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Abstract: Due to the strong anti-destructive ability, global coverage, and independent infrastructure
of the space-based Internet of Things (S-IoT), it is one of the most important ways to achieve a real
interconnection of all things. In S-IoT, a single satellite can often achieve thousands of kilometers
of coverage and needs to provide data transmission services for massive ground nodes. However,
satellite bandwidth is usually low and the uplink and downlink bandwidth is extremely asymmetric.
Therefore, exact data collection is not affordable for S-IoT. In this paper, an approximate data collection
algorithm is proposed for S-IoT; that is, the sampling-reconstruction (SR) algorithm. Since the
uplink bandwidth is very limited, the SR algorithm samples only the sensory data of some nodes
and then reconstructs the unacquired data based on the spatiotemporal correlation between the
sensory data. In order to obtain higher data collection precision under a certain data collection ratio,
the SR algorithm optimizes the sampling node selection by leveraging the curvature characteristics of
the sensory data in time and space dimensions. Moreover, the SR algorithm innovatively applies
spatiotemporal compressive sensing (ST-CS) technology to accurately reconstruct unacquired sensory
data by making full use of the spatiotemporal correlation between the sensory data. We used a
real-weather data set to evaluate the performance of the SR algorithm and compared it with two
existing representative approximate data collection algorithms. The experimental results show that
the SR algorithm is well-suited for S-IoT and can achieve efficient data collection under the condition
that the uplink bandwidth is extremely limited.

Keywords: sensory data collection; space-based Internet of Things; Internet of Things; spectral
clustering; spatiotemporal compressive sensing

1. Introduction

The target of the Internet of Things (IoT) is to connect everything. The terrestrial IoT is mainly
based on terrestrial networks, such as private networks, the Internet, and mobile communication
networks. For this reason, because of the limitations of terrestrial network coverage, the scope of IoT
applications is limited. For example, areas lacking terrestrial infrastructure, such as polar regions,
oceans, and forests, make it difficult to deploy and apply large numbers of nodes. The advantages
of space-based information networks include strong resistance to damage, global coverage, and
infrastructure independence. Using a space-based information network as the network for IoT
information transmission, building a space-based Internet of Things (S-IoT) is an effective way to
realize the real interconnection of all things [1–6].
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S-IoT is a comprehensive information system that is based on the space-based information network
and provides interactions between things and things, people and things, and people and people. S-IoT
is an extension and supplement to the terrestrial IoT. It mainly provides data transmission services for
nodes in areas that are difficult to cover by terrestrial networks, such as forests, oceans, and deserts, as
well as nodes in special areas, such as disaster areas and battlefields.

At present, the research on S-IoT has just started, and only a small amount of preliminary
research has been carried out on data collection [7], application protocols [8], modulation schemes [9],
and authentication protocols [10]. Despite this, S-IoT has attracted extensive attentions from many
organizations including Inmarsat, Iridium, Globalstar and Orbcomm, and reports from Northern Sky
Research (NSR) also show that in 2020, S-IoT’s revenue will likely be as high as $1.7 billion [11].

The foundation of S-IoT’s service for a variety of applications is data collection. Data collection is
the primary operation in S-IoT. Data collection in S-IoT refers to the process of using the space-based
information network to collect sensory data from ground nodes and store this in data centers.

However, there are huge challenges in S-IoT data collection. Firstly, in S-IoT, a single satellite
usually covers a vast area and needs to provide data transmission services for massive ground nodes.
The coverage of a terrestrial wireless base station is generally hundreds of meters to tens of kilometers.
For example, in terrestrial IoT, such as long range radio (LoRa) or narrow band Internet of Things
(NB-IoT), a base station can only cover tens of kilometers and provide services for hundreds of nodes.
The coverage of a satellite (equivalent to a base station) is usually thousands of kilometers. For example,
when the orbit altitude is 500 km and the half beam direction angle is 60◦, the diameter of the satellite
coverage area is about 2000 km. In such a wide coverage, the satellite usually needs to serve tens of
thousands of nodes or even more. By 2025, the number of machine to machine (M2M) and IoT networks
that are connected to the space-based information network are expected to reach 5.96 million [12].

Secondly, the bandwidth of the satellite–ground link is usually low, and the uplink and downlink
bandwidth is extremely asymmetric. Due to the limitation of the power and weight of satellites, the
bandwidth of the satellite–ground link is usually only on the order of Mbps and shared by massive
nodes. Even worse, the uplink and downlink bandwidth of the satellite–ground link is significantly
asymmetric because the transmission power and antenna size of the ground nodes are more limited
compared to satellites. The uplink and downlink bandwidth ratio usually reaches 1:10 or even 1:100.

Therefore, the extremely limited uplink bandwidth of S-IoT will face competition by massive
nodes, making it difficult to achieve complete and accurate data collection. This brings forth the
important issues of approximate data collection in S-IoT. When we design approximate data collection
algorithms for S-IoT, there are several important factors that need to be considered. Firstly, the sensory
data in S-IoT are usually environmental parameters or location-related information, and there is a
strong correlation between them in both time and space dimensions, so there is redundancy. Secondly,
the ground nodes in S-IoT are usually distributed over a wide area, and there may not be stable links
between nodes, or even no link at all. Therefore, nodes in S-IoT are often directly connected to satellites.
Thirdly, the nodes in S-IoT are usually distributed in the wild and even carried by animals. Due to the
limitations of weight, volume, and energy supply, the computing and storage resources of nodes are
severely limited.

Therefore, an intuitive but very effective method of approximate data collection is to sample
the sensory data of some nodes and then reconstruct the sensory data of the unsampled nodes by
using the spatiotemporal correlation between the sensory data. For this method, in order to obtain
higher data collection precision under a certain data collection ratio, we need to solve two problems:
(1) how to optimize the sampling node selection during the sampling phase; (2) how to make full use
of the spatiotemporal correlation between the sensory data during the reconstruction phase. Based
on this idea, a general approximate data collection algorithm is proposed in this paper for S-IoT;
that is, the sampling-reconstruction (SR) algorithm. The contributions of this paper can be summarized
as follows:
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• To the best of our knowledge, the proposed SR algorithm is the first approximate data collection
algorithm for S-IoT, which is well suited for S-IoT and can achieve efficient data collection with
severely limited uplink bandwidth.

• In order to obtain the highest possible data collection precision under a certain data collection ratio,
we optimize the sampling node selection by using the curvature characteristics of the sensory data
in time and space dimensions. Moreover, we innovatively use the spatiotemporal compressive
sensing (ST-CS) technology to make full use of the spatiotemporal correlation of the sensory data
to accurately reconstruct unacquired sensory data.

• The proposed SR algorithm is validated on a real-weather data set and compared with two
existing representative approximate data collection algorithms in terrestrial IoT and wireless
sensor network (WSN).

The following is an overview of the other chapters of this paper: In the Section 2, the work related
to approximate data collection is reviewed. In the Section 3, the problem scenario of approximate data
collection in S-IoT is described. In the Section 4, the SR algorithm that is proposed in this paper is
elaborated, and the overall framework of the SR algorithm and the specific processes of clustering,
sampling, and reconstruction are included. In the Section 5, the relevant performance of the SR
algorithm is evaluated, and finally a summary of this paper and the future work are provided.

2. Related Work

As the research on S-IoT has just started, related research on approximate data collection in
S-IoT has not been found. In [7], the problem of data collision and increased delay caused by a large
number of ground nodes connected to a satellite in S-IoT is studied. However, the authors studied
this from the perspective of access control rather than approximate data collection. In terrestrial IoT
and WSN, many approximate data collection algorithms have been proposed [13,14]. According
to [13], these algorithms consist of three major categories, namely model-based algorithms [15–20],
compressed-sensing-based algorithms [21–27], and query-driven algorithms [28–32]. Below, we first
discuss the differences between S-IoT and terrestrial IoT/WSN, then introduce the basic ideas and
representative work of the three types of algorithms and analyze their advantages, disadvantages, and
applicability in S-IoT.

2.1. S-IoT and Terrestrial IoT/WSN

Both S-IoT and terrestrial IoT/WSN acquire data through devices such as radio frequency
identification (RFID) readers and sensors carried on the nodes, and then collect the data to support
related applications. However, terrestrial IoT/WSN transmits data through terrestrial networks, such as
the Internet, mobile communication networks, or private networks, while S-IoT transmits data through
space-based information networks. Moreover, S-IoT is mainly used as a supplement to terrestrial
IoT/WSN, and is used for environmental protection, animal monitoring, and other applications in
areas where terrestrial networks are difficult to cover, such as in forests, oceans, and deserts; and for
communication services in special areas, such as disaster areas and battlefields.

Due to the differences in transmission networks and application fields, S-IoT and terrestrial
IoT/WSN have significant differences in aspects of base station coverage, internode links, and
connection modes between nodes and base stations, as shown in Table 1.
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Table 1. Comparison of space-based Internet of Things (S-IoT) and terrestrial IoT/WSN.

Network Type Coverage of a
Base Station

Number of Nodes
Connected to a Base Station Internode Link

Common Connection Mode
between Nodes and

Base Stations

S-IoT Thousands of
kilometers Tens of thousands No stable link, or

even no links Direct connection

Terrestrial IoT Tens of
kilometers Hundreds Exists Multi-hop connection via

internode links

WSN Hundreds of
meters Tens Exists Multi-hop connection via

internode links

As mentioned in Section 1, the coverage of a base station in terrestrial IoT/WSN is hundreds of
meters to tens of kilometers, serving tens to hundreds of nodes. A satellite (equivalent to a base station)
in S-IoT can usually cover a range of thousands of kilometers, and may need to serve tens of thousands
of nodes or even more.

The nodes in terrestrial IoT/WSN usually form a network, such as the Internet of Vehicles or a
wireless sensor network. The sensory data acquired by the node are transmitted to the base station
through this network. Nodes and base stations are connected via multihop links between nodes. In the
application fields of S-IoT, ground nodes are usually distributed over a wide area, and there may not
be stable links between nodes, or even no link at all. For example, in animal monitoring, there may not
be links between sensors carried by animals. Even if they exist, the links are difficult to stabilize due to
animal migration. Therefore, nodes are usually directly connected to satellites.

The resources of the terrestrial IoT/WSN transmission network are relatively abundant, while the
resources of the network formed by the ground nodes are severely limited due to the restrictions on
the weight, volume, and energy supply of the nodes. Therefore, the main purpose of the approximate
data collection algorithms in terrestrial IoT/WSN is to reduce the communication overhead and energy
consumption of the internode network.

2.2. Model-Based Algorithms

In model-based algorithms, the correlation between sensory data is described by a mathematical
model. Local prediction models are distributed and run on sensor nodes. In order to establish a global
prediction model, the parameters of all local models are transmitted to the sink. If a sensory value and
the predicted value of the local model are within a given error range, it does not need to be transmitted
to the sink. The sink uses the value predicted by the global model as the collected value of the sensory
data. Sensory data need to be transmitted to the sink only if the predicted values are not within the
error range.

In order to minimize the communication from sensor nodes to the sink, the authors of [16]
proposed Ken, an approximate technique based on replicated dynamic probabilistic models. A series of
dynamic probability models are distributed in the sensor network. The sink synchronously runs all the
same models. If sensor nodes find that newly arrived sensory values and the values predicted by the
models are within the error range, these sensory data will not be sent to the sink. The sink computes
the predictions of sensory data through the synchronized models and uses them as the approximation
values. Otherwise, a subset of sensory data needs to be transmitted to the sink to update the models.

In [17], an adaptive sampling approach (ASAP) was developed. The sensor network is divided
into multiple clusters by ASAP, and the nodes with close sensory values are assigned to one cluster.
During data collection, for each cluster, some nodes are selected by ASAP as sampling nodes, and
their values are collected directly. The values of the unsampled nodes in the cluster are predicted
by the probability model. Probability models are constructed by exploiting the spatial and temporal
correlations among sensory data. The method in [18] also divides the sensor network into clusters.
The temporal correlations and spatial correlations of sensory data are described by linear regression
models and correlation graphs, respectively. When collecting data, the sink will only receive data from
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the minimum subset of sensor nodes. The problem of determining the minimum subset of sensor
nodes can be modeled as a minimum-dominating set problem.

Approximate data collection in body-area sensor networks was studied in [19]. Firstly, the proposed
algorithm learns the temporal and spatial correlations among sensory data and a weighted directed
graph is constructed to represent the transmission priorities of sensor nodes. Secondly, in the data
collection process, the sensory values of the higher-priority sensor nodes are overheard by each node,
and only the differences between the overheard values and its value are reported.

The model-based algorithms only need to transmit part of the sensory data by utilizing the
temporal and spatial correlations among sensory data, thereby reducing communication overhead
and energy consumption. However, firstly, since the model used by the algorithm is usually too ideal,
the correlation between sensory data cannot be accurately described. Secondly, local models need to
be run on sensor nodes, resulting in additional computation cost and energy consumption. Thirdly,
for S-IoT, if the global model runs on the ground sink node, the communication overhead in the
space-based information network will not decrease; if the global model runs in the data center of S-IoT,
guaranteeing the consistency between local and global models will bring additional communication
overhead to the network (including internode networks and space-based information networks).

2.3. Compressed-Sensing-Based Algorithms

Compressed-sensing-based algorithms assume that all nodes in the network report data
synchronously, and the sensory data of all nodes over a period of time can constitute a m × n
matrix, where m refers to the number of data collections in the time period and n refers to the number
of nodes in the network. The algorithms assume that the sensory data matrix is sparse in a certain
subspace. The algorithms first map the sensory data to the above-mentioned sparse subspace to
compress the data. Subsequently, the compressed data is sent to the sink, which then recovers the
original data through the compressed data according to the sparse characteristics of sensory data.

The work in [23] proposed the compressive data gathering (CDG) algorithm, which is the first
complete design to apply a compressive sampling theory to sensory data collection for large-scale
wireless sensor networks. In [23], each sensor node generates a data vector by multiplying its sensory
value and a random vector. In the routing tree, each node transmits the sum of its data vector and data
vectors of all its child nodes. Based on the theory of compressive sampling, the sink can recover the
original sensory data through the received data vectors and the random matrix that consists of all the
random vectors.

Authors of [22] found a matrix that has a good restricted isometry property and used this matrix to
compress sensory data during collection. Furthermore, in order to fully utilize the sparsity of sensory
data, different sparsity patterns can be utilized by the proposed algorithm.

The algorithm proposed in [26] firstly gathers a small number of compressive sensing measurements
through random walk routing in order to reduce energy consumption. Then, all original sensory data are
recovered according to these measurements.

Conventional clustered compression algorithms usually ignore data correlation among different
clusters. The algorithm designed in [27] provides better data collection performance through exploring
spatial correlations among different clusters and developing a detailed solution method to recover the
original data.

When the sensory data matrix has a high sparsity in a certain subspace, the compressed-sensing-based
algorithms can effectively compress the sensory data, thereby reducing communication overhead and
energy consumption. However, firstly, the assumption that the sensory data matrix is sparse in a
certain subspace is too strong. Even if the above assumption is correct, it is difficult to find the subspace
in which the sensory data is sparse. Secondly, data compression operations need to be performed on
the sensor nodes, resulting in additional computational overhead. Thirdly, for S-IoT, if the data is
transmitted directly to the satellite after being compressed at sensor nodes, the amount of data that the
space-based information network needs to transmit may increase; if the compressed sensory data are
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first transmitted to the ground sink node and then transmitted to the satellite, it needs to rely on the
internode network.

2.4. Query-Driven Algorithms

In query-driven algorithms, the network sends the required data to the sink according to the
input query and precision requirements. Since the algorithm is designed for a specific query, usually
only a small portion of sensory data needs to be transmitted, thus the amount of data transmitted is
greatly reduced.

Top-k queries are popular statistical queries [28] proposed to use historical sensory data to
optimize top-k queries and formulate the optimization problem as a linear program. In general, if the
historical sensory value of a node is larger, the probability of it being sampled is also greater.

Sensory data aggregation helps users understand the overall situation in a given area.
One study [29] proposed a Bernoulli-sampling-based approximate aggregation algorithm, which
can satisfy the arbitrary precision requirement. In order to track quantiles and range counts in wireless
sensor networks, [32] proposed a dynamic binary-tree-based deterministic tracking algorithm to track
approximate quantiles (ε,φ) and a Bernoulli-sampling-based algorithm to track approximate range
counts (ε, δ).

The query-driven algorithms take into account the needs of users and only need to transmit
a small amount of necessary data, thereby greatly reducing communication overhead and energy
consumption. However, such algorithms are only designed for a particular type of query and are not
general data collection algorithms.

2.5. Summary

In the previous subsections, we analyzed the advantages and disadvantages of each type of
algorithm and the problems that existed in applying them to S-IoT. Since the query-driven algorithms
are not general approximation data collection algorithms, we do not focus on them. In general,
model-based algorithms and compressed-sensing-based algorithms mainly have two problems when
applied to S-IoT: (1) the main purpose of these two type of algorithms is to reduce the communication
overhead and energy consumption of the internode network, and the implementation of the algorithms
usually also depends on the internode network; (2) these two type of algorithms will bring additional
overhead to the ground nodes. Therefore, the existing approximate data collection algorithms in
terrestrial IoT/WSN are not suitable for S-IoT.

3. Problem Scenario

As shown in Figure 1, when S-IoT collects sensory data, the satellite node first receives the
sensory data from ground nodes, and then the sensory data are sent to the data center through the
ground station.
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Figure 1. The data collection of S-IoT.

In a data collection task, there are many ground nodes in a specific geographic area. As shown in
Figure 2, the rectangle refers to the specific distribution area of the ground nodes in the data collection
task, and N is the number of nodes. A two-dimensional coordinate system xOy is established, and
the lower left corner of the rectangular area is taken as the origin. In the rectangular area, xm is the
maximum value of the horizontal coordinate and ym is the maximum value of the vertical coordinate.
We can obtain the coordinate of each node through the positioning device on the node. At the
moment t, we can use (xi(t), yi(t)) (xi(t) ∈ [0, xm], yi(t) ∈ [0, ym]) to represent the coordinate of node
ni(i = 1, · · · , N).
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We use t0 to indicate a certain data collection moment. At the moment t0, the sensory data of node
ni can be expressed as di(t0) and sensory data in different data collection cycles can be represented as
a series

· · · , di(t0 − T), di(t0), di(t0 + T), · · · , (1)

where T refers to the data collection period. Here, T is determined by specific data collection tasks.
At time t0,

{
d1(t0), · · · , dN(t0)

}
is the collection of sensory data for all nodes.

In each data collection cycle, only the sensory data of some nodes will be collected by the SR
algorithm, and the unobtained sensory data are reconstructed. When the data collection moment is t0,
we use M (M ≤ N) to represent the number of nodes collecting sensory data, and

{
d′1(t0), · · · , d′N(t0)

}
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refers to the reconstructed sensory data. Therefore, r = M/N means the data collection ratio. Data
collection precision is expressed as

A = 1−
1
N

N∑
n=1

∣∣∣d′n(t0) − dn(t0)
∣∣∣∣∣∣dn(t0)

∣∣∣+ α
(2)

In the above formula, in order to avoid a calculation error when
∣∣∣dn(t0)

∣∣∣ = 0, α is set to a small
positive number. The reconstruction method, sampling method, and data collection ratio can affect
data collection precision. The SR algorithm needs to improve the data collection precision as much as
possible under a certain data collection ratio.

4. Sampling-Reconstruction Algorithm

In this section, the overall framework of the SR algorithm is presented first, and then the basic
processes of clustering, sampling, and reconstruction in the SR algorithm are elaborated.

4.1. Overview

The basic idea of the SR algorithm is to collect only part of the sensory data and reconstruct
the uncollected data in the data center by leveraging the spatiotemporal correlations of sensory
data. Therefore, intuitively, the SR algorithm should include two main processes of sampling and
reconstruction. However, in S-IoT, a data collection task may contain a large number of nodes. If all
nodes participate in the operation during the sampling and reconstruction phases, the computational
complexity will be greatly increased. In addition, only the nodes in the neighboring area have strong
spatial correlation. Therefore, before performing the sampling and reconstruction operations, we first
cluster the nodes into a series of clusters with strong spatial correlation.

Figure 3 is the framework of the SR algorithm. The SR algorithm is mainly composed of three
phases: clustering, sampling, and reconstruction. For the clustering phase, ground nodes are clustered
into many clusters that have strong spatial correlation according to historical sensory data that are stored
in the historical sensory data repository. Each cluster needs to perform the subsequent reconstruction
process separately.
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Figure 3. The framework of the sampling-reconstruction (SR) algorithm.

For the sampling phase, the nodes that need to report the sensory data are first determined,
then the sampled nodes receive the sampling notices, and eventually the data center receives the
sensory data reported from the sampled nodes. The advantages of satellite broadcasting can be fully
utilized in the transmission of sampling notices. In the determination of sampling nodes, in order to
obtain higher data collection precision under a certain data collection ratio, we optimizes sampling
node selection use the curvature characteristics of historical sensory data in time and space dimensions.
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For the reconstruction phase, the spatiotemporal correlation between the sensory data is utilized
by the SR algorithm, and the sensory data reconstruction of the unacquired nodes is implemented
according to the acquired sensory data. In order to make full use of the spatiotemporal correlation of the
sensory data to obtain higher data reconstruction precision, we innovatively adopt ST-CS technology
in the reconstruction phase. The historical sensory data repository stores reconstructed sensory data
for subsequent data collection and application services.

4.2. Clustering

For the time dimension, there is a strong correlation between the sensory data of a node in a
neighboring time period TC. The value of TC is related to the type of sensory data. For the spatial
dimension, it can be intuitively found that compared with the distant nodes, the correlation between
the sensory data of neighboring nodes is stronger. Nevertheless, it is not accurate to only rely on the
distance between the nodes to determine the correlation of sensory data. For instance, suppose there
are two adjacent nodes, one in the lawn and the other one located in the woods. The light intensity
between the two nodes will be significantly different. Therefore, for the node clustering, we consider
not only the positions of nodes but also the sensory values of nodes.

We cluster the nodes based on the reconstructed sensory data in the previous period, so that the
nodes can be divided into a series of clusters, which have a strong spatial correlation. The spectral
clustering algorithm is adopted. For a particular data collection moment t0, P =

{
p1, · · · , pN

}
is the

clustering sample set, where pi =
(
xi(t0 − T), yi(t0 − T), d′i (t0 − T)

)
(i = 1, · · · , N) is the sample point.

Algorithm 1 shows the specific process of node clustering. In this algorithm, K′ refers to the dimension
after dimensionality reduction, K refers to the dimension after clustering, and σ refers to Gaussian
kernel function; C1, · · · , CK refer to the clusters after clustering, while Ck(k = 1, · · · , K) is the subset of
P, Cki ∩Ck j = ∅ (ki, k j = 1, · · · , K, and ki , k j), and C1 ∪C2 ∪ · · · ∪CK = P. The Ncut method is used
by the algorithm.

Assuming the number of nodes in cluster Ck is Nk, then the sensory data of all nodes in Ck at t0

and previous TC can be expressed as a L×Nk matrix

Dk(t0) =


dk1(t0) dk2(t0) · · · dkNk

(t0)

dk1(t0 − T) dk2(t0 − T) · · · dkNk
(t0 − T)

...
...

. . .
...

dk1(t0 − (L− 1)T) dk2(t0 − (L− 1)T) · · · dkNk
(t0 − (L− 1)T)

, (3)

where L = bTC/Tc+ 1 refers to the number of data collection, while the serial numbers of the nodes in
Ck are represented by k1, · · · , kNk . Here, Dk(t0) is the Ck‘s sensory data matrix at t0.
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Algorithm 1 Node Clustering

Input: P, K′, K, N, σ
Output: C1, · · · , CK

1. /* Constructs adjacency matrix W */
2. for each i ∈ {1, · · · , N} do
3. for each j ∈ {1, · · · , N} do

4. wi j = exp
(
−‖pi − p j‖

2
2
/2σ2

)
5. end for
6. end for
7. W = (wi j)N×N
8. /* Constructs degree matrix d */
9. for each i ∈ {1, · · · , N} do

10. di =
∑N

j=1 wi j

11. end for
12. D= diag(d1, d2, · · · , dN)

13. L = D−W
14. {f1, · · · , fK′ } = Eigenvector(D−1/2LD−1/2, K′)
15. F = (f1, · · · , fK′ )

16. /* Standardizes F by row and generates F∗ */
17. for each i ∈ {1, · · · , N} do
18. for each j ∈ {1, · · · , K′} do

19. f ∗i j = fi j/
√∑K′

k′=1 f 2
ik′

20. end for
21. end for
22. F∗ = ( f ∗i j)N×K′

23. /* Constructs new samples after reducing dimensionality */
24. for each i ∈ {1, · · · , N} do

25. p
′

i = ( f ∗i1, · · · , f ∗iK′ )
T

26. end for

27. P′= {p
′

1, · · · , p
′

N

}
28.

{
C1, · · · , CK} =Kmeans(P′, K)

29. return C1, · · · , CK

4.3. Sampling

In order to obtain higher data collection precision under a certain data collection ratio, we will
optimize the selection of sampling nodes.

It can be intuitively found that if the sensory data of a certain node changes greatly in the most
recent period, or if there are significant differences between the sensory data of a certain node and
the sensory data of its neighboring nodes, the more so the sensory data needs to be reported and the
sampling priority should be higher. Since the sensory data of these nodes differs greatly from their
historical values or the sensory data of nearby nodes, the difficulty of reconstruction is relatively high.
The above two features can be characterized by the curvature characteristics of the sensory data in
time and space dimensions. The larger the curvatures of time and space dimensions, the higher the
sampling priority of the node. If the number of sampled nodes is M, we select the M nodes with the
largest composite curvature of the time dimension and the spatial dimension as the sampled nodes.

Next, the curvature of the sensory data in the time dimension and the space dimension are
calculated separately, and finally the composite curvature is obtained.
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4.3.1. Time Dimension Curvature

For the time dimension, an interpolation curve is firstly obtained based on the sensory data
reconstructed at t0 −T and previous TC. We use the mean value of curvatures of the interpolation curve
at each interpolation point (except for the two endpoints) as the time dimension curvature. Table 2
shows the reconstructed sensory data of ni(i = 1, · · · , N) at t0 − T and the previous TC.

Table 2. The reconstructed sensory data of ni at t0 − T and the previous TC.

t t0 − (L− 1)T t0 − (L− 2)T
. . .

t0 − T

d′i (t) d′i (t0− (L−1)T) d′i (t0− (L−2)T)
. . .

d′i (t0 − T)

Based on the data in Table 2, the interpolation is performed in [t0 − (L − 1)T, t0 − T]. Cubic
spline interpolation is used as the interpolation method, which adopts natural boundary conditions.
The following is the segmentation expression for the cubic spline interpolation function:

s(t) = d′i (t0 − lT) +
{
d′i [t0 − lT, t0 − (l− 1)T] −

(
1
3 Ml +

1
6 Ml−1

)
hl
}
(t− t0 + lT)

+ 1
2 Ml(t− t0 + lT)2 + 1

6hl
(Ml−1 −Ml)(t− t0 + lT)3

(t ∈ [t0 − lT, t0 − (l− 1)T], l = L− 1, · · · , 2)

(4)

in which
d′i [t0 − lT, t0 − (l− 1)T] =

d′i (t0−lT)−d′i (t0−(l−1)T)
(t0−lT)−(t0−(l−1)T) =

d′i (t0−(l−1)T)−d′i (t0−lT)
T ,

hl = (t0 − (l− 1)T) − (t0 − lT) = T,
Ml = s′′ (t0 − lT) (l = L− 1, · · · , 1).

(5)

According to natural boundary conditions, ML−1 = 0, M1 = 0. ML−2, · · · , M2 can be obtained
through the following formula:

2 λL−2

µL−3 2 λL−3
. . . . . . . . .

µ3 2 λ3

µ2 2





ML−2

ML−3
...

M3

M2


=



dL−2

dL−3
...

d3

d2


, (6)

in which
λl = 1− µl,

µl =
hl+1

hl+1+hl
= 1

2 ,

dl = 6d′i [t0 − (l + 1)T, t0 − lT, t0 − (l− 1)T]

=6
d′i [t0−(l+1)T,t0−lT]−d′i[t0−lT,t0−(l−1)T]

(t0−(l+1)T)−(t0−(l−1)T)

= 3 d′i[t0−lT,t0−(l−1)T]−d′i[t0−(l+1)T,t0−lT]
T

(7)

The curvature of interpolation curve s(t) at t0 − lT(l = L− 2, · · · , 2) is

ci(t0 − lT) =
|Ml|(

1 + (s′(t0 − lT))2
) 3

2

, (8)

in which
s′(t0 − lT) = d′i [t0 − lT, t0 − (l− 1)T] −

(1
3

Ml +
1
6

Ml−1

)
hl (9)
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Therefore, the mean value of curvatures of s(t) at t0 − (L− 2)T, · · · , t0 − 2T is

ci =
1

L− 3

L−2∑
l=2

ci(t0 − lT) (10)

4.3.2. Spatial Dimension Curvature

The spatial dimension curvature is calculated separately in each cluster. The Gaussian curvature of
the interpolation surface at each node at t0 −T is used as the spatial dimension curvature. If the number
of nodes is larger, the overhead of two-dimensional interpolation will be greater. Furthermore, we only
need to obtain the curvature characteristics. Therefore, the curvature is estimated directly, and it is very
similar with curvature estimation for a point-based surface. A simple estimation method proposed

in [33] is used, also known as the Voronoi element method. We use Pk =
{
pk1

, · · · , pkNk

}
to represent

the data points in Ck, and pi =
(
xi(t0 − T), yi(t0 − T), d′i (t0 − T)

)
(i = k1, · · · , kNk ) is a data point.

For data point pi, the following is the detailed process for its curvature estimation, which is
performed by the Voronoi element method.

Estimating the normal vector: Firstly, a possible neighbor set Ñi = {p j

∣∣∣∣‖pi − p j‖ < ri} of pi is

collected with a distance threshold ri > 0. If pi1 , · · · , pim is the elements of Ñi (pi is not included),
we can use the following formula to express the covariance matrix of the neighbors of pi:

C =


pi1 −

¯
pi

· · ·

pim −
¯
pi


T

pi1 −
¯
pi

· · ·

pim −
¯
pi

. (11)

In the above formula,
¯
pi refers to the center of pi1 , · · · , pim . A valid estimation of the normal vector

of pi is the eigenvector vmin corresponding to the minimum eigenvalue λmin of C.
Determining the set of neighbors: We project the points in Ñi to the tangent plane of pi and

produce P(pi). Then, we perform Delaunay triangulation for P(pi) and get a graph Ti. The neighbor

set of pi is Ni =
{
p j

∣∣∣∣p j is the neighbor of pi in Ti
}
.

Calculating the Gaussian curvature: Figure 4a is a triangular grid diagram composed of pi and its
neighbors. According to [34], the Gaussian curvature at pi can be estimated by
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Algorithm 2 Sampling Node Selection

Input: N, M, Ti(i = 1, · · · , N), Di(i = 1, · · · , N), t0, L, T, K,
{
k1, · · · , kNk

}
(k = 1, · · · , K), ri(i = 1, · · · , N), w1, w2

Output: s1, · · · , sM

1. /* Calculating time dimension curvature ci */
2. for each i ∈ {1, · · · , N} do
3. s(t) = CubicSpline(Ti, Di) (t ∈ [t0 − (L− 1)T, t0 − T])
4. for each l ∈ {L− 2, · · · , 2} do
5. Ml = s′′ (t0 − lT)

6. ci(t0 − lT) = |Ml|/
(
1 + (s′(t0 − lT))2

)3/2

7. end for

8. ci =
(∑L−2

l=2 ci(t0 − lT)
)
/(L− 3)

9. end for
10. /* Calculating spatial dimension curvature kG(pi) */
11. for each k ∈ {1, · · · , K} do

12. for each i ∈
{
k1, · · · , kNk

}
do

13. /* Estimating the normal vector vmin */

14. Ñi =
{
pi1 , · · · , pim , pi

}
=

{
p j

∣∣∣∣‖pi − p j‖ < ri
}

15.
¯
pi = (pi1 + · · ·+ pim )/m

16. C = (pi1 −
¯
pi)

2
+ · · ·+ (pim −

¯
pi)

2

17. vmin = MinEigenvector(C)
18. /* Determining the set of neighbors Ni */

19. P(pi) = Project(Ñi, pi)

20. Ti = Delaunay(P(pi))

21. Ni =
{
p j

∣∣∣∣p j is the neighbor of pi in Ti
}

22. /* Calculating Gaussian curvature */
23. T′i = TriGrid(pi, Ni)

24. θ = SumAngle(T′i)
25. Amixed = AreaMixed(pi)

26. kG(pi) = (2π− θ)/Amixed

27. end for
28. end for
29. for each i ∈ {1, · · · , N} do
30. kCi = w1ci + w2kG(pi)

31. end for
32. {s1, · · · , sM} = SelectMax(kC1 , · · · , kCN , M)

33. return s1, · · · , sM

kG(pi) =
2π−

∑# f
j=1 θ j

Amixed
, (12)

in which # f is the number of triangles including pi, θ j is shown in Figure 4a, Amixed is the area of the
shaded portion in Figure 4a, and can be calculated according to the method in Figure 4b.

Therefore, the composite curvature of node ni(i = 1, · · · , N) in the time dimension and the spatial
dimension is

kCi = w1ci + w2kG(pi), (13)
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in which w1 ≥ 0 and w2 ≥ 0 are the weights of time dimension curvature and spatial dimension
curvature in the composite curvature, respectively.
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The sampling node selection process is shown in Algorithm 2. In this algorithm,
Ti = (t0 − (L− 1)T, t0 − (L− 2)T, · · · , t0 − T), Di =

(
d′i (t0 − (L− 1)T), d′i (t0 − (L− 2)T), · · · , d′i (t0 − T)

)
,

and s1, · · · , sM are the serial numbers of M sampling nodes. Here, CubicSpline(·) is a cubic spline
interpolation function, MinEigenvector(·) is a function of finding the eigenvector corresponding to
the minimum eigenvalue of a matrix, Project(Ñi, pi) projects the points in set Ñi to the tangent
plane of point pi, Delaunay(·) is a Delaunay triangulation function, TriGrid(·) calculates a triangular
grid diagram composed by a point and its neighbors, SumAngle(T′i) calculates the sum of the
angles of the triangles containing pi in T′i at pi, AreaMixed(·) is a function that calculates Amixed

for a point, and SelectMax(kC1 , · · · , kCN , M) finds the serial numbers of the M nodes with the largest
composite curvature.

4.4. Reconstruction

Data collected from real-world applications usually exhibits a certain structure or redundancy,
for example, the values of adjacent rows or columns in the sensory data matrix are relatively close.
With this feature, the ST-CS can accurately reconstruct missing values in the data set from partial
observations. ST-CS has been applied in the reconstruction of missing values for Internet traffic
measurements [35], wireless sensor networks [36], and trajectory data [37]. The principle of ST-CS is
described in detail in [35].

If obvious low-rank structure (that is, redundancy) and spatiotemporal stability [35,36] can be
revealed in the sensory data, the sensory data can be effectively reconstructed by ST-CS technology.
The sensory data in S-IoT are usually environmental parameters or location-related information that
satisfy the above characteristics.

For sensory data matrix Dk(t0) of Ck at t0, we define a L×Nk sampling indicator matrix

Sk(t0) = (si(t))L×Nk
=

{
1 if di(t) in Dk(t0) been sampled
0 otherwise

, (14)

which implies whether sensory data in Dk(t0) has been sampled.
Assuming the reconstructed sensory data matrix is D̂k(t0), then D̂k(t0) can be expressed as the

following form through singular value decomposition:

D̂k(t0) = LR∗. (15)

According to [35], the following optimization problem can be used to express the sensory data
reconstruction problem:

min
{
‖Sk(t0) · (LR∗) −Dk(t0)‖

2
F + λ

(
‖L‖2F + ‖R

∗
‖

2
F

)
+ ‖H(t0)LR∗‖2F + ‖LR∗T‖2F

}
(16)
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In the above formula, λ refers to the Lagrangian multiplier, and ‖ · ‖2F refers to the Frobenius
(Euclidean) paradigm. H(t0) refers to the space constraint matrix, while T refers to the time constraint
matrix, which will be described in detail below. Through adjusting λ, with this optimization problem,
we can estimate L and R∗; after this, D̂k(t0) is obtained.

Algorithm 3 Sensory Data Reconstruction

Input: K, Dk(t0)(k = 1, · · · , K), L, Nk,
{
k1, · · · , kNk

}
(k = 1, · · · , K), t0, T, T

Output: D̂1(t0), · · · , D̂K(t0)

1. for each k ∈ {1, · · · , K} do
2. /* Constructs sampling indicator matrix Sk(t0) */
3. for each l ∈ {0, · · · , L− 1} do

4. for each i ∈
{
k1, · · · , kNk

}
do

5. if di(t0 − lT) in Dk(t0) been sampled
6. si(t0 − lT) = 1
7. else
8. si(t0 − lT) = 0
9. end if
10. end for
11. end for
12. Sk(t0) = (si(t0 − lT))L×Nk

13. /* Derive space constraint matrix H(t0) */
14. for each i ∈ {1, · · · , N} do
15. for each j ∈ {1, · · · , N} do
16. if ni and n j are neighbors at t0

17. h′i, j(t0) = 1
18. else
19. h′i, j(t0) = 0
20. end if
21. end for
22. end for
23. H

′

(t0) = (h′i, j(t0))N×N
24. for each i ∈ {1, · · · , N} do

25. temp =
∑N

j=1 h′i, j(t0)

26. for each j ∈ {1, · · · , N} do
27. if temp = 0
28. hi, j(t0) = 0
29. else if i = j
30. hi, j(t0) = 1
31. else
32. hi, j(t0) = −h′i, j(t0)/temp
33. end for
34. end for
35. H(t0) = (hi, j(t0))N×N

36. {L, R∗} = ArgMin
(
‖Sk(t0) · (LR∗) −Dk(t0)‖

2
F + λ

(
‖L‖2F + ‖R

∗
‖

2
F

)
+ ‖H(t0)LR∗‖2F + ‖LR∗T‖2F

)
37. D̂k(t0) = LR∗

38. end for
39. return D̂1(t0), · · · , D̂K(t0)
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The adjacency matrix at t0 is first defined as follows:

H
′

(t0) = (h′i, j(t0))N×N
=

{
1 if ni and n j are neighbors at t0

0 otherwise
, (17)

where ni and n j are neighbors if their distance is less than threshold d. Then,

H(t0) = (hi, j(t0))N×N =


0 if

∑N
j=1 h′i, j(t0) = 0

1 else if i = j

−
h′i, j(t0)∑N

j=1 h′i, j(t0)
otherwise

. (18)

According to [38], we set T = Toeplitz(0, 1,−2, 1)L×L, i.e.,

T =


1 −2 1 0
0 1 −2 1
0 0 1 −2
...

. . . . . . . . .

· · ·

...

...
. . .


L×L

. (19)

The sensory data reconstruction process is shown in Algorithm 3. In this algorithm,
ArgMin( f (L, R∗)) finds the L and R∗ that minimize f (L, R∗).

5. Performance Evaluation

The proposed SR algorithm was tested on a real-weather data set to analyze its performance.
The data set used in the experiment is the hourly observation data of Chinese ground meteorological
stations acquired from the National Meteorological Information Center. We used temperature data
of 145 meteorological stations in Sichuan Province from 01:00 on March 27, 2019, to 12:00 on March
27, 2019. We emulated collecting these data. Firstly, we tested the overall performance of the SR
algorithm and analyzed the effect of clustering, sampling, and reconstruction processes on data
collection performance. Secondly, we compared the SR algorithm with two existing representative
approximate data collection algorithms in terrestrial IoT/WSN.

In the sampling stage, we set the time dimension curvature and the spatial dimension curvature
to have the same weight in the composite curvature (i.e., w1 = w2 = 1).

5.1. SR Algorithm Performance Analysis

The SR algorithm needs to maximize data collection precision under a certain data collection ratio.
Therefore, we first test the overall performance of the SR algorithm. Then, in order to analyze the effect
of clustering, sampling, and reconstruction processes on the performance, we analyze the data collection
precisions under a different number of clusters, sampling methods, and reconstruction methods.

5.1.1. Overall Performance

As shown in Table 3, we test the data collection precisions under different data collection ratios.
Here, we set the number of clusters to 3. Overall, the SR algorithm can achieve high data collection
precision under the tested data collection ratios. For example, when r = 40%, the data collection
precision is 0.8220; when r = 90%, the data collection precision reaches 0.9852. The higher the data
collection ratio, the higher the data collection precision. This is because when the data collection ratio
is high, more data can be directly obtained, and the reconstruction precision of uncollected data is
also higher.
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Table 3. Data collection precision under different data collection ratios.

r 40% 50% 60% 70% 80% 90%

A 0.8220 0.8658 0.8908 0.9332 0.9612 0.9852

In our experiments, the location selection of the meteorological stations has been carefully
considered, which limits the data collection precision at lower data collection ratios. In many scenarios,
the spatial density of the network deployment is superfluous, and higher data collection precision can
be achieved with a certain data collection ratio.

5.1.2. Effect of the Number of Clusters

For the SR algorithm, the performance will be affected by the number of clusters K. When K = 3,
the corresponding result of clustering when data collection is performed at 01:00 on March 27, 2019,
is shown in Figure 5. In the figure, the different colors of the points indicate that the points belong to
different clusters. Figure 5a shows the 3D view, and Figure 5b shows the corresponding 2D view the of
x–y plane.

Sensors 2019, 19, 5523 17 of 24 

 

belong to different clusters. Figure 5a shows the 3D view, and Figure 5b shows the corresponding 
2D view the of x–y plane. 

 
(a) 

 
(b) 

Figure 5. Clustering result ( = 3K ): (a) 3D view of the clustering result; (b) 2D view of the x–y plane 
of the clustering result. 

As shown in Figure 6, the impact of the number of clusters under different data collection ratios 
is analyzed. If = 1K , clustering will not be performed. It can be seen that the number of clusters 
will greatly impact data collection precision under the same data collection ratio. If r  is small (for 
example, = 50%r ), there are few sampled nodes, and the data collection precision is significantly 
affected by the number of clusters; if r  is large (for example, = 90%r ), since there are many 
sampled nodes, data collection precision is hardly affected by the number of clusters. 

 
Figure 6. The effect of the number of clusters on the data collection precision. 

If = 3K , the data collection precision thresholds are the highest under different r , which are 
0.8698, 0.9332, and 0.9882, respectively. If = 5K , the data collection precisions are 0.8126, 0.9127, 
and 0.9842, which are even worse than when clustering is not performed (the data collection 
precisions are 0.8675, 0.9250, and 0.9851, respectively). Therefore, according to the different 
collection tasks, we need to set the number of clusters reasonably. In this experiment, we think that 
setting the number of clusters to 3 is the most appropriate scenario. 
  

110
105

x

100
9525y

30

20

30

10

0

-10
35

Te
m

pe
ra

tu
re

x
98 100 102 104 106 108 110

y

26

27

28

29

30

31

32

33

34

Number of clusters ( K )

1 2 3 4 5

D
at

a 
co

lle
ct

io
n 

pr
ec

is
io

n

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

r =50%
r =70%
r =90%

Figure 5. Clustering result (K = 3): (a) 3D view of the clustering result; (b) 2D view of the x–y plane of
the clustering result.

As shown in Figure 6, the impact of the number of clusters under different data collection ratios
is analyzed. If K = 1, clustering will not be performed. It can be seen that the number of clusters
will greatly impact data collection precision under the same data collection ratio. If r is small (for
example, r = 50%), there are few sampled nodes, and the data collection precision is significantly
affected by the number of clusters; if r is large (for example, r = 90%), since there are many sampled
nodes, data collection precision is hardly affected by the number of clusters.

If K = 3, the data collection precision thresholds are the highest under different r, which are 0.8698,
0.9332, and 0.9882, respectively. If K = 5, the data collection precisions are 0.8126, 0.9127, and 0.9842,
which are even worse than when clustering is not performed (the data collection precisions are 0.8675,
0.9250, and 0.9851, respectively). Therefore, according to the different collection tasks, we need to set
the number of clusters reasonably. In this experiment, we think that setting the number of clusters to 3
is the most appropriate scenario.
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5.1.3. Effect of Sampling Methods

In the sampling stage, we optimized the sampling method. In order to evaluate the effectiveness
of this optimization, we compare the sampling method used in SR with random sampling, as shown in
Figure 7. The comparison algorithm uses random sampling during the sampling stage, and the other
parts are exactly the same as the SR algorithm, which is denoted as SR-rs. The number of clusters for
both algorithms is set to 3.

Under different data collection ratios, the SR algorithm’s data collection precision is 3.80% higher
than that of the SR-rs algorithm on average. Therefore, the optimization in the sampling stage is
effective. In addition, overall, the improvement of SR’s data collection precision compared with SR-rs
is gradually reduced as r increases. For example, when r = 40%, SR’s data collection precision is 4.80%
higher than that of SR-rs, and when r = 90%, the improvement is only 1.80%. This is because as r
increases, the number of sampled nodes gradually increases, and the difference between the sampled
nodes of SR and SR-rs gradually decreases.
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5.1.4. Effect of Reconstruction Methods

In the reconstruction stage, we use the ST-CS technology to recover the data of the unsampled
nodes through the sampled data. We can also use other methods to recover data; a typical method
is two-dimensional interpolation. We compared the ST-CS with two-dimensional interpolation.
The comparison algorithm uses the “v4” method in Matlab for interpolation calculation in the
reconstruction stage and the other parts are exactly the same as the SR algorithm, which is denoted as
SR-2di. We also set the number of clusters to 3 for the two algorithms.

The data collection precisions of the two algorithms under different data collection ratios are shown
in Figure 8a. It can be seen that the data collection precision thresholds of the SR algorithm are higher
under different data collection ratios. The data collection precision of the SR algorithm is 5.30% higher
than that of the SR-2di algorithm on average. In order to analyze the data reconstruction performances
of the two algorithms, we separately compared the data collection precisions of the reconstructed part
(i.e., the unsampled nodes), as shown in Figure 8b. Under different data collection ratios, the data
collection precision of the reconstruction part in SR is 16.58% higher than that of SR-2di on average.
This shows that ST-CS has better data reconstruction performance than two-dimensional interpolation.
This is because ST-CS simultaneously exploits the correlations of sensory data in temporal and spatial
dimensions, while two-dimensional interpolation only utilizes the correlations in spatial dimensions.Sensors 2019, 19, 5523 19 of 24 

 

 
(a) 

 
(b) 

Figure 8. Comparison of data collection precisions between SR and the SR algorithm with 
two-dimensional interpolation in the reconstruction stage (SR-2di): (a) overall data collection 
precisions of SR and SR-2di; (b) data collection precisions of the reconstructed part in SR and SR-2di. 

In addition, whether it is the overall data collection precision or the data collection precision of 
the reconstructed part, the increase of SR compared with SR-2di decreases with the increase of r . 
This is because as r  increases, the number of sampled nodes gradually increases. On the one hand, 
the number of unsampled nodes is gradually reduced, and the impact of their data collection 
precisions on the overall data collection precision is gradually reduced. On the other hand, when the 
number of sampled nodes increases, the difference in data reconstruction performances between the 
two reconstruction methods is gradually reduced. 

5.2. Comparisons with Other Algorithms 

In this section, we compare the SR algorithm with two existing approximate data collection 
algorithms. Since the query-driven algorithms are not general purpose data collection algorithms, 
we do not compare with them. We selected a representative algorithm for model-based algorithms 
and compressed-sensing-based algorithms, respectively, namely the Ken algorithm proposed in [10] 
and the CDG algorithm proposed in [17]. We have already introduced the two algorithms in Section 
2. The specific settings of the two algorithms in the experiment are as follows. 

Ken: The main purpose of this algorithm is to reduce the communication overhead between 
sensor nodes and the sink. In the experiment, we use 145 meteorological stations as sensor nodes 
and the data center as the sink node, thus reducing the data that the space-based information 
network needs to transmit. The models running in meteorological stations and data centers are 
time-varying multivariate Gaussian models. The 145 meteorological stations are divided into 49 
disjointed cliques. Each clique selects a root node, which runs a local model, and the remaining 
nodes in the clique send data to the root node. 

CDG: We use 145 meteorological stations as sensor nodes and select a meteorological station as 
the sink. We assume that there are links between meteorological stations. The sensory data is first 
transmitted to the sink after compression, and the sink transmits the compressed data to the data 
center through the space-based information network. The sparse domain of the sensory data is 
obtained through an overcomplete dictionary training. The training set is temperature data of 145 
meteorological stations from 00:00 on March 21, 2019, to 00:00 on March 27, 2019. 

In the contrast experiment, the number of clusters in the SR algorithm is set to 3. We compare 
the data collection precision, data collection ratio, and communication overhead in the internode 
network. For the convenience of comparison, in the Ken algorithm, we define the data collection 
ratio as the proportion of sensory data that need to be sent to the sink because the sensory values and 
the values predicted by local models are not within the error range; in the CDG algorithm, we define 
the data collection ratio as the ratio of the number of compressive sensing measurements to the 

Figure 8. Comparison of data collection precisions between SR and the SR algorithm with
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In addition, whether it is the overall data collection precision or the data collection precision of the
reconstructed part, the increase of SR compared with SR-2di decreases with the increase of r. This is
because as r increases, the number of sampled nodes gradually increases. On the one hand, the number
of unsampled nodes is gradually reduced, and the impact of their data collection precisions on the
overall data collection precision is gradually reduced. On the other hand, when the number of sampled
nodes increases, the difference in data reconstruction performances between the two reconstruction
methods is gradually reduced.

5.2. Comparisons with Other Algorithms

In this section, we compare the SR algorithm with two existing approximate data collection
algorithms. Since the query-driven algorithms are not general purpose data collection algorithms,
we do not compare with them. We selected a representative algorithm for model-based algorithms and
compressed-sensing-based algorithms, respectively, namely the Ken algorithm proposed in [10] and
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the CDG algorithm proposed in [17]. We have already introduced the two algorithms in Section 2.
The specific settings of the two algorithms in the experiment are as follows.

Ken: The main purpose of this algorithm is to reduce the communication overhead between
sensor nodes and the sink. In the experiment, we use 145 meteorological stations as sensor nodes and
the data center as the sink node, thus reducing the data that the space-based information network
needs to transmit. The models running in meteorological stations and data centers are time-varying
multivariate Gaussian models. The 145 meteorological stations are divided into 49 disjointed cliques.
Each clique selects a root node, which runs a local model, and the remaining nodes in the clique send
data to the root node.

CDG: We use 145 meteorological stations as sensor nodes and select a meteorological station as
the sink. We assume that there are links between meteorological stations. The sensory data is first
transmitted to the sink after compression, and the sink transmits the compressed data to the data center
through the space-based information network. The sparse domain of the sensory data is obtained
through an overcomplete dictionary training. The training set is temperature data of 145 meteorological
stations from 00:00 on March 21, 2019, to 00:00 on March 27, 2019.

In the contrast experiment, the number of clusters in the SR algorithm is set to 3. We compare the
data collection precision, data collection ratio, and communication overhead in the internode network.
For the convenience of comparison, in the Ken algorithm, we define the data collection ratio as the
proportion of sensory data that need to be sent to the sink because the sensory values and the values
predicted by local models are not within the error range; in the CDG algorithm, we define the data
collection ratio as the ratio of the number of compressive sensing measurements to the number of
sensory data. In the internode network, one communication overhead is generated when sensory data
is transmitted over one hop.

5.2.1. Data Collection Precision

The data collection precisions of the three algorithms under different data collection ratios are
shown in Figure 9. Overall, SR’s data collection precisions are higher than that of Ken and CDG. Under
the data collection ratios tested, the data collection precision of SR is 5.33% and 7.21% higher than that
of Ken and CDG, respectively. It can be seen that the SR algorithm can achieve higher data collection
precision under the same data collection ratio.

When the data collection ratio is small, Ken’s data collection precision is low. For example,
when r = 40%, Ken’s data collection precision is only 0.7326, which is lower than the 0.8238 of SR.
This is because when the data collection ratio is small, the error range of the predicted value is set to be
larger, few sensory data are transmitted to the sink, and the untransmitted sensory values have larger
errors. When the data collection ratio increases, Ken’s data collection precision increases rapidly and
gradually approaches SR. For example, when r = 90%, Ken’s data collection precision reaches 0.9833.
This is because when the data collection ratio is large, the error range of the predicted value is set to be
smaller, more sensory data are transmitted to the sink, and the errors of the untransmitted sensory
values are smaller.

When the data collection ratio is small, the CDG algorithm can achieve high data collection
precision. For example, when r = 40%, the data collection precision of CDG reaches 0.8299. This is
because we have specially trained for different data collection ratios and the training data set is close to
the test data set in time, so higher data collection precision can be obtained at a lower data collection
ratio. However, as the data collection ratio increases, the increase of CDG’s data collection precision
is not obvious. For example, when r = 90%, the data collection precision of CDG is only 0.8732.
This shows that the sparsity of the sensory data matrix is not obvious in our data set.
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5.2.2. Data Collection Ratio

In many applications, the user will specify the data collection precision requirement, and we
hope to reach the precision requirement with a lower data precision ratio. For different data collection
precision requirements, the data collection ratios of the three algorithms are shown in Figure 10. It can
be seen that the CDG algorithm has the lowest data collection ratio when the required data collection
precision is low (below 0.85). For example, when the required data collection precision is 0.8, the data
collection ratios of SR, Ken, and CDG are 37.93%, 52.41%, and 20.00%, respectively. As mentioned
earlier, this is because CDG can achieve high data collection precision at a low data collection ratio.
However, when the precision requirement increases, the data collection ratio required by the CDG
algorithm increases dramatically, much higher than that of SR and Ken. This is consistent with Figure 9.
Since the sparsity of the sensory data matrix is not high, the CDG algorithm requires more compressive
sensing measurements to meet the required data collection precision.

The data collection ratio of the SR algorithm is kept at a low level. Under different data collection
precision requirements, the SR algorithm requires lower data collection ratios than the Ken algorithm.
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5.2.3. Communication Overhead in Internode Network

Under different data collection precision requirements, the communication overhead in the
internode network of the three algorithms is shown in Figure 11. For the Ken algorithm, in each data
collection cycle, the non-root nodes in each clique send sensory data to the root node, which brings
communication overhead to the internode network. After the clique partitioning, the root nodes, and
the routing paths are determined, the communication overhead in the internode network is fixed in
every cycle. In our experiments, the communication overhead in the internode network of Ken is
always 96.
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We assume that the number of compressive sensing measurements is M and the number of nodes
is N in the CDG algorithm. Since the amount of data that each node needs to transmit is M and N − 1
nodes need to transmit data to the sink node, the communication overhead in the internode network is
M(N − 1). Because N = 145, the communication overhead in the terrestrial network of CDG is only
related to the number of compressive sensing measurements M. When the precision requirement
increases, the communication overhead in the internode network increases sharply due to the rapid
increase in the data collection ratio required by CDG.

In the SR algorithm, since the sampled nodes directly transmit data to the satellite, communication
between the ground nodes is not required, so the communication overhead in the internode network
is always zero. As mentioned earlier, the nodes in S-IoT are usually distributed over a wide area,
and there may not be any stable links between the nodes, or even no links at all. Therefore, the SR
algorithm has better adaptability in S-IoT.

In the SR algorithm, the sampled nodes directly report the sensory data to satellites without
relying on the internode network. Moreover, the selected node only needs to report data, and there is
no additional operation. No action is required on the unselected nodes. Node clustering, sampling
node selection, and sensory data reconstruction are all performed in data centers, which are rich in
resources. Therefore, the SR algorithm has better data collection performance and is more suitable
for S-IoT.

6. Conclusions and Future Work

In S-IoT, a single satellite usually covers a vast area and needs to provide data transmission
services for a large number of nodes. Even worse, the bandwidth of the satellite–ground link is usually
low, and the uplink and downlink bandwidth is extremely asymmetric. This makes it difficult for
S-IoT to achieve exact data collection and poses a great challenge for efficient data collection in S-IoT.
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In this paper, we propose the SR algorithm, an approximate data collection algorithm for S-IoT. Due to
the limited uplink bandwidth, the SR algorithm only samples the sensory data of some nodes and
then reconstructs the unacquired sensory data. In order to obtain higher data collection precision
under a certain data collection ratio, the SR algorithm is optimized from two aspects: (1) in the
sampling phase, the sampling node selection is optimized by using the curvature characteristics of
the sensory data in time and space dimensions; (2) in the reconstruction phase, we innovatively use
ST-CS technology to fully utilize the spatiotemporal correlation of sensory data to reconstruct sensory
data. We use real-weather data set to test the proposed SR algorithm. The experiments verify the
effectiveness of the sampling node selection optimization and ST-CS-based sensory data reconstruction
in the SR algorithm. Moreover, compared with the existing approximate data collection algorithms
in the terrestrial IoT/WSN, the SR algorithm is more suitable for S-IoT, and can achieve efficient data
collection under the condition of extremely limited uplink bandwidth.

In the follow-up work, we will further study the efficient data collection in S-IoT. For the sampling
phase of the SR algorithm, we plan to study sampling methods such as uniform sampling and density
sampling in order to further optimize the selection of sampling nodes. For the reconstruction phase of
the SR algorithm, we will try to optimize the spatial constraints and time constraints in ST-CS according
to the characteristics of the spatiotemporal correlation of sensory data in S-IoT to obtain higher data
reconstruction precision. Furthermore, we will explore other data reconstruction methods. In addition,
for multimedia data, we will consider using artificial intelligence methods such as neural networks
and machine learning to preprocess the data at access gateways, ground stations, satellites, and other
points. For example, we could perform key target recognition and retain only the data containing the
target of interest, or directly extract the parameter values of the target and convert the multimedia data
into numerical data.
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