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Abstract: Radio signal-based positioning in environments with complex propagation paths is a
challenging task for classical positioning methods. For example, in a typical industrial environment,
objects such as machines and workpieces cause reflections, diffractions, and absorptions, which are
not taken into account by classical lateration methods and may lead to erroneous positions.
Only a few data-driven methods developed in recent years can deal with these irregularities in
the propagation paths or use them as additional information for positioning. These methods
exploit the channel impulse responses (CIR) that are detected by ultra-wideband radio systems
for positioning. These CIRs embed the signal properties of the underlying propagation paths that
represent the environment. This article describes a feature-based localization approach that exploits
machine-learning to derive characteristic information of the CIR signal for positioning. The approach
is complete without highly time-synchronized receiver or arrival times. Various features were
investigated based on signal propagation models for complex environments. These features were
then assessed qualitatively based on their spatial relationship to objects and their contribution
to a more accurate position estimation. Three datasets collected in environments of varying
degrees of complexity were analyzed. The evaluation of the experiments showed that a clear
relationship between the features and the environment indicates that features in complex propagation
environments improve positional accuracy. A quantitative assessment of the features was made
based on a hierarchical classification of stratified regions within the environment. Classification
accuracies of over 90% could be achieved for region sizes of about 0.1 m2. An application-driven
evaluation was made to distinguish between different screwing processes on a car door based on
CIR measures. While in a static environment, even with a single infrastructure tag, nearly error-free
classification could be achieved, the accuracy of changes in the environment decreases rapidly.
To adapt to changes in the environment, the models were retrained with a small amount of CIR
data. This increased performance considerably. The proposed approach results in highly accurate
classification, even with a reduced infrastructure of one or two tags, and is easily adaptable to new
environments. In addition, the approach does not require calibration or synchronization of the
positioning system or the installation of a reference system.
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1. Introduction

Positioning in various environments has been the subject of intense research in recent years as
demand for location-based services has increased, especially in the industrial sector. In particular,
RF-based systems have been used for more and more applications with a great variety of cost,
complexity, and performance. Typically, in many outdoor environments, a LOS (line-of-sight) link
between the receiver and the transmitter can be assumed, providing ideal conditions for many
RF-based systems. However, unfavorable and complex environments still pose a challenge to RF-based
positioning because diffraction, reflection, and absorption are difficult to describe via reliable analytical
models. Industrial surveillance via automatic identification, detection, and localization of production
tasks is one of the key components of smart industry processes. Typically, an industrial environment
poses a challenge to RF-based positioning: workpieces, metal furniture, machinery, and similar
obstacles often obstruct the LOS between targets and infrastructure nodes. In addition, the effective
use of the production space leads to dynamic changes in the environment and thus to changes in
the signal propagation. For example, classical methods based on multilateration of the signal arrival
times cannot handle the complexity of such radio channels and lead to erroneous position estimates.
In recent years, various data-driven methods have been developed that can handle these complex signal
propagation conditions, or even exploit them to improve position estimates. However, these methods
use signal propagation properties in combination with multilateration techniques and thus require an
elaborate time synchronization system.

Concerning the propagation of radio signals, ultra-wideband systems (UWB) have recently been
found to be a low cost, reliable, and scalable technology. Due to the high bandwidth, they cause only
low interference with other RF positioning and communication systems such as Bluetooth and WiFi
and can be operated in parallel. Due to the signal design commonly used in UWB systems, it is possible
to extract channel impulse responses (CIRs) from recorded data. These CIRs contain information about
the propagation paths of the signal. Therefore, the CIRs contain a variety of information, apart from
the time of arrival (ToA) or similar signal characteristic commonly used for positioning. Especially in
a complex scenario such as an industrial environment, the signal propagation conditions, and thus
the results of the collected CIRs, can drastically vary with the arrangement of the objects along the
propagation path. The complexity of the environment is difficult to capture in an analytical model.
Therefore, data-driven machine learning (ML) is used. These methods can use spatially significant
irregularities in the CIR data, rather than suffering from it, to improve positional accuracy. In general,
a CIR can provide a comprehensive set of information.

The main problem with the use of state-of-the-art ML positioning methods is the amount of labeled
data that is necessary to train the ML methods. Thus, to train such a model for accurate positioning,
a reference system must be installed, at least temporarily. Here, technology experts are needed to
generate labeled data records that can be processed in the ML framework. However, these records
lose their validity over time as the environment may change. Moreover, in a production environment,
semantic interpretation is often more important than high-precision localization. Employees find
it more intuitive to understand semantic information as geometrical information (for example,
between shelf A and B rather than at the position (x = 32.5 m, y = 20.1 m). This semantic interpretation
allows a simple and quick labeling process for which no time-consuming and precise labeling procedure
is required, such as installing a complex reference system.

By extracting only relevant features, the information contained in CIRs is compressed using
existing knowledge about the propagation of radio signals. Therefore, the resulting models are less
complex and have lower computational requirements for training the models and for inference at
runtime. This article explains the contribution of each feature to localization accuracy from recorded
CIRs that meet different propagation conditions. This allows a qualitative assessment of the proposed
positioning features.

Data from a free space propagation scenario were compared to a scenario with reflector and
absorber walls (i.e., objects that have a traceable influence on the propagation channel). These datasets
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were used to distinguish the behavior of the CIRs in LOS and NLOS channels. In addition, data from a
realistic industrial scenario were evaluated, including several disturbing objects such as metal storage
racks and industrial vehicles. The recorded contained both the CIRs from multiple infrastructure tags
within the environment and positions provided by an accurate optical reference system.

For qualitative evaluation, spatial distributions of the features in different environments were
estimated. The relation to the objects along the propagation path and their influence on the feature
outcomes were considered and interpreted.

For quantitative evaluation, the data were used to solve positioning tasks in the industrial
environment using ML methods. The core idea of this approach is to formulate the position estimation
as a supervised classification problem. The classification is simplified to a few target classes. This is
possible because the positioning in the entire room is divided into individual partial areas (cells).
Each cell then corresponds to a specific area in space, and each cell implements a separate classifier
that again separates cells in that cell. Thus, the strength of simple quasi-binary classification of few
data and two to a few classes can be exploited. Therefore, two different scenarios were used for the
evaluation: First, the space for macroscopic positioning was divided into areas that can be categorized
semantically. A supervised classification problem of these areas using the proposed features was
formulated. The evaluations were made hierarchically with decreasing region size or with increasing
position accuracy. Second, to evaluate the proposed features and demonstrate the applicability of the
feature-based approach, CIR data were examined that represent the steps of a work process consisting
of spatially separate screwing operations on a car door. The reliability and customization of the models
were examined using additional datasets containing environmental changes. In all experiments,
it could be shown that the hierarchical classification of extracted features from CIR signals of both LOS
and NLOS signal propagation is possible even without absolute and synchronized time measurements
to a position accuracy of 0.1 m2 in more than 90% of all cases. Even if the environment changes,
very little information about the new environment is needed to adapt the hierarchical classifiers to the
new situation.

The modeling approaches are presented in Section 3. Section 4 defines suitable features.
A qualitative spatial analysis of the contributions for each feature in relation to the arrangement
of the objects within the environment is presented in Section 5. The quantitative assessment using ML
methods is discussed in Section 6. Finally, the evaluation of the approaches proposed in Sections 6.2
and 6.3 are presented before the conclusions and outlook.

2. Literature Review

With the emergence of modern radio technology, local RF-based positioning is increasingly used
in many applications, such as industry surveillance [1], sports tracking [2], and wildlife tracking [3].
Preliminary work applied a variety of technologies and estimation methods on a huge number of
applications [4]. This section presents only a short overview.

For a broad variety of applications, positioning is based on signal propagation characteristics
such as ToAs, time-differences-of-arrival (TDOAs), and round-trip-times (RTTs). Other systems
employ angle-of-arrival (AoA) estimates or other angular measurements. More recently, to meet the
propagation challenges provided by more chaotic environments, so-called fingerprinting approaches
have emerged, which use a collected database of known observations, e.g., the received signal strength
(RSS) of multiple anchors. This information is then used to train either a classification or regression
algorithm in a supervised manner that uses the positions as labels and RSS data as features. Here,
fingerprinting is an application of machine learning in radio-based positioning. Fingerprinting
approaches have been proposed for different signal families, e.g., WiFi-fingerprinting [5] in challenging
propagation scenarios at an accuracy of up to <1 m. Channel impulse response modeling is a
common research topic in digital communications [6]. Here, modeling approaches, both statistical and
deterministic, have also been proposed and validated [7]. The information that a CIR embeds has been
used in various ways, e.g., the detection of scattering objects [8] or the adaption of tracking filters [9].
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UWB channels in industrial environments have specifically been researched in [10]. Many other
modeling approaches have been proposed for UWB signals in different environments (e.g., [11]).
Impulse response analysis for audio signals also generated models, e.g., spatial audio reproduction
models in multimedia applications [12].

In recent years, more and more machine- and deep-learning (DL) methods have been applied
to positioning problems with various sensor signals [13–15]. Feature-based ML and DL approaches
have both been used to identify LOS/NLOS and other propagation conditions for UWB positioning
system [16–21]. CIRs have been used to estimate errors and signal quality and to enhance classic
tracking techniques such as Bayesian filters [22–24]. To the best of our knowledge, all previous work
use CIRs in combination with absolute time information to estimate a position with DL approaches.
For example, the authors of [25–27] used convolutional neural networks (CNN) or other deep learning
approaches and showed promising results, albeit with a very large amount of data and a complex
network structure (at the cost of computational expense). A feature-based approach for discrete
positioning, based on propagation models, has been proposed in [1]. This article is based on their work
and also presents additional analysis and evaluation.

Most of the preliminary work either use “black-box” methods, when generalization is questionable
or require absolute costly time information. Instead, we identify features that are in line with theoretic
models for CIRs in adverse environments. Hence, we allow for a compact and comprehensive
representation of the contained information. To achieve that, we analyze the characteristics of UWB
CIRs in propagation environments with different degrees of complexity. Thus, we identify suitable
features that enable positioning in industry environments with ML methods and analyze them with
respect to their performance in different localization scenarios.

3. Modeling Channel Impulse Responses in Adverse Environments

In the following, the properties of CIRs are described in a simplified manner, for a more detailed
explanation (cf. [6]), but phase information is not considered, as the used recording setup was only
able to obtain the real parts of the CIRs.

Usually, CIRs are obtained by the transmission of a pseudo-random sequence s(t) known at both
the transmitter and receiver. s(t) is chosen such that its autocorrelation in the time domain is close to a
Dirac delta function:

s(t) ∗ s(−t) ≈ δ(t). (1)

This property can be exploited to obtain an estimate of the signal propagation channel. A simple
model for the propagation of the signal is convolution of s(t) with the CIR, such that the received
signal y(t) is given by:

y(t) = s(t) ∗ h(t) + ny(t), (2)

where ∗ denotes convolution. ny(t) represents the noise components not related to the propagation
path, e.g., sensor noise and correlation artifacts, modeled as zero-mean white Gaussian noise for
simplicity. An estimated CIR ĥ(t) is obtained by the decorrelation of the received signal y(t) with the
known sequence:

ĥ(t) ≈ y(t) ∗ s(−t) + nh(t). (3)

In general, s(t) is chosen such that the amount of decorrelation artifacts is kept low. However,
the combination of the artifacts with sensor noise leads to a level of spatially uncorrelated random noise
nh(t) within the estimated impulse response. Apart from this, CIRs contain information on all the paths
on which the signal traveled from a transmitter to a receiver, whether they are caused by reflection,
diffraction, or scattering. Hence, a CIR contains information on both the propagation conditions
and the position of the receiver and transmitter within the environment. However, the degree of the
contained information can vary greatly: in a free-space case, theoretically, only one path is contained,
while, in a complex setting, such as a typical industrial environment, many multipath components
are included, leading to a more complex pattern. A simple analytical model for CIRs, in a reflective
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environment with Np signal paths, that is characterized by their signal propagation time Ti and the
signal attenuation Dn along the path is given by:

h(t) ≈
Np

∑
i=0

δ(t− Ti)10
Di
20 . (4)

The attenuation is defined as

D = 20 log10(
4πd fc

c
) +

Nr

∑
i=0

Ri, (5)

containing both the free space path loss caused by the length of the path d and the absorption losses
Ri caused by the surfaces of each of the Nr reflections. Of course, this model does not account for
absorption, scattering, and diffraction, which are harder to model than reflections. An empirically
inspired model taking more of these complex propagation effects into account is the expanded
Saleh–Valenzuela model [28], which adds a tail of Ne so-called clusters with exponentially decreasing
magnitude, indexed k for each of the Nr reflections with index i:

h(t) ≈
Nr

∑
i=0

Ne

∑
k=0

δ(t− Ti − τi,k)10
Di
20 eτi,k/γ. (6)

The time-shifts of the primary reflections are given by Ti, while an additional time-shift τi,k is
present for each of the cluster components. This model fits measured impulse responses in indoor
environments based on the parameter γ and has been validated empirically.

4. Deduction of Relevant Features

While the simplified models introduced in Section 3 only cover a part of the actual propagation
effects, they show that, apart of the ToA (which, usually, corresponds to the time of the first correlation
peak above a certain threshold), a lot of additional spatial information related to the environment
is contained in CIRs. While this information has been used by deep neural networks and using
complete CIRs [26,27], this article proposes a more compact and comprehensible representation of the
information by feature extraction. In the following, some approaches to represent this information
are identified. In this section, the features are introduced and calculated for a set of three CIRs with
different properties (LOS, NLOS, and multipath), as shown in Figure 1. The CIRs were collected with
the measurement setup described in Section 5.1.1. The recording hardware setup did not allow for a
representation of the CIRs in physical units, which also holds for the extracted features. This is not an
issue for the proposed positioning approach, as it includes the normalization of the features. Hence,
throughout the discussion of the evaluation and results, graphs my not explicitly denote physical
units or units at all. The magnitudes of the obtained signals are presented. While the two CIRs with
a LOS component (Figure 1a,c) exhibit a clearly identifiable peak (at T = 100), the CIR without a
LOS connection (Figure 1b) does not. The LOS CIR with multipath components (Figure 1c) has a
exponentially decreasing tail of early reflections at T ∈ [100; 150] (similar to the model presented in
Equation (6)) after the LOS peak, while, for the pure LOS CIR (Figure 1a), a much steeper decay is
present. In the following, the used features are described, starting with simple basic ones (Correlation
Maximum and Energy), followed by more sophisticated features related to energy decay (Decay
Time Index and Peak Decay Exponential) and windowed features (time–frequency features and
echo densities).
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Figure 1. Magnitudes of exemplary CIRs. (a) LOS scenario. (b) NLOS scenario. (c) LOS scenario with
multipath components.

4.1. Basic Features

First, some basic features are introduced. Exemplary values are listed in Table 1. The energy
ENG(h(t)) =

∫
t h(t) of the CIR is of interest, as it is affected by the path-loss, the presence of multipath

components (MPCs), and absorption. The correlation outcome max(h(t)) was also chosen, as it varies
greatly depending on location, especially between LOS and NLOS areas and is also related to the
distance. For the CIRs in Figure 1, the maxima of the CIRs with LOS components at 5682 (Figure 1a)
and 6362 (Figure 1c) are much higher than for the NLOS-CIR (Figure 1b) at 816. The energy also varies
greatly: total values of about 69,700 for Figure 1a and about 82,300 for Figure 1c stand in contrast to
only 54200 for Figure 1b. The reflections in Figure 1c introduce additional energy, while Figure 1b has
no distinct high energy LOS peak.

Table 1. Feature outcomes (Basic and Decay-related) for the example CIRs introduced in Figure 1.

Feature LOS CIR (a) NLOS CIR (b) MP CIR (c)

Energy Index (ENG) 69,700 54,200 82,300

Correlation Maximum (MAX) 5682 816 6362

Decay Time Index (DTI) 210 246 146

Peak Decay Exponent (PDE) −0.20 −0.011 −0.0145

4.2. Energy Decay

The energy decay of an impulse response describes the cumulative integral of the contained
energy over time, i.e., how much energy is still left in the impulse response after a certain amount of
time. It is given by

EDC(t) =
∫ tend

t
h(t)2dt, (7)

where tend denotes the end of the impulse response. It has been studied in audio signal processing [29]
and is usually used in connection to the reverberation time T60 [30], a useful parameter for echo
cancellation and other audio applications. For a compact representation of the EDC as a single feature,
different characteristic values were extracted. Suitable percentiles were obtained by examining the
statistical distribution of the EDC percentiles within a given dataset. The percentiles corresponding
to the greatest variance in the distribution of the features were chosen by calculating the variance of
the EDC in 1% steps. Figure 2 shows the resulting variances for the three datasets (Clean (pure LOS),
Absorber (systematic reflections and absorptions), and Industrial (realistic environment)) that are
described in detail in Section 5.1. A value of 78% resulted in the highest variances for the scenarios
with more complex propagation patterns (i.e., a scenario with systematically introduced reflections and
absorption and a realistic industrial environment). The peak for the clean scenario was not included,
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as, apart from the LOS components, no spatial information is present, such that the energy decay is
mostly dominated by spatially uncorrelated noise.

Decay threshold 

V
ar

ia
n

ce
600
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0 20 40 60 80 100

Clean
Absorber

Industrial

Figure 2. Variances of the energy decay values of the spatial distributions of the energy decay values
corresponding to different percentiles.

For the CIRs in Figure 1, the percentile is reached at T = 210, 246, and 146 for the CIRs in
Figure 1a–c. In the LOS CIR (Figure 1a), the contrast of high energy content of the LOS component to
the rest of the CIR mostly containing correlation artifacts and noise causes a rapid energy decay in
contrast to the two CIRs with strong multipath components.

4.3. Characteristic Exponential Function

In [28], empirical analysis of CIRs concludes that they are arranged in clusters of exponentially
decreasing amplitudes as described in Equation (6). Based on this assumption, an exponential decay
function can be defined occurring after the first peak in the CIR:

CEF(t) = Ap exp(−σt), (8)

where Ap is the amplitude of the first peak (i.e., MAX) and σ defines the (unknown) steepness of
the exponential function. Hence, σ can be estimated and used as a feature and will be called peak
decay exponent (PDE) in the following. To obtain PDE, first, significant peaks in the magnitude
of the CIR have to be identified. Then, using least-squares fitting, σ can be estimated. For more
complex environments, σ should be smaller than for pure LOS environments. For the example CIRs,
the estimated exponentials for the two CIRs with LOS components are−0.20 for Figure 1a and−0.0145
for Figure 1c, indicating a steeper decline for the pure LOS CIR. The value for the pure NLOS CIR
is even lower at −0.011 as the peak is only slightly above the noise floor. While the number of
parameters for obtaining σ (i.e., peak detection and fitting parameters) is quite high, it allows for a
simple representation of the decay behavior CIR with one scalar value. This model could theoretically
be expanded to multiple exponential functions as covered in Equation (6).

4.4. Echo Density Profile

The echo density profile has been introduced as a method to characterize different reverberant
environments with respect to their geometry and the presence of scattering objects in audio signal
processing [31]. It is given by the number of values outside the standard deviation within a sliding
window w

EDP(t) = A
t+δ

∑
τ=t−δ

w(|h(τ) > στ |), (9)

where A is a scaling parameter related to the statistic likelihood of an outlier that is not considered in
the following as the features are scaled. στ describes the standard deviation of the current window.
In addition, a weighting function is applied. The echo density profile, similar to the energy decay
is not a compact representation of the information contained in the CIRs and has to be compressed
further. Thus, the windows were chosen with an overlay of only 50% to capture the difference in
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propagation behavior of the distinct phases while constituting a compact representation. The echo
densities were calculated with a hamming window of size 128. To still keep the dimensionality low,
all the echo densities were processed into one feature using a Principal Component Analysis (PCA).
The echo densities of the example CIRs are shown in Figure 3. After a very low value caused by the
variance increase due to the LOS component (leading to a lower amount of values above the standard
deviation), an effect that is smaller for the NLOS CIR in Figure 1b, the values increase faster for the
CIRs with MPCs (Figure 1b,c) and converges to a similar value for the end of the CIR, which mostly
contains noise and correlation artifacts.
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Figure 3. Echo densities of the exemplary CIRs (Figure 1).

4.5. Time-Frequency Domain Features

Representing the CIRs in the frequency or time–frequency domain is also a promising way
of extracting the contained information. The assumption is that the overlapping windows of
the time-frequency domain representation contain information on the different phases of signal
propagation contained in the CIR, which should reflect in the frequency domain. For example, if a
signal has dominant early reflections, the tonality in the corresponding windows is higher. For this,
the librosa library [32] was used for feature extraction. The features are calculated on the spectrogram of
the CIRs, which is a time-frequency representation containing the squared magnitude of the short-time
Fourier transform. This turns the signal into a set of frequency domain windows of specified length
that each represents the spectral information within a short time interval. A Hann window of size of
128 with an overlap of 64 allowed for capturing the spectral information on the different characteristic
phases in the impulse response. These settings present a trade-off between time-frequency resolution
and compactness. The following features were evaluated (formal definitions of the spectral features
are omitted for conciseness): the spectral centroid (SCD), corresponding to the center-of-mass of the
spectral representation; and the spectral bandwidth (SBW), describing the frequency range of the
majority of the signal. The spectral flatness (SFL) was also chosen, which is a measure of the atonality
of the signal, i.e., the flatter is the spectrum, the more noise-like is the signal. Furthermore, the spectral
roll-off (SRO) corresponds to the frequency below which the majority of the energy is contained.

The results of the time–frequency features for the CIRs in Figure 1 are shown in Figure 4: The
spectral centroid (Figure 4a) of the pure LOS CIR (Figure 1a) is lower for window indices 0, 1, and 2.
The CIR with both LOS and NLOS components (Figure 1c) differs from the pure NLOS CIR (Figure 1b)
in window 3. The lower amount of early reflections explains the low outcome for the LOS CIR.
The behavior in the latter half is similar for all the CIRs, as spatially uncorrelated noise dominates those
late phases. The spectral bandwidth of windows 0, 1, and 2 is lower for the pure LOS CIR (Figure 1a),
indicating that the behavior in these windows is less noise-like, which fits the model assumptions.
The absence of earlier, spatially coherent reflections in windows 3 and 4 leads to a more noise-like
outcome for the LOS CIR (Figure 1a), while the CIRs with multipath components (Figure 1b,c) still
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contain characteristic reflections that lead to a smaller spectral bandwidth as these have a more tonal
and less noise-like behavior. The spectral roll-off exhibits a difference between LOS and NLOS in the
early phases, but shows a low level of difference in the other phases, indicating that it is probably less
suitable than the other features. However, no exhaustive search was conducted with respect to the
roll-off percentage (which was set to 85%). The spectral flatness (Figure 4d) supports the hypothesis
made for the outcomes of the spectral bandwidth, as it indicates that the pure LOS CIR (Figure 1a)
transitions faster (in time window 3) into a noise-like phase due to the lack of early reflections. The large
spread in the last time-window is significant; the NLOS CIR (Figure 1b) still contains some distinct
albeit small peaks, which lead to more tonality in the signal. Overall, the time–frequency features
add a different kind of information to the feature set than the other windowed feature, echo-density
profile. In combination, the distinct behavior of the different phases (LOS-path, early reflections,
and late reflections) should add information that is not contained in the basic and decay-related
features. However, the information content of the spectral features is similar, so that using them
directly would lead to an over-representation of the information they contain, as the dimensionality
would be higher than for the basic and decay related features. To avoid this, it may be advantageous to
apply dimensionality reduction techniques such as a PCA. However, with a measurement setup with
the ability to collect CIRs at a higher rate, the resulting increase in possible frequency resolution may
yield more informative time–frequency features. Furthermore, a thorough investigation of window
types and sizes, FFT length, and overlap size could yield a more informative representation.
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(b) Spectral Bandwidth
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(c) Spectral Rolloff
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(d) Spectral Flatness

Figure 4. Outcomes of the spectral features.
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5. Spatial Analysis

To enable further analysis of the relation of the proposed features to the environment, in the
following section, spatial distributions of the features in different environments are presented. Using
these distributions, the relation of the proposed features to the environment and the positions of the
tracked object and infrastructure tags can be evaluated in a qualitative manner.

5.1. Data Acquisition (Large-Scale Datasets)

For the spatial analysis of the features in relation to the environment, three datasets of about
50,000 CIRs per infrastructure tag (i.e., anchor or node) were recorded. First, a dataset in a free-space
environment was collected in an area of about 5 m × 10 m. After that, in the next measurement,
reflections and absorptions were systematically introduced using absorber/reflector (a/r) walls,
leading to a reverberant environment with predictable multipath propagation, shown in Figure 5a.
The final large-scale dataset represents a realistic industrial environment on an area of [14 m × 18 m],
including large metal shelved filled with goods and industrial vehicles, as depicted in Figure 5b.
The measurements were conducted by walking within the region with the transmitter for an extended
period of time, as depicted in Figure 6. The distributions of data occurrence for the different datasets
are shown in Figure 6: For the industrial scenario, the data collection focused on the area between the
two storage shelves (objects (1) and (3) in Figure 6b) as this area had the most complex arrangement
of interfering objects. In the case of the reflector dataset depicted in Figure 6b, data collection was
focused on the area between the r/a walls and the transitions to the outer side to capture data with
distinctive propagation channels.

(a) Reflector scenario (b) Industrial scenario
Figure 5. Real-world environments for the large-scale datasets.

5.1.1. Hardware and Firmware Setup

For collecting the CIR data, a hardware module containing the decawave chip DW1000 using
impulse radio UWB technology with adjustable center frequencies between 3.5 and 6.5 GHz and
bandwidths between 0.5 and 1.3 GHz was employed. The chips can be configured as transmitters
and receivers, dependent on the installed firmware. In total, eight tags were available of which 6/7
were used as infrastructure tags and one as a mobile tag. The mobile tag was configured as a receiver
for the dataset used in Section 6.3 and as a transmitter for the other evaluations (the opposite holds
for the infrastructure nodes). For the large-scale datasets used in Sections 5 and 6.2, the Nikon iGPS
system (with a positioning accuracy in the range of millimeters) was used as a reference system and
synchronization of the CIRs and reference data was done by transmitting the data to a global server
over a TCP/IP protocol.
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(a)
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(b)
Figure 6. Probability distribution over the x and y positions of the datasets and positions of receivers
(red) and relevant objects (orange). (a) Reflector scenario with the (r/a) walls (orange) see also Figure 5a.
(b) Industrial scenario with the interfering objects (orange) see also Figure 5b.

5.2. Method

For qualitative assessment of the usability of the features for positioning, first, some spatial
distributions over the large scale datasets are presented. To obtain the spatial distributions, the data
were separated into a grid of tiles of size [30 cm × 30 cm]. The means of the feature outcomes
within the grids were then used for estimating a distribution over the whole area using piece-wise
cubic interpolation. For conciseness, only some exemplary distributions are shown in Figures 7–11.
The complete set will be made available in the Supplementary Materials.

5.3. Influence of LOS/NLOS on the Features

To compare the behavior of LOS/NLOS CIRs, two large scale datasets (see Section 5.1) were used:
the free-space scenario and the dataset with the reflector/absorber (r/a) walls: The arrangement of the
absorber walls was chosen such that, for each of the infrastructure tags, parts of the LOS signals was
absorbed and CIRs both with and without MPCs were available. The r/a walls, as shown in Figure 5a,
have a metal plate on the reflector side, with some metal mechanical arrangements towards the bottom
side that cause some perturbation. Both scenarios were recorded with the same receiver setup, but in a
slightly different area, such that, for the free space scenario, enough data for interpolation were only
available in an area shifted 1 m in the positive x-direction. All feature distributions are shown for a
receiver located at (29 m, 5.8 m). The energy distributions (Figure 7a) show that the LOS path yields a
much higher amount of energy than the NLOS components (Figure 7a), as indicated by the drop-off
in energy. The fact that separation between the LOS and NLOS areas is not a straight line is due to
diffraction at the edges of the reflector/absorber walls (marked as thick black lines). Furthermore,
the reflections, especially at the left absorber wall, cause a much higher energy content in the CIR,
especially close to the wall and where the reflections are present in addition to the LOS component.
The free space CIRs exhibit a much more homogeneous energy distribution (Figure 7b), with the energy,
slowly decreasing with the distance to the receiver (and therefore with the size of the correlation peak
that can be assumed to be the main contributor to the overall energy).
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Figure 7. Energy index distributions. (a) Reflector scenario. The reflector walls are indicated by the
thick black lines, the thin black line marks the transition between LOS and NLOS. (b) Free space
scenario.

The correlation maxima (Figure 8) exhibit an even more distinguishable difference between LOS
and NLOS CIRs: while the outcomes of the LOS CIRs decrease radially with the distance, a sharp
distinction occurs between the areas affected and unaffected by the absorber wall (Figure 8a).
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Figure 8. Correlation maximum distributions. (a) Reflector scenario. The reflector walls are indicated
by the thick black lines, the thin black line marks the transition between LOS and NLOS. (b) Free space
scenario

The decay time indices (Figure 9) increase with the distance in the free space scenario (Figure 9b).
The decreasing power of the LOS peak results in a decreasing contribution to the total energy. The r/a
walls cause a slower decay in the NLOS cases (Figure 9a), as the contribution of the LOS peak is
not present.
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Figure 9. Decay time index distributions. (a) Reflector scenario. The reflector walls are indicated by
the thick black lines, the thin black line marks the transition between LOS and NLOS. (b) Free space
scenario.

For the peak decay exponential (Figure 10), the much lower exponents indicate the faster decay
for the LOS case (Figure 10b) compared to the NLOS areas in Figure 10a. The much slower decay for
the region without a LOS connection also is in compliance with the models presented in Section 3.
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Figure 10. Decay exponent distributions. (a) Reflector scenario. The reflector walls are indicated by
the thick black lines, the thin black line marks the transition between LOS and NLOS. (b) Free space
scenario.

5.4. Influence of Scattering and Blocking Objects in the Industrial Scenario

The spatial analysis of the data obtained in the industrial scenario is not as straightforward
as for the free-space and reflector scenarios, as regions with distinct propagation patterns are not
easily identified from the measurement setup due to the complex shapes and variety of materials.
Therefore, the goal is to find out how strong the relationship between the feature outcomes and the
environment is by examining the spatial distributions in relation to the arrangement of influencing
objects. The examples are shown in Figure 11 for a receiver located at (20 m, 8 m). The energy of the
signal shows a distinct relation to the environment (see Figure 11a): behind shelf (3), absorption by the
objects within leads to a high drop in energy.
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(e) Spectral bandwidth of the fourth time window

Figure 11. Feature distributions for the industrial dataset.
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The effect of the missing LOS is even higher for the correlation maxima (Figure 11b) so that
even the small vehicle (2) has a distinct “shadow” caused by the lack of a direct signal path with
blocking objects in the LOS. The decay time index Figure 11c also increases in areas with objects causing
multipath propagation, such as between metal shelfs (1) and (3) and, especially behind metal shelf (3),
where it can be assumed that no or only a strongly attenuated LOS signal component is available.

For the windowed features, the second time window of the echo densities (which typically
includes the LOS peak if it is present in the data) in Figure 11d also shows some distinction between
LOS and NLOS, while no clear relation to the distance between transmitter and receiver is present.
In the fourth time window, the spectral bandwidth also shows a clear distinction to the arrangement of
objects in the environment and their geometric relation to the location of the receiver.

5.5. Discussion

In conclusion, there exist distinct relations between the feature distributions and the environment.
Areas with both characteristic absorption and reflection patterns exist and these differences are
project onto the features. The clear relation of the signals to the environment indicates that a
localization approach based on the proposed features may actually perform better in more complex
environments, as objects with influence on the propagation actually create more diversity in the
spatial distributions, especially if they are available from multiple infrastructure tags. Because of these
anomalies, the spatial distributions are much more inhomogeneous than the spatial distributions for
a typical free-space distance-related measurement (which just increases radially from the receiver).
Unlike pure anomaly-based methods such as magnetic field based Simultaneous Localization and
Mapping (SLAM) [33], the feature distributions also contain information on the infrastructure
tags. Hence, infrastructure can be installed with the specific purpose of creating spatially diverse
distributions. The clear relation to the environment indicates that it should be possible to generate a
map of the environment using the feature-based approach, especially when combined with additional
information sources, such as semantic maps [34] or object information detected by other sensors such
as cameras [35]. Furthermore, the impact of the propagation conditions, as described in Section 5.3,
and the spatial behavior of the features implies that the proposed features are usable to classify
propagation conditions (MPC, LOS, and NLOS detection), and enhance the performance of tracking
filters [18]. The spatial distributions of the features, while informative and spatially significant, exhibit
a degree of relatedness that implies that a more compact representation can be obtained. Thus,
further studies in dimensionality reduction using classical methods, such as PCA, or neural network
architectures, such as variational autoencoders [36], may allow for a more compact representation of
the spatial information.

After the behavior of the features in different environments was qualitatively evaluated,
a quantitative evaluation of their suitability for positioning was conducted.

6. Evaluation

After the qualitative assessment of the proposed feature-based approach in Section 5, the features
were applied to positioning scenarios. After pre-processing the data, the features were extracted
and post-processed for the ML algorithms. The features were then grouped to allow for a separate
assessment of and the distinction between different kinds. The first evaluation was conducted using
the “Industrial” dataset (see Section 5.1). The dataset was separated into regions of decreasing size
that were set up for hierarchical ML classification. After that, in the second evaluation, the distinction
between a set of the positions of screw processes on a car was considered. A separate dataset was
introduced, including different changes in the environment. Training was conducted with both the
original dataset and a mix of the original dataset and the datasets including the environment changes.
Finally, a conclusive assessment of the introduced features was conducted . In terms of the application
for industrial surveillance, the region identification can be interpreted as the detection of the object
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that a worker is working on (i.e., a macroscopic positioning) and the work process localization is then
related to the various work tasks that are conducted on the object.

6.1. Evaluation Framework

The evaluation setup is depicted in Figure 12b: First, the collected data were pre-processed.
Samples that did not contain CIRs from all receivers/transmitters were discarded as they could
not provide complete feature vectors (amounting to about 20% of the data). Then, the recorded
data, containing CIRs from all infrastructure tags, reference positions, and timestamps, were aligned
such that a matrix of CIRs (h1,i, . . . , hNr ,i)

T , and corresponding reference positions xi was available.
Afterwards, this set of labeled data was then processed into the feature extraction and post-processing
framework. The features were prepared for use in solving a classification problem. We split the set
of proposed features sets into three different categories: Basic, Windowed, and Decay. B contains
a single energy index (ENG) and a single correlation maximum (MAX) feature. W compromises
both the time–frequency (SCD, SBW, SFL, and SRO) and echo density (ED) features. There were 24
time–frequency features, four different groups of six features each, and six ED features. D includes
two features: the Decay Time Index (DTI), and the Peak Decay Exponent (PDE). The process for
creating the final feature domain representation is shown in Figure 12a. First, all the time–frequency
domain features were normalized separately as the value ranges of their outcomes varied greatly.
Then, the features were normalized together. The six ED features were also normalized.
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Figure 12. Overview of the applied ML pipeline.

To reduce the dimensionality, i.e., to compress the feature space to a lower number of features
while keeping significant information and characteristics of the features, we determined the principal
components of both the 24 normalized time–frequency features and the six normalized echo density
features. We analyzed the principal components (PCs) and selected the maximal component of the
echo density features and the features corresponding to the first and second PCs of the time–frequency
features. The resulting feature-space representation consists of seven features, two B, two W
time–frequency, one W echo density, and two D features. Again, we normalized these seven features to
obtain the final feature space representation. This process was done for each of the infrastructure tags,
leading to 34 features/tag before and 7 features/tag after the PCA. For the six infrastructure tags used
in the measurements, the resulting dimensionality was N f eat×Nanch = 7× 6. After that, the evaluation
models were selected: classifiers were trained and optimized with cross-validation techniques after
separating the data into training, testing and validation datasets. The exact methodology and results
of the evaluation methods are presented in detail in the following subsections.



Sensors 2019, 19, 5547 17 of 26

6.2. Region Identification

For industrial surveillance, discrete or semantically motivated positioning is of importance
because tasks are typically confined to certain areas. Therefore, for the evaluation, the focus lies on
the classification of regions. We exploit the fact, that a single classification model suffers from rising
uncertainties with an increasing number of possible classes. Therefore, we reduce the number of
classes (note, in the following, a class represents a region), to reduce the possibility of uncertainty,
but at the cost of several independent classification models that are hierarchically and semantically
selected for each region. Thus, if a model classifies incorrectly, we also select an incorrect model to
classify subregions. This hierarchical classification approach provides localization that allows for a
semantic rather than a geometric interpretation.

6.2.1. Hierarchical Machine Learning Pipeline

On the highest level, the data from the industrial dataset are split into six regions (see Figure 13).
The regions are selected such that they imply real-world relevance (i.e., a typical transition between
storage shelves), but also include enough and equally distributed data points for the machine learning
algorithms. The red box then shows the subregion that is further partitioned in Level 1.

SVC
Level 0

SVC
Level 1

SVC
Level 2

SVC
Level 3

SVC
Level 4

1.8x6m 0.57x6m 0.57x3m 0.28x1.5m 0.14x0.75m

x

y

14
x1
8m

Figure 13. Hierarchical classes used in the machine learning pipeline. Number of classes per region
from the left to the right: 6 at Level 0, 3 at Level 1, 2 at Level 2, 4 at Level 3, and again 4 at Level 4.

Thus, if the model correctly classifies that the obtained signal originates from inside the red box
in Level 0, another model that classifies the regions at Level 1 can be applied. This process can then
be repeated until Level 4 is reached, which represents an accuracy of 14 × 75 cm, about the size of
a typical work piece (localization of production steps on a work piece see Section 6.3). In Figure 6b,
the distribution of collected data is shown. The area in between the storage shelves was selected, as it
exhibited the highest data density and a high structural complexity. However, at Level 4, only about
100 data points per class were available.

6.2.2. Machine Learning Models

In a preliminary, study, two classifiers were studied and optimized using grid-search methods:
a Decision Tree Classifier (DT) and a Support Vector Classifier (SVC).

First, for the SVC model, preliminary experiments showed that, with a radial basis function kernel
k, the parameters Cost = 19 and Γ = 5, and a polynomial order p = 5, SVC provides the highest accuracy
and the most reliable results. Second, for the DT model [37], preliminary experiments showed that,
for the ω-classification, a DT performs best when configured with the Gini diversity index c = IG as
split criterion, a maximum depth of the tree of no more than depthmax = 100, the minimal number of
samples required to be at a leaf node lea fmin = 1, and the minimum number of samples required to
split a node splitmin >10.

For further evaluation, we selected the SVC as it yielded the highest accuracy on a 30%/70%
(test/training) split of the data. However, we performed an intense hyperparameter optimization
on both SVC and DT to find parameters that enable an optimal model for each Level or for all
Levels (Hyperparameter optimization: SVC: k = rb f ∈ {linear, polynomial, gaussian, rb f }, Cost = 19
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∈ {10−5 : 1 : 105}, Γ = 5 ∈ {10−5 : 1 : 105}, p = 5 ∈ {1 : 1 : 10}; DT: c = ′gini′ ∈ {‘gini′, ‘entropy′},
depthmax = 100 ∈ {1 : 10 : 1000}, lea fmin = 1 ∈ {1 : 1 : 15}, splitmin ≥ 10 ∈ {1 : 1 : 100}.).

6.2.3. Results

First, we describe the optimization parameters for the model that operates on all levels and the
models that operate individually per level. Then, we describe the results for both a cross-fold validation
and a hold-out test. First, a single model was optimized for all levels (“one-4-all”), leading to a kernel
coefficient Γ of 5 and a penalty parameter C of 19. In a second evaluation step, individual models
were trained for each Level (“one-4-each”) (Level 0 C = 7, Γ = 18; Level 1 C = 17, Γ = 6; Level 2 C = 5,
Γ = 13; Level 3 C = 21, Γ = 6; Level 4 C = 18, Γ = 5.). The validation revealed that the data are very well
embedded in each model, as shown in Table 2: a cross-fold of 10 showed accuracies over 90% for
all levels. When training separate models per level, the model yields slightly higher accuracy of up
to 99.8% at Level 0. To evaluate the generalization of the proposed model, the dataset was split for
each level individually. Note, as the number of data points decreases significantly at higher levels,
the datasets cannot be split equally for each level due to a lack of data. The applied splits (training/test)
were 70%/30% for Level 0, 80%/20% for Level 1, 85%/15% for Level 2, 90%/10% for Level 3 and 95%/5%
for Level 4. The test revealed that the “one-4-all” model really struggles on unknown data. The best
model showed an accuracy of 63.3% for Level 0. When training separate models per level, the model
yields much higher accuracies of up to 98.7%.

Table 2. Accuracy of “one-4-all Levels” and “one-4-each Level” models. Highest values are bold.

One-4-All [%] One-4-Each [%]
Evaluation Design L 0 L 1 L 2 L 3 L 4 L 0 L 1 L 2 L 3 L 4

Cross-Validation 98.2 96.3 92.3 95.4 91.2 99.8 98.3 99.6 94.9 97.6
Hold-Out 63.3 56.1 74.3 48.2 53.1 91.2 71.4 98.7 73.1 81.4

The impact of the different features sets (as introduced in Section 6.1) on the accuracy of our
models was also investigated. We trained different models on the following combinations of feature
sets: B, W, D, (B, W), (B, D), (B, W, D), and (W, D). The hyperparameters were optimized for each of
the combinations. Table 2 shows the accuracies of the model that performed best on all Levels and all
feature combinations, while Table 3 includes the results with unknown data. If only the W features
are used, the model performs worst (accuracy of 34% on Level 0 to 49% on Level 4). Instead, by using
only B or D, the model performs much better (67% on Level 3 to 97% on Level 2). However, the model
performs best if we combine B and D (up to 97%). Interestingly, although the W features do not add a
significant contribution, they do contribute to a higher accuracy on Level 4.

Table 3. Accuracy per Level and feature set. “One-4-each” models on unknown test data. Highest
values are bold.

Feature Set Accuracy per Level [%]

L 0 L 1 L 2 L 3 L 4

B 87.1 69.9 96.6 73.6 89.47
D 80.9 59.7 89.8 72.7 73.6
W 51.2 43.1 69.1 46.36 52.6
B, D 91.0 69.9 97.8 71.8 89.5
B, W 85.3 61.9 96.6 72.7 73.7
D, W 79.8 54.5 84.8 60.9 68.4
B, D, W 90.9 67.9 97.7 70.9 78.9
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6.2.4. Discussion

The proposed models are able to accurately distinguish between regions if individual models
are trained for all levels (“one-4-each”). The analysis of the impact of different features revealed that
B and D seem to contribute most to a models accuracy. The energies and correlation maxima vary
greatly as the interaction with the environment causes significant differences in the outcomes; the same
holds for the decay-related behavior for the CIRs. Especially between larger regions, the differences
in path loss, which are present in the B features, are also relevant. However, within smaller regions,
it may be possible that W features really represent different signal characteristics, thus the model may
really benefit from these features. This is investigated further in Section 6.3. The method is directly
applicable for industrial positioning with manageable datasets and without the need for a reference
system for the training procedure. In the following, the localization of production tasks in an area
corresponding roughly to Level 4 is presented.

6.3. Work Process Localization

In industrial applications, the position and order of work processes is especially relevant for
quality assurance [38]. This means that the semantic information implied by the positions (i.e.,
the work process) is of interest. Furthermore, an industrial environment will usually change
over time. Hence, the performance a ML or fingerprinting approach can deteriorate heavily [1].
To employ a running data driven positioning solution in this kind of environment, the models
are retrained to adapt changes in the environment. Therefore, a classification task was setup for
the distinction between a discrete set of work processes (i.e., screwing the screws into positions
on a car door shown in Figure 14a). The classification process and evaluation setup follow the
structure introduced in Figure 12b. First, CIRs from the infrastructure tags are recorded. Then,
the features are extracted from the signals. After splitting the data into training, test, and validation
sets, evaluation was conducted for the different scenarios described later in this section. Classical
machine learning models were chosen for the evaluation: Support vector classifier (SVC) with s radial
basis function or linear kernels, a decision tree (DT) classifier and a random forest (RF) classifier [37].
A grid-search algorithm fount suitable classifiers and hyperparameters for the different evaluations.
(Hyperparameter optimization: SVC: Kernel ∈ {linear, rb f }, C ∈ {10−4, 103}, Γ =∈ 10−5, 10−4, ...100;
DT: min.samples/split ∈ {2, 3, ..., 15}, min.samples/lea f ∈ {1, 2, ..., 11}; RF: Nest ∈ {10, 15, ..., 30},
min.samples/lea f ∈ {1, 2, 3}, min.samples/split ∈ {3, 4, ..., 7}).

6.3.1. Data Acquisition

To demonstrate that the proposed features are suited for tasks in process monitoring, a dataset
was recorded that captures the tasks of screwing six screws into a car door and considered changes in
the environment. The locations of the screws on the car door are shown in Figure 14a and are spaced
15–36 cm apart.

The proximity of the positions and the reflective behavior of the door make this a challenging
task for classical positioning methods. The whole evaluation setup is shown in Figures 14b and 15:
the car door (1) is placed close to a wall in a room with the size of 14 m × 8 m × 2.7 m, with the screw
positions facing the wall, leading to the absence of a LOS transmission path for most of the transmitters.
Additionally, three objects are present causing reflections and absorption of the UWB-signal: a movable
workbench containing an assembly setup and various tools (2), a mobile assembly line (3), and a
metallic motor mounting bracket (4). The different colors indicate the different positions of the objects
used in the different evaluation steps. The transmitters are mostly placed near the ceiling of the room;
only transmitters S2 and S4 are placed near the floor. To evaluate the approach, several datasets were
recorded after applying different changes to the environment. The data were recorded for each screw
location. While recording the data, the receiver was moved and rotated slightly to emulate realistic
conditions for screw tightening. For the first dataset (called “Ideal” in the following), the relevant
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objects in the environment are indicated by the green markers in Figure 15. Data were recorded for
6 min per screw location resulting in about 720 CIRs per transmitter. The dataset was then split into
30% test, 20% evaluation, and 50% training data.

(a) (b)
Figure 14. Pictures of the test environment for the small-scale datasets. (a) The location of the
positions-of-interest (L1–L6) on a car door. (b) The environment for the small-scale dataset.
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Figure 15. Layout of the evaluation. The positions-of-interest are placed on the car door (1), other
relevant objects are a workbench (2), assembly line (3), and motor mounting bracket (4). Changes in
the environment are displayed in different colors: Green shows the initial setup, while blue and yellow
show the changes in the environment.

In the next step, different changes were introduced to emulate an industrial scenario with more
realistic propagation conditions. Objects were moved to different positions, shown in Figure 15 in
blue (“Ch. Env 1”) and yellow (“Ch. Env.2 “), to change the propagation conditions. The first change
was chosen to only alter the propagation conditions slightly, while the second change was more
drastic, as two of the objects were arranged to block the LOS completely. In addition, an evaluation
set (“Persons”) was recorded with the environment arrangement from the “Ideal” setting, but with
group of five people walking within the environment, causing absorption. For each of the environment
changes, 2 min of data were recorded per screw location, resulting in about 240 CIRs each. The datasets
were then split into 25% training, 25% validation, and 50% test data.

6.3.2. Evaluation

The two main objectives of the evaluation were to test the robustness and suitability of the feature
based approach and to compare the features. Another objective was to find out how many and
which receivers are needed for accurate discrete localization (a more detailed analysis of this aspect is
contained in [1]). To achieve this, different evaluation settings were chosen: the features were grouped
into sets (see Section 6.1). First, a model was fitted onto the training and validated with the validation
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dataset of the “Ideal” scenario. The classification results are shown in Figure 16: even for only one
anchor, using all features (labeled BDW), an accuracy of about 99% was reached. The decay-related
features (labeled “BD”) only yielded a slight increase in accuracy in comparison to only using the basic
features (“B”) for one anchor. An accuracy of almost 100% was reached with an anchor count of 4
with all features. Evaluation of the “Ideal” datasets proved the validity of the feature-based approach:
even with an infrastructure that would not be sufficient for positioning (a classical trilaterion based
system needs at least three anchors to obtain a non-ambiguous result even with perfect propagation
conditions), an almost perfect positioning accuracy can be reached.
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Figure 16. Classification accuracies for different anchor counts with the “Ideal” dataset for different
combinations of features.

In the next evaluation step, the model fitted on the “Ideal” dataset was then evaluated on test data
from the “Other” datasets including environmental changes (“Persons”, and “Ch. Env 1”, “Ch. Env.2”).
The results are shown in Figure 17a,c,e: for the small changes in the environment, using all features
(B, D, W), an accuracy of 90% can still be reached with only two anchors. For all feature combinations,
the classification accuracy decreases with higher numbers of anchors, as the smaller numbers only
include the anchors for which the propagation path was only altered slightly. For environment change
2 (Figure 17c), only a maximum number of five anchors was available, as the propagation paths for
the remaining two were blocked and not enough data were available for evaluation. The drastic
change in propagation conditions (the bodies of five people causing absorption) led to a severe drop in
classification accuracy, about 72% with three anchors and the combination of basic and decay-related
features. In the final realistic scenario, the absorption caused by people walking in the propagation
path resulted in decrease in performance, but results of about 80% accuracy could still be reached
even for two anchors. In general, except for “Env. Ch. 2” with five anchors, additional features
apart from the basic ones showed a significant increase in performance, especially for fewer anchors.
The inclusion of both the windowed and decay-related features seems feasible. However, including
only one of the two options outperformed using both in some cases, notably for anchor numbers above
2 with the “People” dataset. This is a similar observation to what was found out for the macroscopic
case (see Section 6.2).

In the final evaluation step, data from the environment change scenarios were used to retrain the
model: the training and validation data from the “Other” datasets were mixed with the “Ideal” one
to generate new models, which were then evaluated against the test data from the “Other” datasets.
The goal was to find out if the models can adapt to environment changes by using a low amount of
data. For the small environment change (Figure 17b), the model adapts and results close to 100% were
achieved. The feature set with only the decay-related features performed similarly to the full feature
set. For the second environment change (Figure 17d), the full feature set produced the best results.
Retraining increased the performance significantly, especially for higher numbers of anchors (for which
the performance decreased for the model without retraining in Figure 17c), indicating that the model
could adapt to the changes in the environment. For the “People” scenario (Figure 17f), retraining also
resulted in an increase in accuracy; the maximum performance was already reached with two anchors.
The high performance gain produced by retraining is probably also due to the fact that data from the
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environment changes were used as validation data for model optimization. Therefore, the share of
the original data that was not or only slightly affected by the changes was weighted higher and still
able to contribute positively. While the combination of all features produced the best results with a
low number of infrastructure tags, both the windowed and decay-related features could individually
improve the performance of the classification, with the exception of “Env. Ch. 2” and a high number of
anchors. In many cases, the “W” features seemed to be necessary to achieve the maximal performance,
especially for lower numbers of infrastructure tags, but the “D”-features also contributed significantly.
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Figure 17. Classification accuracies for different anchor counts for testing with the datasets including
environment changes. The results in the left column are without, in the right column with retraining.

7. Conclusions

This article presents an analysis of the positioning features of ultra-wideband (UWB) channel
impulse responses (CIRs). The goal is to find a suitable method for positioning within a discrete set
of semantic regions, especially in regions with complex propagation conditions, such as industrial
environments. First, some theoretical models of CIRs are introduced. Based on the models, different
features with varying degrees of complexity are proposed. To analyze the features, different datasets
were recorded using an optical reference system and a recording architecture based on the popular
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decawave chip: a dataset over an area of [5 m × 10 m] without any blocking or reflecting objects;
an area of [5 m × 10 m] with an arrangement of absorber/reflector walls; and an area of [14 m × 18 m]
in a realistic industrial environment featuring a variety of propagation-affecting objects. For qualitative
spatial analysis, spatial distributions of the features were estimated using piece-wise cubic interpolation.
While only some feature distributions exhibited a clear relation to the distance between transmitter
and receiver, all of them showed a clear relation to the environment, in both the separation of LOS
and NLOS behavior in the reflector/absorber dataset, and the influence of objects such as metal
shelves in the industrial dataset. This leads to the conclusion that, unlike classical positioning systems,
the proposed feature-based approach is especially beneficial in areas with higher structural complexity.
A macroscopic positioning task for the separation of regions was conducted with the industrial
dataset and a hierarchical structure of models, corresponding to increasing positioning accuracy.
With dedicated classifiers, high accuracies of above 95% were achieved. Finally, the distinction between
a small set of semantic regions (related to the work processes involved in the assembly of a car door)
was evaluated. The dataset was collected in a realistic industrial scenario and different environment
changes were considered. Different classification models using the proposed feature representation
were then optimized to the original dataset. While a high accuracy of almost 100% was achieved
on test data from the original dataset, the results deteriorated heavily on the test data of the other
datasets. To adapt to environmental change, small amounts of training data from the other datasets
retrained the models, leading to a steep increase in accuracy up to 98%. In terms of assessment
of the proposed features, the sets of windowed features (containing dimensionality reduced echo
densities and time–frequency domain features) had the smallest contribution to the overall results in the
macroscopic evaluation, while the basic (energy and correlation maximum) and decay related features
contributed significantly. However, the windowed features contributed positively to the accuracy
of the work process localization task. The proposed feature based approach allows for a compact
representation of the CIRs. It is independent of the positions of the infrastructure tags and therefore
does not require a time-consuming and complex setup procedure. Furthermore, the data can be labeled
within semantic regions rather than with actual positions. Thus, the approach does not require a
positioning reference system and enables the models to quickly be adapted to environmental change.

8. Outlook

The proposed feature-based approach for positioning with UWB CIRs can be expanded by
adding additional features or applying other dimensionality reduction techniques. Measurements
of the phase information may yield additional information sources that have not been covered in
this contribution. Other features may be better for representing the influence of interfering objects
on the phase information. The proposed time–frequency representation could be improved by a
thorough investigation of the various related parameters (e.g., window type/size, overlap size,
and FFT length). Spatial distributions of the CIRs were used for visualization, but a representation
based on Gaussian process regression [39–41] may directly yield a statistical model usable for
positioning [42]. In the future, a comparison or combination of the proposed features with a
deep learning approach will also be investigated, such as a comparison with the latent layers in
a variational autoencoder [36]. A description of the spatial distributions using methods of quantifying
the information, such as the Kullback–Leibler Divergence [43] or the Wasserstein Metric [44], could also
yield a more comprehensible assessment of the features. Finally, a combination of the approaches with
a dynamic model into a tracking filter or even a simultaneous localization and mapping (SLAM) [45]
or semi-supervised learning [46] approach could yield a robust and accurate positioning solution.
The evaluation of the proposed approach in a real industrial environment with a variety of tasks
implying a semantic map [47] is also of interest.
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