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Abstract: The pressure map at the interface of a prosthetic socket and a residual limb contains
information that can be used in various prosthetic applications including prosthetic control and
prosthetic fitting. The interface pressure is often obtained using force sensitive resistors (FSRs).
However, as reported by multiple studies, accuracies of the FSR-based pressure sensing systems
decrease when sensors are bent to be positioned on a limb. This study proposes the use of
regression-based methods for sensor calibration to address this problem. A sensor matrix was
placed in a pressure chamber as the pressure was increased and decreased in a cyclic manner. Sensors’
responses were assessed when the matrix was placed on a flat surface or on one of five curved
surfaces with various curvatures. Three regression algorithms, namely linear regression (LR), general
regression neural network (GRNN), and random forest (RF), were assessed. GRNN was selected
due to its performance. Various error compensation methods using GRNN were investigated and
compared to improve instability of sensors’ responses. All methods showed improvements in results
compared to the baseline. Developing a different model for each of the curvatures yielded the best
results. This study proved the feasibility of using regression-based error compensation methods to
improve the accuracy of mapping sensor readings to pressure values. This can improve the overall
accuracy of FSR-based sensory systems used in prosthetic applications.

Keywords: force myography; prosthetic fitting; regression; calibration; error reduction; linear
regression; random forest; general regression neural network; cross-talk; force sensitive resistor

1. Introduction

The pressure profile at the interface of the prosthetic socket and the residual limb contains
important information that can be used for various applications in the field of prostheses. Some of the
most common prosthetic applications for which the use of this pressure map has been explored include
control of powered prostheses using Force Myography (FMG) [1–3] and prosthetic fitting [4–6].

FMG for prosthetic control has been explored for both upper extremity and lower extremity
prostheses [7,8] . For the upper limb, FMG has been mostly used for gesture classification to control
externally-powered prosthetic hands [9,10]. The feasibility of using FMG for continuous finger
movement control has also been investigated [8,11]. In lower limb prostheses, the use of FMG
has been mainly focused on locomotion mode detection. Information about the mode of locomotion
can be used for the ankle’s angle correction as the user walks over ramps, flat surfaces, or stairs [7,12].
Moreover, studies have shown promising results using FMG for gait phase detection [13] which can
potentially be used for lower limb prostheses control [14].
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Another application for which the interface pressure can be used is prosthetic fitting. Correct
shaping of the socket is a critical and complex part of the prostheses design process [15]. Poor socket fit
can cause various problems such as pain and discomfort [16], skin problems such as edema, dermatitis
and ulcer [17] which can lead to abandonment of the prosthesis or even further surgery. These problems
may also drive users to put more load on their intact limb which can cause other problems such as
osteoarthritis of the knee and/or the hip joints of the intact limb [18]. Moreover, insufficient loading of
the residual limb may lead to osteopenia and subsequent osteoporosis [18]. Using the aforementioned
interface pressure, location of high pressure areas and the value of pressure in these areas can be
determined. This information can enhance the accuracy of the prosthetic fitting process and prevent
some of the problems associated with a poor socket fit.

Various force/pressure measurement techniques are used in biomedical applications. Strain
gauges and load cells are used in different forms and for various applications such as measurement of
ground reaction forces for gait analysis using instrumented shoes [19] and prosthetic interface pressure
measurement [17]. Force plates are also commonly used in such applications due to their accuracy of
measurement [19–21]. Other force/pressure measurement methods for biomedical applications include
the use of piezoelectric sensors for measurement of normal forces in shoe insoles [19], instrumented
implants for telemetric measurement of forces [22], dynamometers [23], and electromyography for
measurement of muscle activation forces [21].

The measurement method is determined based on the application for which the results are to
be used. For example, despite the high accuracy of measurements by a shoe insole instrumented
with strain gauge transducers, it is not a suitable measurement system for gait analysis due to the
interference of the thickness of the sensors with parameters of the experiment [19]. For pressure
measurement within prosthetic sockets, various techniques are investigated including the use of strain
gauge transducers, capacitive sensors, and piezoresistive sensors [6]. The use of strain gauge-based
sensors are amongst the most accurate methods that can measure both normal and shear forces.
However, factors such as the high cost of these sensors and their dimensions limit their practicality for
the real use case of the applications considered in this study. The use of such sensors for prosthetic
pressure measurement requires modification of the prosthetic socket to make embedment of the sensors
possible. Such alterations to the prosthetic socket may affect the interface pressure distribution [24–26].

Capacitive sensors are used both in single point form and as sensor arrays for prosthetic pressure
measurement. The rigid substrates of the single point capacitive sensors prevented them from
complying with the geometry of the socket, which in addition to their costly fabrication prevented
them from being an optimal technique for prosthetic pressure measurement [6]. The Pliance system by
Novel Electronics (Minneapolis, MN, USA) uses capacitive sensor arrays for this application, however,
the measurements are limited to direct pressure and are uni-directional [27,28].

Design and development of sensors that are thin, less costly, and can measure shear forces have
been investigated in the research community. Chase et al. fabricated and tested a flexible capacitive
force sensor that was able to measure normal and shear forces [29]. Razian et al. designed and
developed a miniature triaxial piezoelectric copolymer film pressure transducer with thickness of
2.7 mm that can be embedded in shoe insoles [30]. Although these sensory systems can potentially be
used for prosthetic pressure map registration, their development methods are still in their early stages
and are bound to the research laboratories.

FSR-based pressure measurement systems are amongst the most common methods for prosthetic
pressure map registration as well as a multitude of other biomedical application [31]. Despite their
inability to measure shear forces which is undesirable for some prosthetic applications, their thin
profile, flexibility, cost effectiveness, computationally affordable signal pre-processing [17,27,32] ,
and commercially established development have made them a practical solution for prosthetic pressure
measurement. The F-scoket system by Tekscan (Boston, MA, USA) has been one of the most commonly
preferred solutions for pressure measurement inside prosthetic sockets [5,6,17,26,28,32].
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Despite availability of FSR-based prosthetic pressure measurement systems in the market and
their wide use in research communities, when these systems are evaluated in practical situations,
higher errors are reported compared to their performance in constrained environments of the labs.
In prostheses control using FMG, higher errors are reported for inter-subject and inter-trial cases [13,33].
In prosthetic fitting systems, higher errors are reported when FSR sensors are placed on moulds of the
limbs [4,27,28].

Factors affecting stability of FSR responses have been investigated in multiple studies.
Chegani et al. assessed the effect of sensor placement and spatial coverage on stability of FMG
signals used for gesture classification through studying their effect on obtained classification accuracy.
It was determined that increasing spatial coverage improved accuracy when two custom FMG bands
were used instead of one. However, increasing spatial coverage beyond that did not further improve
the results. They also reported that optimal placement of sensors can potentially compensate for the
lower spatial coverage [8]. Delva et al. investigated the effect of anthropometry and grip strength on
stability of FMG signals and determined that these factors do not contribute to variability in FMG
signals. They also demonstrated that FMG signal’s stability was not decreased in non-stationary
tasks [34].

Another factor that can decrease the stability of FSR signals is the curvature of sensors. In the use
of FSR-based pressure sensing systems for prosthetic applications, as sensors are embedded inside a
prosthetic socket, they are inevitably bent. When FSRs are bent, their neutral value changes and as the
sensor responses are usually non-linear, this could considerably affect sensors’ responses.

Multiple studies have assessed the effect of bending on stability of FSR readings by studying
the effect of placement of FSR sensor arrays on moulds of the limb on the sensors’ error compared
with when they were laid flat [4,28]. These assessments showed that when the sensors were placed on
moulds of residual limbs, their errors increased significantly compared with when they were laid flat.
Three off-the-shelf FSR-based pressure sensing systems were assessed in these studies: the Rincoe SFS
system, the F-Socket, and the Pliance system. Their reported accuracy error increased from 24.7% to
32.9% for the Rincoe SFS system [4], 8.5% to 11.2% for the F-Socket [4], and from 2.42% to 9.96% for the
Pliance system [28].

To the best of authors’ knowledge, no study has been conducted to solve the problem of instability
of FSR-based pressure sensing systems due to bending. The objective of this study is to determine
feasibility of reducing errors introduced in sensor matrix readings due to the matrix being bent
using information about the values of curvature of the sensors. This is a preliminary study using an
off-the-shelf matrix of FSRs and five values of curvature that are uniform across the matrix. Proposed
methods in this study can be applied to any system of sensor matrices that are prone to decreased
accuracy when bent, including pressure measurement systems for prosthetic fitting that are available
in the market. Since sensor bending affects the physical characteristic of the sensors, it could also affect
other aspects of sensors’ response in addition to what was assessed in this study such as creep and
hysteresis. Moreover, when sensors are placed on a residual limb, they might be bent in multiple
planes. This study assessed the effect of bending in one plane. The effect of bending on creep and
hysteresis in addition to multi-plane curvature of sensors should be investigated in future work.

The proposed approach for this study was to test sensor readings in a chamber with varying
pressure when sensors were laid flat or when they were bent with known curvatures. Recorded data
was then analyzed offline. In order to reduce the error due to bending, four regression-based error
compensation methods were investigated. These error compensation methods required the use of a
regression algorithm to form a model for pressure prediction based on FSR data and sensors’ curvatures.
To determine which regression algorithm to use in these error compensation methods, three algorithms,
namely linear regression (LR), general regression neural network (GRNN), and random forest (RF),
were assessed on the data collected from the sensors in the pressure chamber. The data that were used
for assessment of the three regression algorithms was the combination of sensor data in all curved
conditions in addition to the flat condition. Data were split to 5 repetitions and Leave-one-out cross
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validation was used to chose one of the regression algorithms be used in the four regression-based
error compensation methods proposed in this study. The assessment was performed based on two
outcome measures: R2 and RMSE%.

The three regression algorithms that were assessed for this study are amongst the most vastly
used for regression purposes for FSR signals used in biomedical applications [8,35–37]. Linear machine
learning algorithms are commonly used for various types of signals for a multitude of applications due
to their capability of prediction and their computational efficiency [9,35,38,39]. These characteristics
make LR suitable for applications that are sensitive to processing time such as the ones that require
repetitions of data processing, and the applications that require real-time data processing.

GRNN is a probabilistic, memory-based neural network with a highly parallel structure.
This algorithm learns in a single pass through available data and converges to the optimal regression
surfaces with availability of more samples. It is capable of forming acceptable regression surfaces
based on limited data and is known to work with sparse data in real-time environments. GRNN
is fast learning and computationally efficient as it does not need back propagation. Moreover,
its implementation is relatively simple and easy to use [36,40]. These characteristics of GRNN make it
suitable for the analysis of this study, especially considering sparsity of curvature values.

RF is a non-conventional machine learning algorithm that is commonly used for classification and
regression of FSR signals. It improves on individual decision trees by using an aggregation of weakly
pruned trees to prevent over-fitting to training data. This enhances generalization of the models
created by RF [41]. These characteristics of the three aforementioned algorithms, common application
of them to FSR signals, and their performance for the baseline condition of this study, which is when
data from the flat condition and various curved conditions were combined, are the reasons they were
chosen for assessment of the dataset of this study.

The selected regression algorithm was used in the four regression-based error compensation
methods that were investigated. The objective of the error compensation methods was to take into
account the variability introduced in the sensors’ responses due to their bending. A common method
to account for such variability in different conditions is to calibrate sensors separately for each
condition [31]. Method1 does so by separating data based on the curvature of the sensors and
making a separate model for each condition using the selected regression algorithm. To predict
pressure for test data using this method, the model associated with the curvature of test data would
be used. Method2 uses the selected regression algorithm to make a single model for all data. In this
method, the value of curvature is used as an input channel for model training and pressure prediction.
Findings of method2 motivated implementation of method3 and method4. More explanation on this
is provided in the “Discussion” section. Method3 splits the data to flat and curved. It then uses the
selected regression algorithm to make a separate model for each of these two conditions. Pressure
prediction for test data using this method is similar to the first method. Method4 is similar to method2
except that the curvature input channel in this method has binary values of 0 and 1 representing
whether the sensor is curved or flat. For comparison of performance of these methods, data were split
to 5 partitions and Leave-one-out cross validation was used with the two aforementioned outcome
measures (R2 and RMSE%).

2. Materials and Methods

To assess the effect of bending on accuracy of the response of FSRs, sensors’ responses to known
pressure values were examined as they were placed on structures that were flat or were curved
with various curvatures. Regression methods were used to map sensor responses to pressure values.
To assess whether bending the sensors significantly affected their response accuracy, two conditions
were first compared: sensors’ responses when only the flat condition was considered and sensors’
responses when all six conditions were considered. Multiple error compensation methods were then
used to decrease the errors introduced due to the bending of the sensors and their performances
were compared.
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To collect required data for this study, a test setup was needed that could apply pressure on
sensors in the matrix while measuring the value of the applied pressure, that is, true pressure value.
The measured value would then be used to produce the regression model.

For all statistical tests, normality of data was determined using the Shapiro-Wilk test. When data
were from a normal distribution, depending on the number of populations being compared, either the
Student’s paired t-test at significance level of 5% or a repeated measures ANOVA was employed.
For these tests, 70 samples were used, each representing the outcome measure for one of the sensors in
the matrix.

For cases where the assumption of normality was violated, non-parametric tests were used.
When more than two populations were being compared, the Friedman test was used. For post hoc
analysis in these cases, or in cases where two populations were being compared, depending on
symmetry of the distribution of differences between paired variables, either the Wilcoxon signed-rank
test or the paired-samples sign test with a Bonferroni correction was used. All tests were conducted
with the IBM SPSS Statistics v24 software.

2.1. Sensor Matrices

To explore the extent of the effect of bending on accuracy of the response of FSRs, an off-the-shelf
sensor matrix of FSRs was chosen for this study: the TPE-900 Series multi-touch resistive evaluation
sensor by Tangio Printed Electronics. This sensor matrix was chosen due to its independence on specific
hardware or electronics. The FSR matrix used in this study was comprised of 7 rows and 10 columns
of individual FSR sensors and its dimensions were approximately 7 cm × 10 cm. The sensor matrix
is shown in Figure 1. For this experiment, the sensor matrix was sealed using Polydimethylsiloxane
(PDMS) to prevent the pressurized air inside the chamber from filling the air channel that was
integrated in the design of the matrix. If the air channel was filled with pressurized air, the pressure
difference between the environment and the sensor matrix’s air channel would be zero. This would
prevent the sensors from sensing the air pressure in their surrounding environment.

Figure 1. FSR matrix and the data acquisition printed circuit board (PCB) used in this study.

2.2. Data Acquisition

Two-dimensional (2D) networks of matrices are used in variety of applications such as tactile
sensing, pressure distribution measurements, temperature sensing, gas detection, and so forth [42].
Shared signal and power lines between sensors in a row and sensors in a column allow for smaller
number of traces which simplifies hardware and electronics. However, an inherent problem with the
row-column fashion of these matrices is the cross-talk between adjacent elements of the matrix.

Various circuits are proposed and used in the literature for the scanning of piezoresistive sensor
arrays that reduce the interference of unwanted paths [42–44]. Two of the commonly used cross-talk
suppression circuits are based on the Voltage Feedback method and the Zero-potential method [43].
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In this study, a printed circuit board (PCB) was designed for data acquisition that used the
Zero-potential circuitry shown in Figure 2. The data acquisition PCB used a Cypress PSoC 4 (model
CY8C4247AXI-M485) microcontroller, op-amps, switches, a voltage regulator chip, a voltage reference
chip, and multiplexers. Outputs of the circuit were transferred to a computer using universal
asynchronous receiver-transmitter (UART) communication and were then saved on the computer
for offline data analysis. The PCB could acquire data from sensor matrices of up to 10 columns and
16 rows. The PCB is shown in Figure 1.

Figure 2. Cross talk compensation circuit used in this study.

True pressure values also needed to be measured and recorded. This was done using a digital
pressure transducer by Omega Engineering (model PX309) whose data was acquired using a National
Instrument (NI) Data Acquisition Unit (DAQ)(model USB-6001). Recordings of sensor readings and
pressure sensor values were synchronized using NI LabVIEW software.

2.3. Test Setup

Sensors’ responses were assessed in six conditions—when sensors were laid flat and when they
were placed on each of the five structures that were designed with varying curvatures. The curved
structures were 3D printed and are shown in Figure 3. Each structure was part of a cylinder with
a different radius, namely 5, 7, 9, 11, and 13 cm, with corresponding curvatures of approximately
0.20, 0.14, 0.11, 0.091, and 0.077 m−1, respectively. As transtibial amputations account for majority of
the major lower limb amputations [45,46], and transhumeral amputations account for majority of the
upper limb amputations [45], chosen curvatures are based on measurements of the lower transtibial
residual limb reported by Persson et al. [47] and the average circumference of the arm reported by
Holzbaur et al. [48].
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Figure 3. Curved structured used to bend sensor matrix with known curvatures. From left to right, top
to bottom, 5, 7, 9, 11, 13 cm.

Persson et al. studied dimensions of 93 lower residual limbs to construct a standard formula
of their classification into cylindrical (ordinary), conical, and club-shaped as well as short, ordinary
(breadth < length < 2 ∗ breadth), or long. In this study, they tested the constructed classification
formula on 96 residual limbs of 86 volunteers in 135 examinations and determined that 80% of them
were ordinary in both size and shape. Measurements of the breadth of the residual limbs were not
reported, however, considering the ordinary length of the majority of the residual limbs and the range
reported for their length, breadth of the stump of majority of participants can be approximated to be
larger than 9 cm which corresponds to the curvature of about 0.2 m−1 [47].

Holzbaur et al. used magnetic resonance imaging for measurement of the features of 32 upper
limbs and reported an average of approximately 31 cm for the circumference of the arm which
corresponds to the curvature of about 0.2 m−1. Based on the measurements reported by the
aforementioned studies, the highest curvature used in this study was 0.2 m−1. The rest of the curvatures
were chosen with 2 cm variations in the radius of the cylinders up to the radius of 13 cm. The reason
lower curvatures were not considered is that they were not expected to have considerable effects on
sensors’ responses [48]. As this was a preliminary study, it did not consider double curvatures which
would be more important for the conical and club-shaped stumps which account for about 20% of the
stumps according to the above study [47]. This should be considered in future work.

Design of the curved structures included fixtures to assure fixed placement of sensor matrices that
was normal to the horizontal cross section of the cylinders. Fixtures were also added to the structures
to ensure their mechanical stability under pressure. For the experiments in this study, to bend sensor
matrices to specific, known curvatures, they were placed on these structures.

A test setup was required to apply and measure known values of pressure to the sensor matrix as
it was bent. The setup included an air pressure chamber rated at 793 kPa built to American Society of
Mechanical Engineers’ specifications, a pressure transducer with ±0.25% best straight-line accuracy
and range of approximately −103 to 1034 kPa, and an electrical feed-through to allow for powering
the system and reading output values. This setup was similar to the one used in literature to evaluate
sensory systems for prosthetic fitting [4,28]. The test setup is shown in Figure 4.
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Figure 4. Experimental setup using a pressure chamber.

2.4. Data Collection

The sensor matrix was placed on a flat or curved surface and was placed inside the chamber.
Sensors were then tested by increasing air pressure inside the chamber up to about 620 kPa and
decreasing it back to room pressure in a cyclic manner. This was repeated for each condition (five
curved surfaces and the flat surface) for up to 10 cycles. This method was similar to what has been
done in literature for assessment of accuracy of similar systems [4].

Frequency of data collection was 10 Hz. At each frame, both sensor values and the pressure inside
the chamber were recorded. Total number of data samples (observations) for the 6 sets combined was
about 45,000.

2.5. Regression Methods

To determine which regression algorithm to use in this study, three algorithms, GRNN, LR, and RF,
were applied to collected data and their performance was compared using two outcome measures.

Linear regression uses a linear combination of input data to create the regression model as shown
in the equation below [49]:

y = ω0 +
N

∑
i=1

ωixi, (1)

where ωi represents the weight of input feature i, xis are the input features, N is the number of
features, y is the predicted value, and ω0 is the intercept of the linear model. In this study Matlab’s
implementation of LR was used. No parameter turning was required.

GRNN functions based on two layers other than the input and output layers: a pattern layer
and a summation layer. First, the pattern layer assesses the relationship between each input feature
and the corresponding prediction value. Then, the summation layer performs a dot product of a
vector containing produced signals in the previous layer and a weight vector. This layer consists
of two neurons: a numerator neuron that is the summation of weighted target values; and the
denominator neuron which is the summation of weight values. The mathematical representation is
the following [36,40]:
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Y(x) =
∑N

j=1 YjL(x, xj)

∑N
j=1 L(x, xj)

L(x, xj) = exp[
−D2

j

2σ2 ],

(2)

where Y(x) is the prediction value, x is the new input, xjs are the training samples, D2
j is the

Euclidean distance between x and xj, and σ is the spread constant that was tuned to 2−7 using a grid
search. The smaller the distance between new test data x and the training sample Xj is, the larger the
value of L(x, xj) becomes. This makes the effect of training samples that are more similar to the new
test data greater on its predicted value.

The RF algorithm functions based on a modified version of decision trees. It creates an ensemble
of weakly pruned trees. In a standard decision tree, each split is based on all available features while in
RF trees, decision splits are based on comparisons of guesses among randomly selected input features.
To perform prediction on a data point after the RF model is learned, the aggregation of prediction of
all decision trees are used. In the implementation used in this study, the mean of prediction of trees are
used as the predicted pressure [8,41]. Matlab’s implementation of RF was used in this study. A grid
search was performed to tune the number of trees to 150. The default option was used for the number
of features used for each decision split which is one third of the number of variables.

The two outcome measures used in this study were: coefficient of determination (R2) and Root
Mean Square Error Percentage (RMSE%) that are calculated using the following formulas:

R2 = 1− ∑n
k=1(yk − y′k)

2

∑n
k=1(yk − yk)2 (3)

RMSE% =

√
1
n ∑n

k=1(yk − y′k)
2

rangey
∗ 100, (4)

where yk is the expected value of the reading, y′k is the predicted value, yk is the mean of expected
values, n is the number of observations, and rangey is the range of values in observations of expected
values. R2 and RMSE% are commonly used for assessment of performance of regression methods [50].
Based on these outcome measures, one of the regression algorithms was chosen to be used in this study.

Four different regression-based error compensation methods were examined to reduce the error
caused in sensors’ responses due to their bending. These methods were compared with each other
and the baseline results based on the two aforementioned outcome measures. Baseline values were
obtained by combining data from all 6 conditions (flat and curved). In the baseline method, one
regression model was created and used for the combined data. In order to eliminate any bias based on
the number of samples used in different regression methods, data were down-sampled in any of the
methods that were using data from multiple conditions. The four error compensation methods are
described in Table 1:



Sensors 2019, 19, 5519 10 of 20

Table 1. Regression-based error compensation methods used to reduce the errors introduced due to
bending of the sensors.

Method1 A separate model was made for each curvature and data for each curve was assessed separately.
A total of 6 models were used in this method.

Method2
The value of curvature for each of the curved or flat structures was inputted as an extra channel
to the model. Data was down sampled to 1/6 of total observations so that the number of
observations was comparable to the one for Method1.

Method3
All curved structures were grouped together, and two models were made in total: one for when
the matrix was laid flat, and one for all the curved conditions. Data was down sampled so that
the total amount of data for each of the two groups was comparable to the one in method1.

Method4 Similar to method2, an input was added for curvature values. However, value of curvature was
set to 0 for flat, and 1 for all the curved conditions. Data was down sampled similar to method3.

In all methods data were normalized based on the mean and the standard deviation of training
data before model was made. This was done since in practice, test data is unknown and cannot affect
these factors. Each sensor was analyzed separately in all methods and the means of outcome measures
for the 70 sensors were reported to represent the outcome measures for each method.

Leave-one-out cross validation method was used for all assessments done in this study. Data
were split to 5 sections. Five repetitions of the assessment were done, in each, one of the 5 sections of
data was held out as test data and the rest was used as training data. Obtained values of the outcome
measures for each sensor was the average of the five repetitions.

3. Results

Figure 5 illustrates how the curvature of an FSR sensor affects its response to applied force or
pressure. Since such variations can negatively impact the stability of sensor readings in practical
situations, we propose a regression-based calibration system that takes into account the information
about the curvature of a sensor in addition to its pressure measurements. In this section, results of our
proposed method are explained in detail.

Figure 5. Comparison of the response of one of the FSRs when sensor was laid flat vs. when it was
placed on the curved structure with radius of 13 cm.
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3.1. Algorithm Selection

Results of the two outcome measures using the three regression algorithms assessed in this study
are shown in Figure 6.

Statistical analysis showed significant differences between results of the three algorithms in terms
of both R2 (χ2(2) = 107.31, p < 0.001) and RMSE% (χ2(2) = 109.83, p < 0.001). Post hoc analysis
determined that LR had significantly worse performance in terms of both outcome measures. Means
of R2 values obtained using GRNN and RF were also significantly different. However, significance of
the difference between GRNN’s and RF’s performances in terms of RMSE% was not determined.

GRNN was chosen as the regression algorithm to be used moving forward due to its better
performance, lower standard deviations of errors and ease of use.

Figure 6. Comparison of performance of three regression algorithms: general regression neural network
(GRNN), linear regression (LR), and random forest (RF). The results of the two outcome measures are
shown in this figure: R2 in the right figure and RMSE% in the left one.

3.2. Method Selection

The comparison of when only the flat condition was considered versus when data from all six
conditions were combined yielded results shown in Table 2.

Table 2. Comparison of when sensors were laid flat vs. when all 6 conditions were considered.

Method R2 RMSE%

Flat 0.99 ± 0.0012 3.51 ± 0.19
All Curvatures 0.94 ± 0.013 6.93 ± 0.81

These results determined that inclusion of varying curvatures statistically reduced accuracy of
prediction based on both outcome measures. To compensate for this effect, the four error compensation
methods explained in Table 1 were used. Results obtained using these methods are shown in Figure 7
and Table 3.

Table 3. Results of method selection.

Method R2 RMSE%

Baseline 0.94 ± 0.013 6.93 ± 0.81
Method1 0.98 ± 0.0014 4.26 ± 0.18
Method2 0.96 ± 0.0027 5.03 ± 0.20
Method3 0.97 ± 0.0055 4.66 ± 0.40
Method4 0.98 ± 0.0060 4.96 ± 0.64
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Figure 7. Outcome measures for the four proposed methods. The results of the two outcome measures
are shown in this figure: RMSE% in the top figure and R2 in the bottom one.

The baseline method had the worst performance compared to all the other methods. Method1
yielded the best results. Method2 made significant improvement compared to the baseline results,
however, its performance was significantly worse than method1. Method3 showed improvement over
both the baseline and method2 with significant difference for both R2 and RMSE% outcome measures.
Yet it did not achieve as much improvement as method1. Method4 also showed improvement over
method2 but could not reach the amount of improvement obtained using method1. Means of the
average values for both outcome measures for this method were statistically significantly different
from both method2 and method3. This method performed better in terms of R2 but worse in terms of
RMSE% compared with method3 with significant difference.

Statistical analysis using the Friedman test determined significant differences between results
of all methods including the baseline in terms of both R2 (χ2(4) = 270.09, p < 0.001) and RMSE%
(χ2(4) = 246.83, p < 0.001). Post hoc analysis of means of both outcome measures showed significant
differences between all methods.

4. Discussion

As mentioned in the ‘Introduction’ section, bending FSR sensors can affect their neutral state
value which is their response in the minimum pressure of the system. The effect of bending on the
neutral state value of sensors is shown in Figure 8 by comparing the response of one of the sensors in a
low range of pressure when the sensor matrix was laid flat versus when it was placed on the structure
with the radius of 13 cm. This phenomenon, in addition to other factors such as the non-linearity
of sensors’ response to applied pressure, can considerably affect the response of FSRs when they
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are positioned with various curvatures. To better highlight this point, Figure 9 shows how applied
pressure can be inaccurately interpreted from FSR readings if the sensor’s curvature is not taken into
account. Figure 9 also shows how a regression-based calibration method can resolve this issue.

Figure 8. Comparison of the response of one of the FSRs when sensors were laid flat vs. when they
were placed on the curved structure with radius of 13 cm. Response of the sensors in low pressure
values is shown.

Figure 9. Comparison of predicting pressure from output of one of the sensors without and with
considering sensor’s curvature information. Sensor was curved with a curvature of approximately
0.77 m−1. GRNN regression algorithm was applied to predict pressure values from the measurements
of one of the sensors.

The goodness of fit of the regression models was compared in two cases—when only the flat
condition was considered versus when varying curvatures were also included. This comparison
determined that the effect of variation in curvatures of the sensors on their responses was statistically
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significant. In this step of the experiment, statistical significance was determined using the Student’s
paired t-test.

Four regression-based error compensation methods were used to compensate for this effect.
These methods were compared with the baseline. The baseline method yielded values for errors
without any attempt to compensate for the bending errors in the sensor matrix. As expected, this
method had the worst performance compared to all the other methods.

Method1 classified data to six classes of matrix positioning: one for flat and five for bent with
different curvatures and created a separate model for each class. This method resulted in the best
accuracy of prediction based on both of the outcome measures used in this study. This was likely
because in this method, data from each condition was considered separately without any effect from
data from other conditions. In this method, variation of data used for training and testing of each
model was minimal compared to other methods. The main disadvantage of this method was its
difficulty of implementation in practice. This is because, in practice, curvature values are continuous
while this method requires classification of data into discrete curvature conditions. A solution for this
is to classify data based on ranges of curvatures and to use separate models for each of the classes of
curvature range.

Method2 used values of curvatures of the sensor matrix as an added input channel to the
regression algorithm. Compared to method1, this method performed significantly worse. A closer
look at the data indicated that similarities between the data when sensors were curved with different
curvatures was much more than similarity of the data between any of the curved conditions and the
flat condition. This can be seen in Figure 10.

Looking at the physics and operation of FSRs may help in understanding why their behaviour
changes when they are curved. It may also clarify the reason for similarity of sensors’ responses
when curved with various curvatures. Force sensitive resistors are resistive polymer-thick-film (RPTF)
sensors comprised of multiple layers including semi-conductive layers and electrode layers. These
sensors often employ a spacer mechanism such as spacer layers or air channels to control the spacing
between the substrates of the sensors. This layer ensures high resistance of the sensors in the absence
of external forces. When force is applied to the sensors, their resistance decreases due to two main
factors. The first factor is the comprising layers of the sensors becoming in contact with each other.
The other factor is variation in the geometry of the semi-conductive layer in a way that reduces sensors’
resistance [35].

When sensors are bent, their physics that play an important role in their responses to pressure
also change. Curving FSRs causes their comprising layers to become closer to each other which
can be considered similar to pre-loading the sensors. Moreover, since the forces due to bending are
not distributed evenly across the sensors [40], their curvature affects their responses not only by
pre-loading the sensors, but also by changing the rate of the change of their responses to increasing
pressure. It is likely that the similarity of the responses of curved sensors regardless of the value of
their curvatures is because of the similarity in distribution of bending forces across sensors in these
conditions compared to when they are laid flat.

The reason method2 did not make as much improvement as expected is likely that the differences
between curvature values are not good representatives of the variation in data in corresponding
conditions. The model likely assumes that the difference between the value of the curvatures of two
conditions determines the difference between the sensors’ responses in those conditions. However,
this is not the case according to the data collected for this study. For example, the difference between
the curvatures of the flat condition and the curved condition with the radius of 13 cm is about 0.08 m−1

and the difference between the curvatures of the curved condition with the radius of 13 cm and the
one with the radius of 7 cm is about 0.07 m−1. The differences between the value of curvatures in these
cases are comparable, so the model likely assumes that the variations of the sensors’ responses in these
cases would also be similar. However, looking at the graph in Figure 10, it can be seen that the sensors’
responses are much more different in the former case compared to the latter one.
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Figure 10. Comparison of the response of one of FSRs when sensors are positioned on structures with
varying curvatures.

A solution for this could be to use binary inputs for curvatures. This would imply using 6 extra
input channels for model creation. In each of the 6 conditions, a unique binary sequence consisting
of a single 1 and five 0s would be used. This solution was implemented for the dataset of this
experiment. Obtained results were 0.96± 0.003 and 5.05%± 0.19% for the R2 and RMSE% respectively.
Both outcome measures were improved compared to method2, however, significant improvement was
not determined using the Student’s t-test for either of the outcome measures. To further improve on
this, categorical inputs could be used for curvature. However, in that case, curvature values would
need to be classified to curvature ranges which would entail similar problems as the ones explained
for method1.

Another solution to improve on method2 would be to determine a mapping of curvatures to
continuous values that would be able to accurately represent the extent of their effect on variation of
FSR responses. This should be investigated in future work.

The similarity between all curved conditions compared to the flat condition brought up the
possibility of grouping all curved data and simply separating the two situations when the sensor
matrix was laid flat and when it was curved, regardless of the amount of its curvature. This led
to method3 and method4. Both method3 and method4 improved on the results obtained using
method2 significantly.

Method3 made two different models, one for flat and one for curved. This method yielded
improvement over method2 with significant statistical difference for both R2 and RMSE% outcome
measures. This is likely because the error caused by ignoring variations in data when sensors were
bent with various curvatures is smaller than the error caused by assuming that the value of curvatures
were accurate representatives of the amount of variation introduced in data as sensors were bent.
This was expected as discussed before. Method3 did not achieve as much improvement as method1
since, in method1 the error caused by assuming no variation in data from various curvatures was
also omitted.

Method3 is easier to implement in practical situations compared to both previous methods. This is
because there is no need to know the exact or even approximate value of curvatures, as long as it is
known that the matrix is curved. It is reasonable to assume that sensors are bent in most locations
when the matrix is embedded in a prosthetic socket.
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Method4 inputted an extra channel to the algorithm. The value of this channel was 0 when
the sensors were laid flat, and it was 1 when they were curved regardless of the amount of bend.
This method, similar to method3 groups all curved data together. Method4 also showed improvement
over method2 but could not reach the amount of improvement obtained using method1 for the same
reasons explained for method3.

It is worth noting that, since only two values, 0 and 1, were used as the second input for method4,
this method is similar to binary curvature inputs that was discussed for method2. This is likely the
reason why method3 and method4 have comparable performances (each outperforms the other based
on one of the outcome measures). Method3 performed significantly better than method4 in terms of
RMSE%, however, it performed significantly worse than method4 in terms of R2. In comparison of
the last two methods, that is, method3 and method4, it was determined that method3 outperformed
method4 based in RMSE% while method4 outperformed method3 based on the other outcome
measure (R2). Because we only considered two outcome measures in this study, neither of which was
considered more important than the other, and due to the fact that each of these methods performed
better that the other based on one of these outcome measures, we cannot conclude superiority of one
of these methods compared with the other. As a result, we cannot consider one of them to have had
better overall performance for the dataset of this study.

In terms of computing power and running time, variations for testing using these methods are not
considerable. This is because in all methods, the model is produced using offline data. In online testing,
at each sample and for each sensor, one prediction is performed using the pre-built model. The main
difference among different methods would be in the training time. However, this is not an important
factor in applications considered in this study since model production would be performed offline.

In order to use the proposed methods of this study, information about curvature of the limb is
required. Various methods are used for geometric assessments of a residual limb that can be used for
this purpose. Some possible methods include circumferential measurements and contacting methods
utilizing digitizing methods of the cast of the limb or the residual limb itself [51,52]. Since, in common
practice for the fabrication of prosthetic sockets, casts are made in one of the initial steps, cast of the
limb is available and can be used for geometric assessment of the limb [53]. Three-dimensional (3D)
scanning is another method that has recently gained attention in the field of prosthesis for various
applications. 3D scans of the limb can be used for extraction of information required for the methods
proposed in this study. Another option would be to place sensors on the cast of the limb and calibrate
them as they are curved and placed on the location of the limb that they would later be positioned on
for measurements.

Bend sensors can also potentially be used to measure the value of curvature of sensors. Compared
to the aforementioned methods, the use of bend sensors can be faster and easier but less accurate.
Another method that could be valuable for this purpose in the settings similar to the one used in this
study, is to use the value of FSRs in specific states to determine their curvature value. To achieve this,
values of sensors in room pressure or another known state could be considered. Another option would
be to determine the curvature value based on the response of sensors to cyclic variations of pressure.
In either of these cases, features should be extracted from time windows with optimized lengths.
For more reliable prediction of curvatures, values of multiple adjacent sensors can be considered.
This method should be investigated in future work.

5. Conclusions

In this study, it was determined that when FSR sensors were bent, the error in their mapping to
pressure values significantly increased compared to when they were laid flat.

Four regression-based error compensation methods were proposed to solve the problem of
instability of FSR sensor matrices when placed on a curved structure. All proposed methods
significantly improved the accuracy of mapping of sensor readings to pressure values. It was
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determined that by just knowing when the sensor was curved without any knowledge about the value
of its curvature, results could be improved using proposed methods in this study.

The best performance was achieved by making separate models based on the value of curvature of
sensors. The second best performance was obtained by grouping all curved conditions and separating
them from the flat condition. The former method would require classifying curvature values to
pre-defined ranges. This is to be investigated in future work. The latter method is simpler and more
practical since no knowledge about the value of the curvature is required, however, the amount of
improvement obtained using this method is significantly less than the former method.

Based on findings of this study, for practical use of the proposed methods, method1 is
recommended due to its better performance in terms of both outcome measures. To use this method
with continuous curvature values, curvatures would be grouped into classes of different ranges and
a model would be made for each group. Then, depending on the range that the sensor’s curvature
falls into when placed on the limb, the regression model for its calibration would be selected. More
investigation is required to determine the optimum ranges of curvatures.

6. Limitations and Future Work

This was a preliminary study that demonstrated feasibility of using the proposed methods to
increase robustness of FSR-based systems for prosthetic applications. Some of the limitations of this
study and future work are explained in this section.

Experimental conditions such as sensor sealing with PDMS may have affected the reported results.
This reduces generality of the findings of this study. Various types of FSR sensors, for example sensors
that do not need to be sealed, should be tested in different experimental conditions to confirm findings
of this study in future work.

In order to fully control the experiments carried out in this study, the sensors were not removed
in between tests. Next steps in future work, should assess the effect of removing and re-positioning
sensors between multiple repetitions of data collection. This would be to assess the effect of variability
of data due to re-positioning on accuracy of pressure prediction using the methods proposed in this
study. The use of proposed methods for sensors incorporated into prosthetic systems should also be
investigated and clinical tests of these systems should be conducted.

In future studies, more curvature values need to be tested to determine whether even with
very low values of curvature, these methods would prove useful. Continuous curvatures need to be
examined to obtain a more generalized dataset. Moreover, more complex shapes need to be tested in
future work that would cause different sensors in a matrix to have different amounts of bend. This
would be to mimic the scenario when sensor matrices are placed on a residual limb. An experiment
should be conducted in which sensors are placed on a mould of the residual limb inside the pressure
chamber and models are built according to data recorded in this situation. Moreover, these methods
should be examined using a variety of sensor matrices and single FSRs.

To further build on findings of this study, the effect of hysteresis and creep on FSRs should also
be investigated. Compensation methods should be proposed to enhance stability of these sensors in
practical and prolonged prosthetic applications.
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FSR Force Sensitive Resistor
FMG Force Myography
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RMSE Root Mean Square Error
PCB Printed Circuit Board
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