensor measurement.

We have used Monte Carlo simulation technique [46] to estimate the position and pose of the
robot since it does not require any prior knowledge for data distribution. In this method, k number of
particles are randomly generated around an initial starting point Xi with certain initial uncertainty
based upon system

Xp ∼ N


xi

yi
θi

 ,

σ2
xx 0 0
0 σ2

yy 0
0 0 σ2

θθ


 , (15)

where Xp are the randomly generated particles and p ∈ {1, ..., k}, xi is the initial value for x-axis, yi is
the initial value for y-axis, θi us the initial angle and σ2

x , σ2
y , σ2

θ are the initial variance in x-axis, y-axis
and θ respectively. Then, each particle is propagated forward based upon the motion model assumed

Xt = ft(Xt−1) + n = ft(xt−1, yt−1, θt−1) + n, (16)

where ft is a function representing motion model of the system and n is the Gaussian noise. Then
observation model is applied on each propagated particle to get observation measurements as ẑt. Then
these observation measurements are weighted against the measurement data from the sensor zt. Each
particle is assigned a probabilistic weight based upon how close it is to the measurement after applying
observation model as

Pp
weight =

1√
(2π)3 det R

∗ exp
(
−1

2
(zt − ẑt)R−1(zt − ẑt)

T
)

, R =

rx 0 0
0 ry 0
0 0 rθ ,

 (17)

where p ∈ {1, ..., k} represents number of particles, R is a 3× 3 co-variance matrix. Then the assigned
probability weights are normalized such that their sum is equal to 1 as

PCDF =
Pp

weight

∑k
n=0 Pn

weight

, (18)

where Pp
CDF is the cumulative distribution of the probability density of weighted vector Pp

weight. Then
weighted particles are re-sampled for the next step by uniformally sampling from the cumulative
distribution as shown in Equation (19). Since the particles are being selected by statistical probabilities,
so on average, particles with the greater weights are being selected.

Xp = P−1
CDF (h) , where h ∼ U (0, 1) . (19)

After getting new particles, the whole process is repeated for mo times where mo is the total number of
tag observations observed in an experiment. At every step, the average of all the particles is considered
to be the true position of the robot. This algorithm relies on the survival of the fittest philosophy. Those
particle which are close to the sensor measurement are weighted higher then others give them the
chance to be selected again for the next round.

In our experiment, an incremental motion model has been used for the propagation of particles
from one configuration ci to another configuration c f . Three parameters δθi, δd and δθ f have been
used to encode the complete motion from one configuration to another. Input command uθi maps
as rotation δθi of robot at initial configuration ci such that it faces final configuration c f . ud maps as
the straight forward motion δd from initial configuration ci to final configuration c f and uθ f maps the
final rotation δθ f at destination point for final pose angle. See Figure 19 which shows each parameter
in detail.
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Figure 19. Incremental motion model used between two configuration points ci and c f , encoded by
three parameters δθi, δd and δθ f for Monte Carlo simulation.

For proposed sensor model verification using Monte Carlo simulation, we used 10, 000 particles
initially generated at a known starting point Xi = [xi, yi, θi] with initial variance of ni. As it is assumed
earlier, our robot can only move forward and can rotate around its own axis, so motion model for each
particle can be given by

Xt =

xt−1 + d f or cos(θt−1 + δθi) + nx

yt−1 + d f or sin(θt−1 + δθi) + ny

θt−1 + δθi + δθ f + nθ

 ,
(20)

where d f or is the forward distance as a result input command u f or, δθi is the angle of rotation at initial
position as a result of input command uθi , δθ f is the rotation angle at final configuration point as a
result of input command uθ f . nx is the Gaussian noise in x-axis, ny is the Gaussian noise in y-axis and
nθ is the Gaussian noise in θ.

At any time t, measurement vector is given by zt = [xtag, ytag, θtag]T . In this experiment, we have
assumed that x, y and θ are independent in nature. So for observation model, the proposed AprilTag
sensor model as shown in Equation (14) has been used.

Figure 20 shows the trajectory generated by applying the particle filter empowered with our
proposed AprilTag sensor model in comparison with the ground truth generated by MoCap. AprilTag‘s
center is placed at (x̄, ȳ, θ̄) = (0, 0, 90) over a calibrated setup and robot is moved in front of AprilTag
in a rectangular shape. The rectangular shape is selected to have a better visualization of trajectory
data and to see the loop closure. Figure 20 shows that the trajectory generated by the particle filter (red)
is very close to the ground truth trajectory (green). The experiment shows that the particles converge
very quickly because of the high precision of the system achieved by applying proposed techniques.

To further investigate the performance of our proposed sensor model, a similar experiment
in a large outdoor environment has been performed. For this purpose, a larger AprilTag of size
305× 305 cm fixed on the ground has been used, as shown in Figure 21. In this experiment, the
robot has moved along an irregular path from the left side of the AprilTag to the right side as far as
the tag is visually detectable and then back to the left side towards starting position, as shown in
Figure 22. To show the significance of each proposed improvement, we have divided the experiment
into two phases. In phase one, active tracking of AprilTag is not activated and only passive correction
is done using the sensor model (red path). In phase two, active tag tracking is also activated along
with the passive correction (blue path), as shown in Figure 22. Considering the experiment is in an
outdoor environment, therefore ground truth trajectory can not be generated. Hence for ground truth
verification, we have manually marked three validation points in meters that is, A(x̄, ȳ) = (0, 40),
B(x̄, ȳ) = (26, 30) and C(x̄, ȳ) = (−19, 20) before the experiment and have deliberately passed through
them. Figure 22 shows that the trajectory passes through the validation points.
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Figure 20. Trajectory comparison between MoCap and trajectory generated by Monte Carlo simulation
using our proposed AprilTag sensor model.
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# Tag 0
# Tag 0

Figure 21. (Left): Camera view of detected AprilTag (red polygon) in outdoors. (Right): Camera view
of detected AprilTag (red polygon) in indoors. Both images show detection polygons along with the
detected tag IDs based on implanted code.

Moreover previously proposed pose-indexed probabilistic sensor model in Equation (14) is
regressed over an indoor small scale experimental data. The training points are at the maximum of
1 m from the AprilTag. Therefore, the model trained by using Gaussian Processes(GP) 14 is only valid
for sub-meter trajectories. To make it workable in long distances, we have proposed a general sensor
model with some scale factor d, where d is the distance of the camera from the tag along the ȳ-axis.
To calculate the scale factor d, we have used the equality as shown in Equation (21).

d =
f × hr × Ip

hp × Ss × c
(21)

where f is focal length of camera in mm, hr is the real height of the AprilTag in mm, Ip is the height of
image sensor in pixels, hp is the AprilTag height in pixels and Ss is the image sensor‘s height in mm. c
is a constant to change the unit scale. Since for outdoor experiment, wehave used meters as our unit
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of choice for distances, so we have used c = 1000. After evaluating scale factor d, our general sensor
model would become:

µG = KG(X, XG
∗ )(KG(XG

∗ , XG
∗ ) + σ2

A I)−1YG
∗ ,

ΣG = KG(X, X)− K(X, XG
∗ )(KG(XG

∗ , XG
∗ ) + σ2

GA I)−1KG(XG
∗ , X)),

KG = kG(xa, xb) = d2 × α exp
(
−|xa − xb|2
2× d2 × β

)
,

XG
∗ = X∗ × d, YG

∗ = Y∗ × d , σ2
GA = σ2

A × d2.

(22)

Here µG and σG is the mean value and variance for test point X using generalized sensor model
respectively. KG is the generalized kernel, XG

∗ is the generalized training point and YG
∗ is the generalized

observed value. We have empirically tested and verified experimentally that the generalized sensor
model gives almost same result at certain distance 'd'.

Figure 22 shows the trajectory generated by our generalized sensor model in an outdoor
environment by using Monte Carlo Simulation. Figure 23 shows the axis-wise plot of raw AprilTag
data (red) and the particle filter output (blue). It shows the filter is filtering the noise and improving
the overall performance.
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Figure 22. Trajectory generated using Monte Carlo Simulation in an outdoor environment.
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Figure 23. Comparison of raw AprilTag data and proposed generalize sensor model based particle
filter output along x̄-axis and ȳ-axis. Dotted line shows the initialization of yaw axis gimbal for active
correction.

5. Conclusions

Fiducial markers are a low-cost solution for getting accurate ground truth measurements in
applications, especially in robotics. Among all state of the art fiducial markers, AprilTag is the most
commonly used fiducial marker by the researchers. Fast and sturdy tag detection techniques, stronger
digital coding for an embedded marker, robust against different lighting conditions, lens distortion
and small occlusion are the main features that make AprilTag unique from other fiducial markers.
However, researchers have experienced that AprilTag lacks the required precision and accuracy for
delicate tasks. Hence, researchers have used a different combination of sensors along the AprilTag
to improve its accuracy. In this paper, we have empirically analyzed AprilTag with the identification
of shortcomings causing inaccuracies. With the help of extensive experiments and analysis, we have
analytically identified that the primary source of error is the yaw angle variation of the viewing camera,
which has not been compensated in the current AprilTag implementation. Other inaccuracy sources
include distance and viewing angle of the camera to tag.

Besides, based upon the identified shortcomings, three improvement approaches have been
proposed to further improve the accuracy and precision of AprilTag with slight execution time
trade-off. The first proposed approach includes passive correction of camera yaw angle by using
trigonometric corrections to point the camera towards the center of AprilTag. The second approach
uses a custom build hardware-based tracking gimbal to align the face of the camera towards the center
of tag. Lastly, we have demonstrated how to use the experimental data to build a probabilistic model
of the AprilTag sensor using Gaussian Processes (GP) Regression that can be reused as a forward
sensor model in many localization-based applications. Also, we have demonstrated that the accuracy
and precision of AprilTag increase manifolds if we use the proposed approaches in combination with
each other. Comparative results with the Motion Capture (MoCap) system have been shown to best
show the improvement proposed.

The suggested enhancement approaches can be used in multiple applications, including robotics
and virtual reality (VR). We have experimentally tested the proposed approaches in both indoor
and outdoor environments to show the completeness of the proposed probabilistic sensor model.
Nonetheless, we have only analyzed horizontal, vertical and yaw axis accuracy reported by the
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AprilTag, which is sufficient for many ground-based localization applications. However, for more
complex operations in 6-DOF environments like aerial robotics, other axes such as height, roll and
pitch axis are also principal. Further work needs to be done in that direction.

Moreover, for hard real-time applications, we believe that the proposed custom build yaw-axis
gimbal for active correction of camera yaw angle does not move fast enough to match the hard time
constraints. The proposed approach can be further improved by using FPGA based implementation
for a quick response. Furthermore, a servo motor can also be improved to increase the speed of
tracking. Also, the theoretical framework for GP regression in this paper makes some assumptions and
simplifications that need further investigation. Another possible open direction of future work might
be the inclusion of multiple sensors tag in the probabilistic sensor model to enhance the performance
further. Furthermore, by fusing the data of the Inertial Measurement Unit (IMU) while tracking
AprilTag can enhance the performance. It may improve the robustness of the robot generated trajectory
by filling the gaps when AprilTag is not detected. Nonetheless, there exist multiple directions for
extension of this work, which we have attempted to make accessible to the robotics community for
reuse in their research [47] and lay the exposition open to critical examination and investigation of the
community.

6. Code & Dataset

Proposed improved AprilTag Code and datasets can be accessed/downloaded at http://
cyphynets.lums.edu.pk/index.php/Apriltag.
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Abbreviations

The following abbreviations are used in this manuscript:

MAV Micro Aerial Vehicle
UAV Unmanned Aerial Vehicle
2D Two Dimensional
3D Three Dimensional
DOF Degree of Freedom
MoCap Motion Capture System (Vicon MX F-49)
PID Proportional-Integral-Derivative
GP Gaussian Processes
InC Inconsistent
C Consistent
G+InC Gimbal with inconsistent
G+Con Gimbal with consistent
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